Search results for: content- and task-based learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12564

Search results for: content- and task-based learning

8934 Application and Evaluation of Teaching-Learning Guides Based on Swebok for the Requirements Engineering Area

Authors: Mauro Callejas-Cuervo, Andrea Catherine Alarcon-Aldana, Lorena Paola Castillo-Guerra

Abstract:

The software industry requires highly-trained professionals, capable of developing the roles integrated in the cycle of software development. That is why a large part of the task is the responsibility of higher education institutions; often through a curriculum established to orientate the academic development of the students. It is so that nowadays there are different models that support proposals for the improvement of the curricula for the area of Software Engineering, such as ACM, IEEE, ABET, Swebok, of which the last stands out, given that it manages and organises the knowledge of Software Engineering and offers a vision of theoretical and practical aspects. Moreover, it has been applied by different universities in the pursuit of achieving coverage in delivering the different topics and increasing the professional quality of future graduates. This research presents the structure of teaching and learning guides from the objectives of training and methodological strategies immersed in the levels of learning of Bloom’s taxonomy with which it is intended to improve the delivery of the topics in the area of Requirements Engineering. Said guides were implemented and validated in a course of Requirements Engineering of the Systems and Computer Engineering programme in the Universidad Pedagógica y Tecnológica de Colombia (Pedagogical and Technological University of Colombia) using a four stage methodology: definition of the evaluation model, implementation of the guides, guide evaluation, and analysis of the results. After the collection and analysis of the data, the results show that in six out of the seven topics proposed in the Swebok guide, the percentage of students who obtained total marks within the 'High grade' level, that is between 4.0 and 4.6 (on a scale of 0.0 to 5.0), was higher than the percentage of students who obtained marks within the 'Acceptable' range of 3.0 to 3.9. In 86% of the topics and the strategies proposed, the teaching and learning guides facilitated the comprehension, analysis, and articulation of the concepts and processes of the students. In addition, they mainly indicate that the guides strengthened the argumentative and interpretative competencies, while the remaining 14% denotes the need to reinforce the strategies regarding the propositive competence, given that it presented the lowest average.

Keywords: pedagogic guide, pedagogic strategies, requirements engineering, Swebok, teaching-learning process

Procedia PDF Downloads 286
8933 Teaching: Using Co-teaching as an Instructional Model

Authors: Beverley Gallimore

Abstract:

The Individuals with Disabilities Education Act of 2004 (IDEA) has helped to improve outcomes for students with special education needs. Through IDEA, students with Special Education Needs (SEN) have opportunities for more equitable education within the General Education classroom. However, students with disabilities lack access to instructions that can help them to maximize their fullest learning potential. Recently, educational stakeholders have emphasized Integrated Co-teaching as a tool to increase engagement and learning outcomes for students with disabilities in general education classrooms. As a result of this new approach, general and special education teachers are working collaboratively to teach students with disabilities. However, co-teaching models are not properly designed and structured to effectively benefit students with disabilities. Teachers must be oriented correctly in the co-teaching models if it is to be beneficial for students.

Keywords: CO-teaching, differentiation, equitable, collaborative

Procedia PDF Downloads 81
8932 Tackling the Digital Divide: Enhancing Video Consultation Access for Digital Illiterate Patients in the Hospital

Authors: Wieke Ellen Bouwes

Abstract:

This study aims to unravel which factors enhance accessibility of video consultations (VCs) for patients with low digital literacy. Thirteen in-depth interviews with patients, hospital employees, eHealth experts, and digital support organizations were held. Patients with low digital literacy received in-home support during real-time video consultations and are observed during the set-up of these consultations. Key findings highlight the importance of patient acceptance, emphasizing video consultations benefits and avoiding standardized courses. The lack of a uniform video consultation system across healthcare providers poses a barrier. Familiarity with support organizations – to support patients in usage of digital tools - among healthcare practitioners enhances accessibility. Moreover, considerations regarding the Dutch General Data Protection Regulation (GDPR) law influence support patients receive. Also, provider readiness to use video consultations influences patient access. Further, alignment between learning styles and support methods seems to determine abilities to learn how to use video consultations. Future research could delve into tailored learning styles and technological solutions for remote access to further explore effectiveness of learning methods.

Keywords: video consultations, digital literacy skills, effectiveness of support, intra- and inter-organizational relationships, patient acceptance of video consultations

Procedia PDF Downloads 74
8931 Gabriel Mtsire’s "The Golden Spring" and Its Primary Sources, Textual and Content Changes Based on Cultural Development in the Context of the 4th-20th Centuries

Authors: Georgi Kalandadze

Abstract:

For studying the development of world civilizations, textual sources that have undergone textological and worldview changes are of great importance. The conference will discuss the collection of the XVIII century "The Golden Spring", compiled by Gabriel Mtsire, which includes texts of John Chrysostom. John Chrysostom lived in the 4th century and his writings correspond to the culture of readers of that time. In the 10th-11th centuries, the works of John Chrysostom were translated into Georgian by Euthymius of Athos. These texts correspond to the requirements of the Georgian society of the 10th-11th centuries. In the 18th century, Gabriel Mtsire collected and edited these texts to make them more understandable to his modern readers. In the 20th century, these texts were again adapted. Thus, the present study provides an opportunity to evaluate and outline the linguistic and content transformation process of the same work over 16 centuries.

Keywords: gabriel mtsire, john chrysostom, euthymius the athonite, the golden spring

Procedia PDF Downloads 85
8930 Environmental Effect on Yield and Quality of French Bean Genotypes Grown in Poly-Net House of India

Authors: Ramandeep Kaur, Tarsem Singh Dhillon, Rajinder Kumar Dhall, Ruma Devi

Abstract:

French bean (Phaseolous vulgaris L.) is an economically potential legume vegetable grown at high altitude (>1000 ft.). More recently, its cultivation in Northern Indian plans is gaining popularity but there is severe reduction in its yield and quality due to low temperature during extreme winter conditions of December-January in open field conditions. Therefore, present study was undertaken to evaluate 29 indeterminate French bean genotypes for various yield and quality traits in poly-net house with the objective to identify best performing genotypes during winter conditions. The significant variation was observed among all the genotypes for all the studied traits. The green pod yield was significantly higher in genotype Lakshmi (992.33 g/plant) followed by Star-I (955.50 g/plant) and FBK-4 (911.17 g/plant). However, the genotypes FBK-10 (105.50 days) and Lakshmi (106.83 days) took least number of days to first harvest and were significantly better than all other genotypes (109.00-136.83 days). The maximum numbers of 10 pickings were recorded in genotype Lakshmi whereas maximum harvesting span as also observed in Lakshmi (60.50 days) which was significantly higher than all other genotypes (31.17-56.50 days). Regarding quality traits, maximum dry matter was observed in FBK-13 (13.87%), protein content in FBK-1 (9.67%), sugar content in FBK-5 (9.60%) and minimum fiber content in FBK-12 (0.69%). It is hereby concluded that high productivity and better quality of French bean (genotypes: Lakshmi, Star-I, FBK-4) was produced in poly-net house conditions of Punjab, India and these pods fetches premium price in the market as there is no availability of green pods at that time in high altitudes. Hence, there is a great scope of cultivation of indeterminate French bean under poly-net house conditions in Punjab.

Keywords: earliness, pod, protected environment, quality, yield

Procedia PDF Downloads 106
8929 Organic Geochemistry of the Late Cenomanian–Early Turonian Source Rock in Central and Northern Tunisia

Authors: Belhaj Mohamed, M. Saidi, I. Bouazizi, M. Soussi, M. Ben Jrad

Abstract:

The Late Cenomanian-Early Turonian laminated, black, organic-rich limestones were described in Central Tunisia and attributed to the Bahloul Formation. It covers central and northern Tunisia, and the northern part of the Gulf of Gabes. The Bahloul Formation is considered as one of the main source rocks in Tunisia and is composed of outer-shelf to slop-laminated and dark-gray to black-colored limestones and marls. This formation had been deposited in a relatively deep-marine, calm, and anoxic environment. Rock-Eval analysis and vitrinite reflectance (Ro) measurements were performed on the basis of the organic carbon content. Several samples were chosen for molecular organic geochemistry. Saturate and aromatic hydrocarbons were analyzed by gas chromatography (GC) and GC–mass spectrometry. Geochemical data of the Bahloul Formation in northern and central Tunisia show this level to be a good potential source rock as indicated by the high content of type II organic matter. This formation exhibits high total organic carbon contents (as much as 14%), with an average value of 2% and a good to excellent petroleum potential, ranging between 2 and 50 kg of hydrocarbon/ton of rock. The extracts from the Bahloul Formation are characterized by Pr/Ph ratios ranging between 1.5 and 3, a moderate diasterane content, a C27 sterane approximately equal to C29 sterane, a high C28/C29 ratio, low gammacerane index, a C35/C34 homohopane ratio less than 1 and carbon isotope compositions between -24 and -26‰. The thermal maturity is relatively low, corresponding to the beginning of the oil window in the western area near the Algerian border, in the oil window in the eastern area (Sahel basin) and late mature in northern part.

Keywords: biomarkers, organic geochemistry, source rock, Tunisia

Procedia PDF Downloads 483
8928 Predicting the Product Life Cycle of Songs on Radio - How Record Labels Can Manage Product Portfolio and Prioritise Artists by Using Machine Learning Techniques

Authors: Claus N. Holm, Oliver F. Grooss, Robert A. Alphinas

Abstract:

This research strives to predict the remaining product life cycle of a song on radio after it has been played for one or two months. The best results were achieved using a k-d tree to calculate the most similar songs to the test songs and use a Random Forest model to forecast radio plays. An 82.78% and 83.44% accuracy is achieved for the two time periods, respectively. This explorative research leads to over 4500 test metrics to find the best combination of models and pre-processing techniques. Other algorithms tested are KNN, MLP and CNN. The features only consist of daily radio plays and use no musical features.

Keywords: hit song science, product life cycle, machine learning, radio

Procedia PDF Downloads 156
8927 A Professional Learning Model for Schools Based on School-University Research Partnering That Is Underpinned and Structured by a Micro-Credentialing Regime

Authors: David Lynch, Jake Madden

Abstract:

There exists a body of literature that reports on the many benefits of partnerships between universities and schools, especially in terms of teaching improvement and school reform. This is because such partnerships can build significant teaching capital, by deepening and expanding the skillsets and mindsets needed to create the connections that support ongoing and embedded teacher professional development and career goals. At the same time, this literature is critical of such initiatives when the partnership outcomes are short- term or one-sided, misaligned to fundamental problems, and not expressly focused on building the desired teaching capabilities. In response to this situation, research conducted by Professor David Lynch and his TeachLab research team, has begun to shed light on the strengths and limitations of school/university partnerships, via the identification of key conceptual elements that appear to act as critical partnership success factors. These elements are theorised as an inter-play between professional knowledge acquisition, readiness, talent management and organisational structure. However, knowledge of how these elements are established, and how they manifest within the school and its teaching workforce as an overall system, remains incomplete. Therefore, research designed to more clearly delineate these elements in relation to their impact on school/university partnerships is thus required. It is within this context that this paper reports on the development and testing of a Professional Learning (PL) model for schools and their teachers that incorporates school-university research partnering within a systematic, whole-of-school PL strategy that is underpinned and structured by a micro-credentialing (MC) regime. MC involves learning a narrow-focused certificate (a micro-credential) in a specific topic area (e.g., 'How to Differentiate Instruction for English as a second language Students') and embedded in the teacher’s day-to-day teaching work. The use of MC is viewed as important to the efficacy and sustainability of teacher PL because it (1) provides an evidence-based framework for teacher learning, (2) has the ability to promote teacher social capital and (3) engender lifelong learning in keeping professional skills current in an embedded and seamless to work manner. The associated research is centred on a primary school in Australia (P-6) that acted as an arena to co-develop, test/investigate and report on outcomes for teacher PL that uses MC to support a whole-of-school partnership with a university.

Keywords: teaching improvement, teacher professional learning, talent management, education partnerships, school-university research

Procedia PDF Downloads 81
8926 Modeling Engagement with Multimodal Multisensor Data: The Continuous Performance Test as an Objective Tool to Track Flow

Authors: Mohammad H. Taheri, David J. Brown, Nasser Sherkat

Abstract:

Engagement is one of the most important factors in determining successful outcomes and deep learning in students. Existing approaches to detect student engagement involve periodic human observations that are subject to inter-rater reliability. Our solution uses real-time multimodal multisensor data labeled by objective performance outcomes to infer the engagement of students. The study involves four students with a combined diagnosis of cerebral palsy and a learning disability who took part in a 3-month trial over 59 sessions. Multimodal multisensor data were collected while they participated in a continuous performance test. Eye gaze, electroencephalogram, body pose, and interaction data were used to create a model of student engagement through objective labeling from the continuous performance test outcomes. In order to achieve this, a type of continuous performance test is introduced, the Seek-X type. Nine features were extracted including high-level handpicked compound features. Using leave-one-out cross-validation, a series of different machine learning approaches were evaluated. Overall, the random forest classification approach achieved the best classification results. Using random forest, 93.3% classification for engagement and 42.9% accuracy for disengagement were achieved. We compared these results to outcomes from different models: AdaBoost, decision tree, k-Nearest Neighbor, naïve Bayes, neural network, and support vector machine. We showed that using a multisensor approach achieved higher accuracy than using features from any reduced set of sensors. We found that using high-level handpicked features can improve the classification accuracy in every sensor mode. Our approach is robust to both sensor fallout and occlusions. The single most important sensor feature to the classification of engagement and distraction was shown to be eye gaze. It has been shown that we can accurately predict the level of engagement of students with learning disabilities in a real-time approach that is not subject to inter-rater reliability, human observation or reliant on a single mode of sensor input. This will help teachers design interventions for a heterogeneous group of students, where teachers cannot possibly attend to each of their individual needs. Our approach can be used to identify those with the greatest learning challenges so that all students are supported to reach their full potential.

Keywords: affective computing in education, affect detection, continuous performance test, engagement, flow, HCI, interaction, learning disabilities, machine learning, multimodal, multisensor, physiological sensors, student engagement

Procedia PDF Downloads 94
8925 Augmented Reality in Teaching Children with Autism

Authors: Azadeh Afrasyabi, Ali Khaleghi, Aliakbar Alijarahi

Abstract:

Training at an early age is so important, because of tremendous changes in adolescence, including the formation of character, physical changes and other factors. One of the most sensitive sectors in this field is the children with a disability and are somehow special children who have trouble in communicating with their environment. One of the emerging technologies in the field of education that can be effectively profitable called augmented reality, where the combination of real world and virtual images in real time produces new concepts that can facilitate learning. The purpose of this paper is to propose an effective training method for special and disabled children based on augmented reality. Of course, in particular, the efficiency of augmented reality in teaching children with autism will consider, also examine the various aspect of this disease and different learning methods in this area.

Keywords: technology in education, augmented reality, special education, teaching methods

Procedia PDF Downloads 371
8924 A Radiomics Approach to Predict the Evolution of Prostate Imaging Reporting and Data System Score 3/5 Prostate Areas in Multiparametric Magnetic Resonance

Authors: Natascha C. D'Amico, Enzo Grossi, Giovanni Valbusa, Ala Malasevschi, Gianpiero Cardone, Sergio Papa

Abstract:

Purpose: To characterize, through a radiomic approach, the nature of areas classified PI-RADS (Prostate Imaging Reporting and Data System) 3/5, recognized in multiparametric prostate magnetic resonance with T2-weighted (T2w), diffusion and perfusion sequences with paramagnetic contrast. Methods and Materials: 24 cases undergoing multiparametric prostate MR and biopsy were admitted to this pilot study. Clinical outcome of the PI-RADS 3/5 was found through biopsy, finding 8 malignant tumours. The analysed images were acquired with a Philips achieva 1.5T machine with a CE- T2-weighted sequence in the axial plane. Semi-automatic tumour segmentation was carried out on MR images using 3DSlicer image analysis software. 45 shape-based, intensity-based and texture-based features were extracted and represented the input for preprocessing. An evolutionary algorithm (a TWIST system based on KNN algorithm) was used to subdivide the dataset into training and testing set and select features yielding the maximal amount of information. After this pre-processing 20 input variables were selected and different machine learning systems were used to develop a predictive model based on a training testing crossover procedure. Results: The best machine learning system (three-layers feed-forward neural network) obtained a global accuracy of 90% ( 80 % sensitivity and 100% specificity ) with a ROC of 0.82. Conclusion: Machine learning systems coupled with radiomics show a promising potential in distinguishing benign from malign tumours in PI-RADS 3/5 areas.

Keywords: machine learning, MR prostate, PI-Rads 3, radiomics

Procedia PDF Downloads 188
8923 Second Language Development with an Intercultural Approach: A Pilot Program Applied to Higher Education Students from a Escuela Normal in Atequiza, Mexico

Authors: Frida C. Jaime Franco, C. Paulina Navarro Núñez, R. Jacob Sánchez Nájera

Abstract:

The importance of developing multi-language abilities in our global society is noteworthy. However, the necessity, interest, and consciousness of the significance that the development of another language represents, apart from the mother tongue, is not always the same in all contexts as it is in multicultural communities, especially in rural higher education institutions immersed in small communities. Leading opportunities for digital interaction among learners from Mexico and abroad partners represents scaffolding towards, not only language skills development but also intercultural communicative competences (ICC). This study leads us to consider what should be the best approach to work while applying a program of ICC integrated into the practice of EFL. While analyzing the roots of the language, it is possible to obtain the main objective of learning another language, to communicate with a functional purpose, as well as attaching social practices to the learning process, giving a result of functionality and significance to the target language. Hence, the collateral impact that collaborative learning leads to, aims to contribute to a better global understanding as well as a means of self and other cultural awareness through intercultural communication. While communicating through the target language by online collaboration among students in platforms of long-distance communication, language is used as a tool of interaction to broaden students’ perspectives reaching a substantial improvement with the help of their differences. This process should consider the application of the target language in the inquiry of sociocultural information, expecting the learners to integrate communicative skills to handle cultural differentiation at the same time they apply the knowledge of their target language in a real scenario of communication, despite being through virtual resources.

Keywords: collaborative learning, communicative approach, culture, interaction, interculturalism, target language, virtual partnership

Procedia PDF Downloads 130
8922 Multilayer Perceptron Neural Network for Rainfall-Water Level Modeling

Authors: Thohidul Islam, Md. Hamidul Haque, Robin Kumar Biswas

Abstract:

Floods are one of the deadliest natural disasters which are very complex to model; however, machine learning is opening the door for more reliable and accurate flood prediction. In this research, a multilayer perceptron neural network (MLP) is developed to model the rainfall-water level relation, in a subtropical monsoon climatic region of the Bangladesh-India border. Our experiments show promising empirical results to forecast the water level for 1 day lead time. Our best performing MLP model achieves 98.7% coefficient of determination with lower model complexity which surpasses previously reported results on similar forecasting problems.

Keywords: flood forecasting, machine learning, multilayer perceptron network, regression

Procedia PDF Downloads 172
8921 Effect of Different Planting Times and Mulching Materials on Seed Quality and Yield of China Aster Cultivars

Authors: A. A. Bajad, B. P. Sharma, Y. C. Gupta, B. S. Dilt, R. K. Gupta

Abstract:

The present investigations were carried out at the experimental farm of Department of Floriculture and Landscape Architecture, Dr. Y. S. Parmar University of Horticulture and Forestry, Nauni, Solan, H.P. during 2015 and 2016. The experiment was laid out in a Randomized Block Design (factorial) consisting of 48 treatment combinations of four planting dates viz., D1- mid March, D2-mid April, D3-mid May and D4- mid June and two cultivars namely V1- Kamini and V2 -Poornima with six mulching materials M¬0¬- without mulch, M1- Black plastic mulch (100 µ), M2- Silver plastic mulch (100 µ), M3¬- Transparent plastic mulch (100 µ), M3-Transparent plastic mulch (100 µ), M4¬- Pine needle (100 µ) and M5- Grass (1 inch layer). Among different planting times, D4 i.e. mid June planting obtained best results for number of seed per flower (179.38), germination percent (83.92 %), electrical conductivity (0.97 ds/m), seedling length (7.93 cm), seedling dry weight (7.09 mg), seedling vigour index I (763.79), moisture content (7.83 %) and 1000 seed weight (1.94 g). However, seed yield per plant (14.30 g) was recorded to be maximum in mid of March. Among the cultivars, cv. ‘Poornima’ gave best results for number of seed per plant (187.30). However, cv. ‘Kamini’ recorded the best result for seed yield per plant (12.55), electrical conductivity (1.11 ds/m), germination percent (80.47 %), seedling length (6.39 cm), seedling dry weight (5.11 mg), seedling vigour index I (649.49), moisture content (9.28 %) and 1000 seed weight (1.70 g). Silver plastic obtained best results for number of seed per flower (170.10), seed yield per plant (15.66 g), germination percent (80.17 %), electrical conductivity (1.26 ds/m), seedling length (5.88 cm), seedling dry weight (4.46 mg), seedling vigour index I (616.78), Moisture content (9.35 %) and 100 seed weight (1.97 g).

Keywords: cultivars, mulch materials, planting times, flowers

Procedia PDF Downloads 287
8920 Effects of an Educative Model in Socially Responsible Behavior and Other Psychological Variables

Authors: Gracia V. Navarro, Maria V. Gonzalez, Carlos G. Reed

Abstract:

The eudaimonic perspective in philosophy and psychology suggests that a good life is closely related to developing oneself in order to contribute to the well-being and happiness of other people and of the world as a whole. Educational psychology can help to achieve this through the design and validation of educative models. Since 2004, the University of Concepcion and other Chilean universities apply an educative model to train socially responsible professionals, people that in the exercise of their profession contribute to generate equity for the development and assess the impacts of their decisions, opting for those that serve the common good. The main aim is to identify if a relationship exists between achieved learning, attitudes toward social responsibility, self-attribution of socially responsible behavior, value type, professional behavior observed and, participation in a specific model to train socially responsible (SR) professionals. The Achieved Learning and Attitudes Toward Social Responsibility Questionnaire, interview with employers and Values Questionnaire and Self-attribution of SR Behavior Questionnaire is applied to 394 students and graduates, divided into experimental and control groups (trained and not trained under the educative model), in order to identify the professional behavior of the graduates. The results show that students and graduates perceive cognitive, affective and behavioral learning, with significant differences in attitudes toward social responsibility and self-attribution of SR behavior, between experimental and control. There are also differences in employers' perceptions about the professional practice of those who were trained under the model and those who were not. It is concluded that the educative model has an impact on the learning of social responsibility and educates for a full life. It is also concluded that it is necessary to identify mediating variables of the model effect.

Keywords: educative model, good life, professional social responsibility, values

Procedia PDF Downloads 264
8919 Deep Routing Strategy: Deep Learning based Intelligent Routing in Software Defined Internet of Things.

Authors: Zabeehullah, Fahim Arif, Yawar Abbas

Abstract:

Software Defined Network (SDN) is a next genera-tion networking model which simplifies the traditional network complexities and improve the utilization of constrained resources. Currently, most of the SDN based Internet of Things(IoT) environments use traditional network routing strategies which work on the basis of max or min metric value. However, IoT network heterogeneity, dynamic traffic flow and complexity demands intelligent and self-adaptive routing algorithms because traditional routing algorithms lack the self-adaptions, intelligence and efficient utilization of resources. To some extent, SDN, due its flexibility, and centralized control has managed the IoT complexity and heterogeneity but still Software Defined IoT (SDIoT) lacks intelligence. To address this challenge, we proposed a model called Deep Routing Strategy (DRS) which uses Deep Learning algorithm to perform routing in SDIoT intelligently and efficiently. Our model uses real-time traffic for training and learning. Results demonstrate that proposed model has achieved high accuracy and low packet loss rate during path selection. Proposed model has also outperformed benchmark routing algorithm (OSPF). Moreover, proposed model provided encouraging results during high dynamic traffic flow.

Keywords: SDN, IoT, DL, ML, DRS

Procedia PDF Downloads 110
8918 STEM Curriculum Development Using Robotics with K-12 Students in Brazil

Authors: Flavio Campos

Abstract:

This paper describes an implementation of a STEM curriculum program using robotics as a technological resource at a private school in Brazil. Emphasized the pedagogic and didactic aspects and brings a discussion about STEM curriculum and the perspective of using robotics and the relation between curriculum, science and technologies into the learning process. The results indicate that STEM curriculum integration with robotics as a technological resource in K-12 students learning process has complex aspects, such as relation between time/space, the development of educators and the relation between robotics and other subjects. Therefore, the comprehension of these aspects could indicate some steps that we should consider when integrating STEM basis and robotics into curriculum, which can improve education for science and technology significantly.

Keywords: STEM curriculum, educational robotics, constructionist approach, education and technology

Procedia PDF Downloads 342
8917 Teaching and Learning Physics via GPS and WikiS

Authors: Hashini E. Mohottala

Abstract:

We report the combine use of Wikispaces (WikiS) and Group Problem Solving (GPS) sessions conducted in the introductory level physics classes. As a part of this new teaching tool, some essay type problems were posted on the WikiS in weekly basis and students were encouraged to participate in problem solving without providing numerical final answers but the steps. Wikispace is used as a platform for students to meet online and create discussions. Each week students were further evaluated on problem solving skills opening up more opportunity for peer interaction through GPS. Each group was given a different problem to solve and the answers were graded. Students developed a set of skills in decision-making, problem solving, communication, negotiation, critical and independent thinking and teamwork through the combination of WikiS and GPS.

Keywords: group problem solving (GPS), wikispace (WikiS), physics education, learning

Procedia PDF Downloads 418
8916 A Redesigned Pedagogy in Introductory Programming Reduces Failure and Withdrawal Rates by Half

Authors: Said Fares, Mary Fares

Abstract:

It is well documented that introductory computer programming courses are difficult and that failure rates are high. The aim of this project was to reduce the high failure and withdrawal rates in learning to program. This paper presents a number of changes in module organization and instructional delivery system in teaching CS1. Daily out of class help sessions and tutoring services were applied, interactive lectures and laboratories, online resources, and timely feedback were introduced. Five years of data of 563 students in 21 sections was collected and analyzed. The primary results show that the failure and withdrawal rates were cut by more than half. Student surveys indicate a positive evaluation of the modified instructional approach, overall satisfaction with the course and consequently, higher success and retention rates.

Keywords: failure rate, interactive learning, student engagement, CS1

Procedia PDF Downloads 308
8915 A Case Study on Machine Learning-Based Project Performance Forecasting for an Urban Road Reconstruction Project

Authors: Soheila Sadeghi

Abstract:

In construction projects, predicting project performance metrics accurately is essential for effective management and successful delivery. However, conventional methods often depend on fixed baseline plans, disregarding the evolving nature of project progress and external influences. To address this issue, we introduce a distinct approach based on machine learning to forecast key performance indicators, such as cost variance and earned value, for each Work Breakdown Structure (WBS) category within an urban road reconstruction project. Our proposed model leverages time series forecasting techniques, namely Autoregressive Integrated Moving Average (ARIMA) and Long Short-Term Memory (LSTM) networks, to predict future performance by analyzing historical data and project progress. Additionally, the model incorporates external factors, including weather patterns and resource availability, as features to improve forecast accuracy. By harnessing the predictive capabilities of machine learning, our performance forecasting model enables project managers to proactively identify potential deviations from the baseline plan and take timely corrective measures. To validate the effectiveness of the proposed approach, we conduct a case study on an urban road reconstruction project, comparing the model's predictions with actual project performance data. The outcomes of this research contribute to the advancement of project management practices in the construction industry by providing a data-driven solution for enhancing project performance monitoring and control.

Keywords: project performance forecasting, machine learning, time series forecasting, cost variance, schedule variance, earned value management

Procedia PDF Downloads 39
8914 Exploring the Influence of Wind on Wildfire Behavior in China: A Data-Driven Study Using Machine Learning and Remote Sensing

Authors: Rida Kanwal, Wang Yuhui, Song Weiguo

Abstract:

Wildfires are one of the most prominent threats to ecosystems, human health, and economic activities, with wind acting as a critical driving factor. This study combines machine learning (ML) and remote sensing (RS) to assess the effects of wind on wildfires in Chongqing Province from August 16-23, 2022. Landsat 8 satellite images were used to estimate the difference normalized burn ratio (dNBR), representing prefire and postfire vegetation conditions. Wind data was analyzed through geographic information system (GIS) mapping. Correlation analysis between wind speed and fire radiative power (FRP) revealed a significant relationship. An autoregressive integrated moving average (ARIMA) model was developed for wind forecasting, and linear regression was applied to determine the effect of wind speed on FRP. The results identified high wind speed as a key factor contributing to the surge in FRP. Wind-rose plots showed winds blowing to the northwest (NW), aligning with the wildfire spread. This model was further validated with data from other provinces across China. This study integrated ML, RS, and GIS to analyze wildfire behavior, providing effective strategies for prediction and management.

Keywords: wildfires, machine learning, remote sensing, wind speed, GIS, wildfire behavior

Procedia PDF Downloads 20
8913 Development and Characterization of Kefir Drinks from Pumpkin (Cucurbita moschata) and Winter Melon (Benincasa hispida)

Authors: Uthumporn Utra, Y. N. Shariffa, M. Maizura, A. S. Ruri

Abstract:

This research is to study the utilization of pumpkin and winter melon as the main substrate for kefir fermentation in the production of pumpkin and winter melon-based fermented drinks. Optimized temperature and time were chosen for fermentation of pumpkin and winter melon. Physicochemical and microbiological evaluations were conducted to the end products: P (fermented pumpkin juice) and K (fermented winter melon juice). Ethanol content was detected at low concentration of 0.9% (v/wt) in P, and 1.0% (v/wt) in K. Level of glucose and fructose increased significantly (p < 0.05) in both fermented drinks when compared to unfermented pumpkin (CP) and winter melon (CK) juices. Total phenolic content in P & K was higher than CP and CK, while %DPPH inhibition of both decreased significantly. Total Lactobacilli counts in P & K were 8.9 and 7.88 log cfu/ml respectively, while acetic acid bacteria counts were 8.62 and 7.57 log cfu/ml respectively, yeast counts were 4.71 and 5 log cfu/ml, and no E.coli was detected in all samples. Sensory evaluation yield comparable properties in P & K. This concluded that pumpkin and winter melon fermented drinks inoculated by water kefir grains could be promising source of nutrients with probiotic potency.

Keywords: fermented drinks, functional beverage, kefir, pumpkin, winter melon

Procedia PDF Downloads 149
8912 Observation of Large-Scale Traveling Ionospheric Disturbance over Peninsular Malaysia Using GPS Receivers

Authors: Intan Izafina Idrus, Mardina Abdullah, Alina Marie Hasbi, Asnawi Husin

Abstract:

This paper presents the result of large-scale traveling ionospheric disturbance (LSTID) observation during moderate magnetic storm event on 25 October 2011 with SYM-H ~ -160 nT and Kp ~ 7 over Peninsular Malaysia at equatorial region using vertical total electron content (VTEC) from the Global Positioning System (GPS) observation measurement. The propagation of the LSTID signatures in the TEC measurements over Peninsular Malaysia was also investigated using VTEC map. The LSTID was found to propagate equator-ward during this event. The results showed that the LSTID propagated with an average phase velocity of 526.41 m/s and average periods of 140 min. The occurrence of this LSTID was also found to be the subsequent effects of substorm activities in the auroral region.

Keywords: Global Positioning System (GPS), large-scale traveling ionospheric disturbance (LSTID), moderate geomagnetic storm, vertical total electron content (VTEC)

Procedia PDF Downloads 226
8911 Genetic Variability in Advanced Derivatives of Interspecific Hybrids in Brassica

Authors: Yasir Ali, Farhatullah

Abstract:

The present study was conducted to estimate the genetic variability, heritability and genetic advance in six parental lines and their 56 genotypes derived from five introgressed brassica populations on the basis of morphological and biochemical traits. The experiment was laid out in a randomized complete block design with two replications at The University of Agriculture Peshawar-Pakistan during growing season of 2015-2016. The ANOVA of all traits of F5:6 populations showed highly significant differences (P ≤ 0.01) for all morphological and biochemical traits. Among F5:6 populations, the genotype 2(526) was earlier in flowering (108.65 days), and genotype 14(485) was earlier in maturity (170 days). Tallest plants (182.5 cm), largest main raceme (91.5 cm) and maximum number of pods (80.5) on main raceme were recorded for genotype 17(34). Maximum primary branches plant-1(6.2) and longest pods (10.26 cm) were recorded for genotype 15, while genotype 16(171) had more seeds pod⁻¹ (22) and gave maximum yield plant-1 (30.22 g). The maximum 100-seed weight (0.60 g) was observed for genotype 10(506) while high protein content (22.61%) was recorded for genotype 4(99). Maximum oil content (54.08 %) and low linoleic acid (7.07 %) were produced by genotype (12(138) and low glucosinolate (59.01 µMg⁻¹) was recorded for genotype 21(113). The genotype 27(303) having high oleic acid content (51.73 %) and genotype 1(209) gave low erucic acid (35.97 %). Among the F5:6 populations moderate to high heritability observed for all morphological and biochemical traits coupled with high genetic advance. Cluster analysis grouped the 56 F5:6 populations along their parental lines into seven different groups. Each group was different from the other group on the basis of morphological and biochemical traits. Moreover all the F5:6 populations showed sufficient variability. Genotypes 10(506) and 16(171) were superior for high seed yield⁻¹, 100-seeds weight, and seed pod⁻¹ and are recommended for future breeding program.

Keywords: Brassicaceae, biochemical characterization, introgression, morphological characterization

Procedia PDF Downloads 180
8910 In the Face of Brokenness: Finding Meaning and Purpose in a Shattered World

Authors: Le Khanh Huyen

Abstract:

This dissertation focuses on the psychological study of children, particularly those who lack parental affection or face family pressures. It will analyze the severe consequences of insufficient parental love and familial pressure on children's psychology, including emotional and behavioral disorders, learning difficulties in academics and daily life, loss of faith, and low self-esteem. Additionally, this dissertation will propose solutions to support children in challenging circumstances, contributing to the protection of children's mental health.

Keywords: child psychology, lack of parental love, family pressure, emotional and behavioral disorders, learning difficulties, loss of faith, self-esteem, mental health

Procedia PDF Downloads 36
8909 Exploring Perspectives and Complexities of E-tutoring: Insights from Students Opting out of Online Tutor Service

Authors: Prince Chukwuneme Enwereji, Annelien Van Rooyen

Abstract:

In recent years, technology integration in education has transformed the learning landscape, particularly in online institutions. One technological advancement that has gained popularity is e-tutoring, which offers personalised academic support to students through online platforms. While e-tutoring has become well-known and has been adopted to promote collaborative learning, there are still students who do not use these services for various reasons. However, little attention has been given to understanding the perspectives of students who have not utilized these services. The research objectives include identifying the perceived benefits that non-e-tutoring students believe e-tutoring could offer, such as enhanced academic support, personalized learning experiences, and improved performance. Additionally, the study explored the potential drawbacks or concerns that non-e-tutoring students associate with e-tutoring, such as concerns about efficacy, a lack of face-to-face interaction, and platform accessibility. The study adopted a quantitative research approach with a descriptive design to gather and analyze data on non-e-tutoring students' perspectives. Online questionnaires were employed as the primary data collection method, allowing for the efficient collection of data from many participants. The collected data was analyzed using the Statistical Package for the Social Sciences (SPSS). Ethical concepts such as informed consent, anonymity of responses and protection of respondents against harm were maintained. Findings indicate that non-e-tutoring students perceive a sense of control over their own pace of learning, suggesting a preference for self-directed learning and the ability to tailor their educational experience to their individual needs and learning styles. They also exhibit high levels of motivation, believe in their ability to effectively participate in their studies and organize their academic work, and feel comfortable studying on their own without the help of e-tutors. However, non-e-tutoring students feel that e-tutors do not sufficiently address their academic needs and lack engagement. They also perceive a lack of clarity in the roles of e-tutors, leading to uncertainty about their responsibilities. In terms of communication, students feel overwhelmed by the volume of announcements and find repetitive information frustrating. Additionally, some students face challenges with their internet connection and associated cost, which can hinder their participation in online activities. Furthermore, non-e-tutoring students express a desire for interactions with their peers and a sense of belonging to a group or team. They value opportunities for collaboration, teamwork in their learning experience, the importance of fostering social interactions and creating a sense of community in online learning environments. This study recommended that students seek alternate support systems by reaching out to professors or academic advisors for guidance and clarification. Developing self-directed learning skills is essential, empowering students to take charge of their own learning through setting objectives, creating own study plans, and utilising resources. For HEIs, it was recommended that they should ensure that a variety of support services are available to cater to the needs of all students, including non-e-tutoring students. HEIs should also ensure easy access to online resources, promote a supportive community, and regularly evaluate and adapt their support techniques to meet students' changing requirements.

Keywords: online-tutor;, student support;, online education, educational practices, distance education

Procedia PDF Downloads 82
8908 Applicability of Fuzzy Logic for Intrusion Detection in Mobile Adhoc Networks

Authors: Ruchi Makani, B. V. R. Reddy

Abstract:

Mobile Adhoc Networks (MANETs) are gaining popularity due to their potential of providing low-cost mobile connectivity solutions to real-world communication problems. Integrating Intrusion Detection Systems (IDS) in MANETs is a tedious task by reason of its distinctive features such as dynamic topology, de-centralized authority and highly controlled/limited resource environment. IDS primarily use automated soft-computing techniques to monitor the inflow/outflow of traffic packets in a given network to detect intrusion. Use of machine learning techniques in IDS enables system to make decisions on intrusion while continuous keep learning about their dynamic environment. An appropriate IDS model is essential to be selected to expedite this application challenges. Thus, this paper focused on fuzzy-logic based machine learning IDS technique for MANETs and presented their applicability for achieving effectiveness in identifying the intrusions. Further, the selection of appropriate protocol attributes and fuzzy rules generation plays significant role for accuracy of the fuzzy-logic based IDS, have been discussed. This paper also presents the critical attributes of MANET’s routing protocol and its applicability in fuzzy logic based IDS.

Keywords: AODV, mobile adhoc networks, intrusion detection, anomaly detection, fuzzy logic, fuzzy membership function, fuzzy inference system

Procedia PDF Downloads 178
8907 Effect of Noise Reducing Headphones on the Short-Term Memory Recall of College Students

Authors: Gregory W. Smith, Paul J. Riccomini

Abstract:

The goal of this empirical inquiry is to explore the effect of noise reducing headphones on the short-term memory recall of college students. Immediately following the presentation (via PowerPoint) of 12 unrelated and randomly selected one- and two-syllable words, students were asked to recall as many words as possible. Using a linear model with conditions marked with binary indicators, we examined the frequency and accuracy of words that were recalled. The findings indicate that for some students, a reduction of noise has a significant positive impact on their ability to recall information. As classrooms become more aurally distracting due to the implementation of cooperative learning activities, these findings highlight the need for a quiet learning environment for some learners.

Keywords: auditory distraction, education, instruction, noise, working memory

Procedia PDF Downloads 334
8906 Effect of Fiddler Crab Burrows on Bacterial Communities of Mangrove Sediments

Authors: Mohammad Mokhtari, Gires Usup, Zaidi Che Cob

Abstract:

Bacteria communities as mediators of the biogeochemical process are the main component of the mangrove ecosystems. Crab burrows by increasing oxic-anoxic interfaces and facilitating the flux rate between sediment and tidal water affect biogeochemical properties of sediments. The effect of fiddler crab burrows on the density and diversity of bacteria were investigated to elucidate the effect of burrow on bacterial distribution. Samples collected from the burrow walls of three species of fiddler crabs including Uca paradussumieri, Uca rosea, and Uca forcipata. Sediment properties including grain size, temperature, Redox potential, pH, chlorophyll, water and organic content were measured from the burrow walls to assess the correlation between environmental variables and bacterial communities. Bacteria were enumerated with epifluorescence microscopy after staining with SYBR green. Bacterial DNA extracted from sediment samples and the community profiles of bacteria were determined with Terminal Restriction Fragment Length Polymorphism (T-RFLP). High endemism was observed among bacterial communities. Among the 152 observed OTU’s, 22 were found only in crab burrows. The highest bacterial density and diversity were recorded in burrow wall. The results of ANOSIM indicated a significant difference between the bacterial communities from the three species of fiddler crab burrows. Only 3% of explained bacteria variability in the constrained ordination model of CCA was contributed to depth, while much of the bacteria’s variability was attributed to coarse sand, pH, and chlorophyll content. Our findings suggest that crab burrows by affecting sediment properties such as redox potential, pH, water, and chlorophyll content induce significant effects on the bacterial communities.

Keywords: bioturbation, canonical corresponding analysis, fiddler crab, microbial ecology

Procedia PDF Downloads 157
8905 Anonymous Editing Prevention Technique Using Gradient Method for High-Quality Video

Authors: Jiwon Lee, Chanho Jung, Si-Hwan Jang, Kyung-Ill Kim, Sanghyun Joo, Wook-Ho Son

Abstract:

Since the advances in digital imaging technologies have led to development of high quality digital devices, there are a lot of illegal copies of copyrighted video content on the internet. Thus, we propose a high-quality (HQ) video watermarking scheme that can prevent these illegal copies from spreading out. The proposed scheme is applied spatial and temporal gradient methods to improve the fidelity and detection performance. Also, the scheme duplicates the watermark signal temporally to alleviate the signal reduction caused by geometric and signal-processing distortions. Experimental results show that the proposed scheme achieves better performance than previously proposed schemes and it has high fidelity. The proposed scheme can be used in broadcast monitoring or traitor tracking applications which need fast detection process to prevent illegally recorded video content from spreading out.

Keywords: editing prevention technique, gradient method, luminance change, video watermarking

Procedia PDF Downloads 456