Search results for: home network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6144

Search results for: home network

2544 A Location Routing Model for the Logistic System in the Mining Collection Centers of the Northern Region of Boyacá-Colombia

Authors: Erika Ruíz, Luis Amaya, Diego Carreño

Abstract:

The main objective of this study is to design a mathematical model for the logistics of mining collection centers in the northern region of the department of Boyacá (Colombia), determining the structure that facilitates the flow of products along the supply chain. In order to achieve this, it is necessary to define a suitable design of the distribution network, taking into account the products, customer’s characteristics and the availability of information. Likewise, some other aspects must be defined, such as number and capacity of collection centers to establish, routes that must be taken to deliver products to the customers, among others. This research will use one of the operation research problems, which is used in the design of distribution networks known as Location Routing Problem (LRP).

Keywords: location routing problem, logistic, mining collection, model

Procedia PDF Downloads 220
2543 Factors Influencing the Choice of Multi-Month Drug Dispensing Model Amongst Children and Adolescents Living with HIV (C/ALHIV) in Eswatini

Authors: Mbuso Siwela

Abstract:

Background: The Sub-Saharan Africa region has the greatest number of people eligible to receive antiretroviral treatment (ART). Multi-month Drug dispensing (MMD) of antiretroviral treatment (ART) aims to reduce patient-related barriers to access long-term treatment and improve health system efficiency. In Eswatini, however, few children and adolescents are on MMD. Young Heroes is implementing an HIV program that aims to avert new HIV infections in children and youth and improve treatment outcomes for children and adolescents living with HIV (C/ALHIV: 0-19 Years) and OVC caregivers with HIV prevention and impact mitigation interventions that prevent new HIV infections and reduce vulnerability. Aim of the study: The study aimed to ascertain factors that are associated with the assignment of the MMD model on C/ALHIVs. Methodology: The project provides treatment adherence support through well-trained community cadres (Home Visitors - HVs) at both community and health facility levels. During door-to-door visits, HVs track all C/ALHIV enrolled in the project monthly and refer any who might have stopped or interrupted treatment. C/ALHIV with unsuppressed viral load is supported through case conferencing and teen clubs. A quantitative cross-sectional analysis was conducted using STATA for children and adolescents living with HIV enrolled in the project. Bivariate analysis was conducted, and the Logistic Regression model was used to ascertain the effects of duration on ART on the choice of MMD model. Results: Data for 544 C/ALHIV (0-19 Years) was analyzed in STATA. Results show a strong association between (duration on ART, Age, being in teen club) and enrolment in an MMD model. Duration on ART is a major predictor for the choice of MMD model at (95% CI: 0.0012905 – 0.0039812; P = <0.0001). C/ALHIV who have been on ART for less than a year are less likely to be on MMD. C/ALHIVs who are 1 or more years on ART are more likely to be in 3 months dispensing, while those who are 5 years or more are most likely to be in 6 months model.

Keywords: C/ALHIV, OVC, HIV, treatment

Procedia PDF Downloads 45
2542 Rural Sanitation in India: Special Context in the State of Odisa

Authors: Monalisha Ghosh, Asit Mohanty

Abstract:

The lack of sanitation increases living costs, decreases spend on education and nutrition, lowers income earning potential, and threatens safety and welfare. This is especially true for rural India. Only 32% of rural households have their own toilets and that less than half of Indian households have a toilet at home. Of the estimated billion people in the world who defecate in the open, more than half reside in rural India. It is empirically established that poor sanitation leads to high infant mortality rate and low income generation in rural India. In India, 1,600 children die every day before reaching their fifth birthday and 24% of girls drop out of school as the lack of basic sanitation. Above all, lack of sanitation is not a symptom of poverty but a major contributing factor. According to census 2011, 67.3% of the rural households in the country still did not have access to sanitation facilities. India’s sanitation deficit leads to losses worth roughly 6% of its gross domestic product (GDP) according to World Bank estimates by raising the disease burden in the country. The dropout rate for girl child is thirty percent in schools in rural areas because of lack of sanitation facilities for girl students. The productivity loss per skilled labors during a year is calculated at Rs.44, 160 in Odisha. The performance of the state of Odisha has not been satisfactory in improving sanitation facilities. The biggest challenge is triggering behavior change in vast section of rural population regarding need to use toilets. Another major challenge is funding and implementation for improvement of sanitation facility. In an environment of constrained economic resources, Public Private Partnership in form of performance based management or maintenance contract will be all the more relevant to improve the sanitation status in rural sector.

Keywords: rural sanitation, infant mortality rate, income, granger causality, pooled OLS method test public private partnership

Procedia PDF Downloads 424
2541 Compressive Strength Evaluation of Underwater Concrete Structures Integrating the Combination of Rebound Hardness and Ultrasonic Pulse Velocity Methods with Artificial Neural Networks

Authors: Seunghee Park, Junkyeong Kim, Eun-Seok Shin, Sang-Hun Han

Abstract:

In this study, two kinds of nondestructive evaluation (NDE) techniques (rebound hardness and ultrasonic pulse velocity methods) are investigated for the effective maintenance of underwater concrete structures. A new methodology to estimate the underwater concrete strengths more effectively, named “artificial neural network (ANN) – based concrete strength estimation with the combination of rebound hardness and ultrasonic pulse velocity methods” is proposed and verified throughout a series of experimental works.

Keywords: underwater concrete, rebound hardness, Schmidt hammer, ultrasonic pulse velocity, ultrasonic sensor, artificial neural networks, ANN

Procedia PDF Downloads 535
2540 Optimisation of Energy Harvesting for a Composite Aircraft Wing Structure Bonded with Discrete Macro Fibre Composite Sensors

Authors: Ali H. Daraji, Ye Jianqiao

Abstract:

The micro electrical devices of the wireless sensor network are continuously developed and become very small and compact with low electric power requirements using limited period life conventional batteries. The low power requirement for these devices, cost of conventional batteries and its replacement have encouraged researcher to find alternative power supply represented by energy harvesting system to provide an electric power supply with infinite period life. In the last few years, the investigation of energy harvesting for structure health monitoring has increased to powering wireless sensor network by converting waste mechanical vibration into electricity using piezoelectric sensors. Optimisation of energy harvesting is an important research topic to ensure a flowing of efficient electric power from structural vibration. The harvesting power is mainly based on the properties of piezoelectric material, dimensions of piezoelectric sensor, its position on a structure and value of an external electric load connected between sensor electrodes. Larger surface area of sensor is not granted larger power harvesting when the sensor area is covered positive and negative mechanical strain at the same time. Thus lead to reduction or cancellation of piezoelectric output power. Optimisation of energy harvesting is achieved by locating these sensors precisely and efficiently on the structure. Limited published work has investigated the energy harvesting for aircraft wing. However, most of the published studies have simplified the aircraft wing structure by a cantilever flat plate or beam. In these studies, the optimisation of energy harvesting was investigated by determination optimal value of an external electric load connected between sensor electrode terminals or by an external electric circuit or by randomly splitting piezoelectric sensor to two segments. However, the aircraft wing structures are complex than beam or flat plate and mostly constructed from flat and curved skins stiffened by stringers and ribs with more complex mechanical strain induced on the wing surfaces. This aircraft wing structure bonded with discrete macro fibre composite sensors was modelled using multiphysics finite element to optimise the energy harvesting by determination of the optimal number of sensors, location and the output resistance load. The optimal number and location of macro fibre sensors were determined based on the maximization of the open and close loop sensor output voltage using frequency response analysis. It was found different optimal distribution, locations and number of sensors bounded on the top and the bottom surfaces of the aircraft wing.

Keywords: energy harvesting, optimisation, sensor, wing

Procedia PDF Downloads 304
2539 Classification of Foliar Nitrogen in Common Bean (Phaseolus Vulgaris L.) Using Deep Learning Models and Images

Authors: Marcos Silva Tavares, Jamile Raquel Regazzo, Edson José de Souza Sardinha, Murilo Mesquita Baesso

Abstract:

Common beans are a widely cultivated and consumed legume globally, serving as a staple food for humans, especially in developing countries, due to their nutritional characteristics. Nitrogen (N) is the most limiting nutrient for productivity, and foliar analysis is crucial to ensure balanced nitrogen fertilization. Excessive N applications can cause, either isolated or cumulatively, soil and water contamination, plant toxicity, and increase their susceptibility to diseases and pests. However, the quantification of N using conventional methods is time-consuming and costly, demanding new technologies to optimize the adequate supply of N to plants. Thus, it becomes necessary to establish constant monitoring of the foliar content of this macronutrient in plants, mainly at the V4 stage, aiming at precision management of nitrogen fertilization. In this work, the objective was to evaluate the performance of a deep learning model, Resnet-50, in the classification of foliar nitrogen in common beans using RGB images. The BRS Estilo cultivar was sown in a greenhouse in a completely randomized design with four nitrogen doses (T1 = 0 kg N ha-1, T2 = 25 kg N ha-1, T3 = 75 kg N ha-1, and T4 = 100 kg N ha-1) and 12 replications. Pots with 5L capacity were used with a substrate composed of 43% soil (Neossolo Quartzarênico), 28.5% crushed sugarcane bagasse, and 28.5% cured bovine manure. The water supply of the plants was done with 5mm of water per day. The application of urea (45% N) and the acquisition of images occurred 14 and 32 days after sowing, respectively. A code developed in Matlab© R2022b was used to cut the original images into smaller blocks, originating an image bank composed of 4 folders representing the four classes and labeled as T1, T2, T3, and T4, each containing 500 images of 224x224 pixels obtained from plants cultivated under different N doses. The Matlab© R2022b software was used for the implementation and performance analysis of the model. The evaluation of the efficiency was done by a set of metrics, including accuracy (AC), F1-score (F1), specificity (SP), area under the curve (AUC), and precision (P). The ResNet-50 showed high performance in the classification of foliar N levels in common beans, with AC values of 85.6%. The F1 for classes T1, T2, T3, and T4 was 76, 72, 74, and 77%, respectively. This study revealed that the use of RGB images combined with deep learning can be a promising alternative to slow laboratory analyses, capable of optimizing the estimation of foliar N. This can allow rapid intervention by the producer to achieve higher productivity and less fertilizer waste. Future approaches are encouraged to develop mobile devices capable of handling images using deep learning for the classification of the nutritional status of plants in situ.

Keywords: convolutional neural network, residual network 50, nutritional status, artificial intelligence

Procedia PDF Downloads 25
2538 Contextual Variables Affecting Frustration Level in Reading: An Integral Inquiry

Authors: Mae C. Pavilario

Abstract:

This study employs a sequential explanatory mixed method. Quantitatively it investigated the profile of grade VII students. Qualitatively, the prevailing contextual variables that affect their frustration-level were sought based on their perspective and that of their parents and teachers. These students were categorized as frustration-level in reading based on the data on word list of the Philippine Informal Reading Inventory (Phil-IRI). The researcher-made reading factor instrument translated to local dialect (Hiligaynon) was subjected to cross-cultural translation to address content, semantic, technical, criterion, or conceptual equivalence, the open-ended questions, and one unstructured interview was utilized. In the profile of the 26 participants, the 12 males are categorized as grade II and grade III frustration-levels. The prevailing contextual variables are personal-“having no interest in reading”, “being ashamed and fear of having to read in front of others” for extremely high frustration level; social environmental-“having no regular reading schedule at home” for very high frustration level and personal- “having no interest in reading” for high frustration level. Kendall Tau inferential statistical tool was used to test the significant relationship in the prevailing contextual variables that affect frustration-level readers when grouped according to perspective. Result showed that significant relationship exists between students-parents perspectives; however, there is no significant relationship between students’ and teachers’, and parents’ and teachers’ perspectives. The themes in the narratives of the participants on frustration-level readers are existence of speech defects, undesirable attitude, insufficient amount of reading materials, lack of close supervision from parents, and losing time and focus on task. Intervention was designed.

Keywords: contextual variables, frustration-level readers, perspective, inquiry

Procedia PDF Downloads 165
2537 Terrain Classification for Ground Robots Based on Acoustic Features

Authors: Bernd Kiefer, Abraham Gebru Tesfay, Dietrich Klakow

Abstract:

The motivation of our work is to detect different terrain types traversed by a robot based on acoustic data from the robot-terrain interaction. Different acoustic features and classifiers were investigated, such as Mel-frequency cepstral coefficient and Gamma-tone frequency cepstral coefficient for the feature extraction, and Gaussian mixture model and Feed forward neural network for the classification. We analyze the system’s performance by comparing our proposed techniques with some other features surveyed from distinct related works. We achieve precision and recall values between 87% and 100% per class, and an average accuracy at 95.2%. We also study the effect of varying audio chunk size in the application phase of the models and find only a mild impact on performance.

Keywords: acoustic features, autonomous robots, feature extraction, terrain classification

Procedia PDF Downloads 372
2536 From Acute Abdomen to Hormonal Crisis: Case Report on a Long-Delayed Sheehan's Syndrome Diagnosis

Authors: Maham Leeza Adil, Mahrukh Alvi, Muhammad Osman

Abstract:

Introduction: Sheehan's syndrome (SS) is a rare cause of hypopituitarism resulting from postpartum hemorrhage and pituitary necrosis. It remains an underdiagnosed condition, especially in developing countries, due to poor obstetric care and home deliveries. This case report highlights the significance of recognizing atypical presentations of SS, such as pancytopenia, to aid in early diagnosis and management. Case Presentation: A 40-year-old female presented with acute abdomen symptoms and was initially diagnosed with acalculous cholecystitis. However, a detailed history revealed a history of postpartum hemorrhage 18 years prior, leading to a provisional diagnosis of SS. Further investigations confirmed panhypopituitarism, including hypothyroidism, hypocortisolism, and hypogonadism. Notably, the patient also exhibited pancytopenia, a rarely reported hematological manifestation of SS. Discussion: SS often presents with nonspecific symptoms, leading to delayed or missed diagnoses. In this case, the patient's initial presentation of acute abdomen symptoms was attributed to secondary adrenal insufficiency due to panhypopituitarism. The presence of pancytopenia, along with hyponatremia, further complicated the clinical picture. Hormone replacement therapy led to a remarkable improvement in the patient's condition, emphasizing the importance of early diagnosis and intervention. Conclusion: SS is a common cause of panhypopituitarism in developing countries, but its atypical presentations, such as pancytopenia, are rare and often overlooked. This case highlights the need for increased awareness among clinicians to consider SS in patients with unexplained hematological abnormalities, particularly in regions with high rates of postpartum hemorrhage. Early recognition and appropriate hormone replacement therapy can significantly improve patients' outcomes and prevent long-term complications associated with this underdiagnosed syndrome.

Keywords: Sheehan syndrome, panhypopituitarism, pancytopenia, delayed diagnosis

Procedia PDF Downloads 24
2535 A Mathematical Optimization Model for Locating and Fortifying Capacitated Warehouses under Risk of Failure

Authors: Tareq Oshan

Abstract:

Facility location and size decisions are important to any company because they affect profitability and success. However, warehouses are exposed to various risks of failure that affect their activity. This paper presents a mixed-integer non-linear mathematical model that can be used to determine optimal warehouse locations and sizes, which warehouses to fortify, and which branches should be assigned to specific warehouses when there is a risk of warehouse failure. Every branch is assigned to a fortified primary warehouse or a nonfortified primary warehouse and a fortified backup warehouse. The standard method and an introduced method, based on the average probabilities, for linearizing this mathematical model were used. A Canadian case study was used to demonstrate the developed mathematical model, followed by some sensitivity analysis.

Keywords: supply chain network design, fortified warehouse, mixed-integer mathematical model, warehouse failure risk

Procedia PDF Downloads 245
2534 Space Utilisation during Meal Preparation in an Indian Kitchen Belonging to Middle-Income Group Family

Authors: Poonam Magu, Kumud Khanna, P. Seetharaman

Abstract:

A kitchen is a major workplace in any home. A large variety of tasks, mainly related to meal preparation is performed here. The types of activities performed are varied and vast. In a way, it is the activities performed that determine the way the space within the kitchen is going to be utilised. A study was conducted in 510 Indian kitchens belonging to middle-income group families living in Delhi. It was conducted in three phases. In the first phase, 510 non-working homemakers were interviewed and questions pertaining to their personal characteristics, meal preparation and physical aspects related to the kitchen were asked. In the second phase, the technique of Path Process Chart was developed. Subsequently, a sub-sample of 50 homemakers was selected from the larger group. The activity of meal preparation was carried out by the homemakers themselves in their kitchens. A time and motion study was conducted using the technique of Path Process Chart. The results were analysed using the appropriate analysis sheets and conclusions were drawn. It was found that the entire kitchen and more specifically, the counter had been 'divided' into a number of workplaces. These workplaces were being used either for performing operations or for the purpose of storage. In many cases, it was used for both. On the whole, in 50 kitchens studied, 21 workplaces were identified which were used for performing operations related to meal preparation and 17 for storage It was also observed that almost the entire kitchen was used for the purpose of storage of some item or the other. The major workplaces where operations were performed were the range, workplaces to the right and left of range and sink and workplaces to the right or left of the sink. The same workplaces were also used for the purpose of storage. There were some workplaces outside the kitchen too, which were used for operations or storage. These were the dining table, courtyard or balcony, bedroom cupboard. On the whole, the range centre and the sink centre were found to be the two most important centres in an Indian kitchen belonging to urban middle-income group family.

Keywords: kitchen, workplace, meal preparation, path process chart

Procedia PDF Downloads 198
2533 Dual Band Antenna Design with Compact Radiator for 2.5/5.2/5.8 Ghz Wlan Application Using Genetic Algorithm

Authors: Ramnath Narhete, Saket Pandey, Puran Gour

Abstract:

This paper presents of dual-band planner antenna with a compact radiator for 2.4/5.2/5.8 proposed by optimizing its resonant frequency, Bandwidth of operation and radiation frequency using the genetic algorithm. The antenna consists L-shaped and E-shaped radiating element to generate two resonant modes for dual band operation. The above techniques have been successfully used in many applications. Dual band antenna with the compact radiator for 2.4/5.2/5.8 GHz WLAN application design and radiator size only width 8mm and a length is 11.3 mm. The antenna can we used for various application in the field of communication. Genetic algorithm will be used to design the antenna and impedance matching network.

Keywords: genetic algorithm, dual-band E, dual-band L, WLAN, compact radiator

Procedia PDF Downloads 582
2532 Interferometric Demodulation Scheme Using a Mode-Locker Fiber Laser

Authors: Liang Zhang, Yuanfu Lu, Yuming Dong, Guohua Jiao, Wei Chen, Jiancheng Lv

Abstract:

We demonstrated an interferometric demodulation scheme using a mode-locked fiber laser. The mode-locked fiber laser is launched into a two-beam interferometer. When the ratio between the fiber path imbalance of interferometer and the laser cavity length is close to an integer, an interferometric fringe emerges as a result of vernier effect, and then the phase shift of the interferometer can be demodulated. The mode-locked fiber laser provides a large bandwidth and reduces the cost for wavelength division multiplexion (WDM). The proposed interferometric demodulation scheme can be further applied in multi-point sensing system such as fiber optics hydrophone array, seismic wave detection network with high sensitivity and low cost.

Keywords: fiber sensing, interferometric demodulation, mode-locked fiber laser, vernier effect

Procedia PDF Downloads 334
2531 An Evaluation of the Artificial Neural Network and Adaptive Neuro Fuzzy Inference System Predictive Models for the Remediation of Crude Oil-Contaminated Soil Using Vermicompost

Authors: Precious Ehiomogue, Ifechukwude Israel Ahuchaogu, Isiguzo Edwin Ahaneku

Abstract:

Vermicompost is the product of the decomposition process using various species of worms, to create a mixture of decomposing vegetable or food waste, bedding materials, and vemicast. This process is called vermicomposting, while the rearing of worms for this purpose is called vermiculture. Several works have verified the adsorption of toxic metals using vermicompost but the application is still scarce for the retention of organic compounds. This research brings to knowledge the effectiveness of earthworm waste (vermicompost) for the remediation of crude oil contaminated soils. The remediation methods adopted in this study were two soil washing methods namely, batch and column process which represent laboratory and in-situ remediation. Characterization of the vermicompost and crude oil contaminated soil were performed before and after the soil washing using Fourier transform infrared (FTIR), scanning electron microscopy (SEM), X-ray fluorescence (XRF), X-ray diffraction (XRD) and Atomic adsorption spectrometry (AAS). The optimization of washing parameters, using response surface methodology (RSM) based on Box-Behnken Design was performed on the response from the laboratory experimental results. This study also investigated the application of machine learning models [Artificial neural network (ANN), Adaptive neuro fuzzy inference system (ANFIS). ANN and ANFIS were evaluated using the coefficient of determination (R²) and mean square error (MSE)]. Removal efficiency obtained from the Box-Behnken design experiment ranged from 29% to 98.9% for batch process remediation. Optimization of the experimental factors carried out using numerical optimization techniques by applying desirability function method of the response surface methodology (RSM) produce the highest removal efficiency of 98.9% at absorbent dosage of 34.53 grams, adsorbate concentration of 69.11 (g/ml), contact time of 25.96 (min), and pH value of 7.71, respectively. Removal efficiency obtained from the multilevel general factorial design experiment ranged from 56% to 92% for column process remediation. The coefficient of determination (R²) for ANN was (0.9974) and (0.9852) for batch and column process, respectively, showing the agreement between experimental and predicted results. For batch and column precess, respectively, the coefficient of determination (R²) for RSM was (0.9712) and (0.9614), which also demonstrates agreement between experimental and projected findings. For the batch and column processes, the ANFIS coefficient of determination was (0.7115) and (0.9978), respectively. It can be concluded that machine learning models can predict the removal of crude oil from polluted soil using vermicompost. Therefore, it is recommended to use machines learning models to predict the removal of crude oil from contaminated soil using vermicompost.

Keywords: ANFIS, ANN, crude-oil, contaminated soil, remediation and vermicompost

Procedia PDF Downloads 113
2530 Investigation of the Effect of Eye Exercises and Convergence Exercise on Visual Acuity in School-Age Children with Hypermetropia

Authors: Gulay Aras, Isil Kutluturk Karagoz, Z. Candan Algun

Abstract:

Background: Hypermetropia in school-age is a pathology that responds to treatment. In the literature, there has been no study of exercise practice in hypermetropia treatment. Objective: The purpose of this study was to investigate the effects of eye exercises and convergence exercise on visual acuity in school-age children with hypermetropia. Methods: Forty volunteer school-age children with hypermetropia (30 girls, 30 boys, between 7-17 years of age) were included in the study. Sociodemographic information and clinical characteristics were evaluated. 40 participants were randomly divided into two groups: eye exercises and convergence exercises. Home exercise protocols were given to all groups for six weeks, and regular phone calls were made once a week. Individuals performed eye exercises 10 times, convergence exercises 5 min. for two sessions per day for six weeks. The right and left eyes of all the subjects participating in the study were assessed separately by the eye doctor with a Snellen chart. The participants' quality of life was assessed using Pediatric Quality of Life Inventory Version 4.0. Physical health total score (PHTS) and scale total score (STS), which were obtained by evaluating Psychosocial health total score (PSHTS) school, emotional and social functioning, were calculated separately in the scores. At the end of the exercise program, the assessment tests applied at the beginning of the study were reapplied to all individuals. Results: There was no statistically significant difference between the pre- and post-Snellen chart measurements and quality of life in the eye exercises group (p > 0,05). There was a statistically significant difference in visual acuity of right and left eyes (p=0,004, p=0,014) and quality of life in PHTS, PSHTS and STS in the convergence exercise group (p=0,001, p=0,017, p=0,001). Conclusions: In school-age children, convergence exercises were found to be effective on visual acuity and health-related quality of life. Convergence exercises are recommended for the treatment of school-aged children with hypermetropia.

Keywords: convergence exercise, eye exercises, hypermetropia, school-age children

Procedia PDF Downloads 251
2529 Synthesis and Electromagnetic Property of Li₀.₃₅Zn₀.₃Fe₂.₃₅O₄ Grafted with Polyaniline Fibers

Authors: Jintang Zhou, Zhengjun Yao, Tiantian Yao

Abstract:

Li₀.₃₅Zn₀.₃Fe₂.₃₅O₄(LZFO) grafted with polyaniline (PANI) fibers was synthesized by in situ polymerization. FTIR, XRD, SEM, and vector network analyzer were used to investigate chemical composition, micro-morphology, electromagnetic properties and microwave absorbing properties of the composite. The results show that PANI fibers were grafted on the surfaces of LZFO particles. The reflection loss exceeds 10 dB in the frequency range from 2.5 to 5 GHz and from 15 to 17GHz, and the maximum reflection loss reaches -33 dB at 15.9GHz. The enhanced microwave absorption properties of LZFO/PANI-fiber composites are mainly ascribed to the combined effect of both dielectric loss and magnetic loss and the improved impedance matching.

Keywords: Li₀.₃₅Zn₀.₃Fe₂.₃₅O₄, polyaniline, electromagnetic properties, microwave absorbing properties

Procedia PDF Downloads 434
2528 Electric Propulsion System Development for High Floor Trolley Bus

Authors: Asep Andi Suryandi, Katri Yulianto, Dewi Rianti Mandasari

Abstract:

The development of environmentally friendly vehicles increasingly attracted the attention of almost all countries in the world, including Indonesia. There are various types of environmentally friendly vehicles, such as: electric vehicles, hybrid, and fuel gas. The Electric vehicle has been developed in Indonesia, a private or public vehicle. But many electric vehicles had been developed using the battery as a power source, while the battery technology for electric vehicles still constraints in capacity, dimensions of the battery itself and charging system. Trolley bus is one of the electric buses with the main power source of the network catenary / overhead line with trolley pole as the point of contact. This paper will discuss the design and manufacture electrical system in Trolleybus.

Keywords: trolley bus, electric propulsion system, design, manufacture, electric vehicle

Procedia PDF Downloads 360
2527 On the Use of Analytical Performance Models to Design a High-Performance Active Queue Management Scheme

Authors: Shahram Jamali, Samira Hamed

Abstract:

One of the open issues in Random Early Detection (RED) algorithm is how to set its parameters to reach high performance for the dynamic conditions of the network. Although original RED uses fixed values for its parameters, this paper follows a model-based approach to upgrade performance of the RED algorithm. It models the routers queue behavior by using the Markov model and uses this model to predict future conditions of the queue. This prediction helps the proposed algorithm to make some tunings over RED's parameters and provide efficiency and better performance. Widespread packet level simulations confirm that the proposed algorithm, called Markov-RED, outperforms RED and FARED in terms of queue stability, bottleneck utilization and dropped packets count.

Keywords: active queue management, RED, Markov model, random early detection algorithm

Procedia PDF Downloads 542
2526 Connecting Teachers in a Web-Based Professional Development Community in Crisis Time: A Knowledge Building Approach

Authors: Wei Zhao

Abstract:

The pandemic crisis disrupted normal classroom practices so that the constraints of the traditional practice became apparent. This turns out to be new opportunities for technology-based learning and teaching. However, how the technology supports the preschool teachers go through this sudden crisis and how preschool teachers conceived of the use of technology, appropriate and design technological artifacts as a mediator of knowledge construction in order to suit young children’s literacy level are rarely explored. This study addresses these issues by looking at the influence of a web-supported teacher community on changes/shifts in preschool teachers’ epistemological beliefs and practices. This teachers’ professional development community was formulated before the pandemic time and developed virtually throughout the home-based learning caused by Covid-19. It served as a virtual and asynchronous community for those teachers to collaboratively plan for and conduct online lessons using the knowledge-building approach for the purpose of sustaining children’s learning curiosity and opening up new learning opportunities during the lock-down period. The knowledge-building approach helps to increase teachers’ collective responsibility to collaboratively work on shared educational goals in the teacher community and awareness of noticing new ideas or innovations in their classroom. Based on the data collected across five months during and after the lock-down period and the activity theory, results show a dynamic interplay between the evolution of the community culture, the growth of teacher community and teachers’ identity transformation and professional development. Technology is useful in this regard not only because it transforms the geographical distance and new gathering guidelines after the outbreak of pandemic into new ways of communal communication and collaboration. More importantly, while teachers selected, monitored and adapted the technology, it acts as a catalyst for changes in teachers’ old teaching practices and epistemological dispositions.

Keywords: activity theory, changes in epistemology and practice, knowledge building, web-based teachers’ professional development community

Procedia PDF Downloads 183
2525 Representation of Memory of Forced Displacement in Central and Eastern Europe after World War II in Polish and German Cinemas

Authors: Ilona Copik

Abstract:

The aim of this study is to analyze the representation of memories of the forced displacement of Poles and Germans from the eastern territories in 1945 as depicted by Polish and German feature films between the years 1945-1960. The aftermath of World War II and the Allied agreements concluded at Yalta and Potsdam (1945) resulted in changes in national borders in Central and Eastern Europe and the large-scale transfer of civilians. The westward migration became a symbol of the new post-war division of Europe, new spheres of influence separated by the Iron Curtain. For years it was a controversial topic in both Poland and Germany due to the geopolitical alignment (the socialist East and capitalist West of Europe), as well as the unfinished debate between the victims and perpetrators of the war. The research premise is to take a comparative view of the conflicted cultures of Polish and German memory, to reflect on the possibility of an international dialogue about the past recorded in film images, and to discover the potential of film as a narrative warning against totalitarian inclinations. Until now, films made between 1945 and 1960 in Poland and the German occupation zones have been analyzed mainly in the context of artistic strategies subordinated to ideology and historical politics. In this study, the intention is to take a critical approach leading to the recognition of how films work as collective memory media, how they reveal the mechanisms of memory/forgetting, and what settlement topoi and migration myths they contain. The main hypothesis is that feature films about forced displacement, in addition to the politics of history - separate in each country - reveal comparable transnational individual experiences: the chaos of migration, the trauma of losing one's home, the conflicts accompanying the familiar/foreign, the difficulty of cultural adaptation, the problem of lost identity, etc.

Keywords: forced displacement, Polish and German cinema, war victims, World War II

Procedia PDF Downloads 68
2524 Survival Analysis after a First Ischaemic Stroke Event: A Case-Control Study in the Adult Population of England.

Authors: Padma Chutoo, Elena Kulinskaya, Ilyas Bakbergenuly, Nicholas Steel, Dmitri Pchejetski

Abstract:

Stroke is associated with a significant risk of morbidity and mortality. There is scarcity of research on the long-term survival after first-ever ischaemic stroke (IS) events in England with regards to effects of different medical therapies and comorbidities. The objective of this study was to model the all-cause mortality after an IS diagnosis in the adult population of England. Using a retrospective case-control design, we extracted the electronic medical records of patients born prior to or in year 1960 in England with a first-ever ischaemic stroke diagnosis from January 1986 to January 2017 within the Health and Improvement Network (THIN) database. Participants with a history of ischaemic stroke were matched to 3 controls by sex and age at diagnosis and general practice. The primary outcome was the all-cause mortality. The hazards of the all-cause mortality were estimated using a Weibull-Cox survival model which included both scale and shape effects and a shared random effect of general practice. The model included sex, birth cohort, socio-economic status, comorbidities and medical therapies. 20,250 patients with a history of IS (cases) and 55,519 controls were followed up to 30 years. From 2008 to 2015, the one-year all-cause mortality for the IS patients declined with an absolute change of -0.5%. Preventive treatments to cases increased considerably over time. These included prescriptions of statins and antihypertensives. However, prescriptions for antiplatelet drugs decreased in the routine general practice since 2010. The survival model revealed a survival benefit of antiplatelet treatment to stroke survivors with hazard ratio (HR) of 0.92 (0.90 – 0.94). IS diagnosis had significant interactions with gender and age at entry and hypertension diagnosis. IS diagnosis was associated with high risk of all-cause mortality with HR= 3.39 (3.05-3.72) for cases compared to controls. Hypertension was associated with poor survival with HR = 4.79 (4.49 - 5.09) for hypertensive cases relative to non-hypertensive controls, though the detrimental effect of hypertension has not reached significance for hypertensive controls, HR = 1.19(0.82-1.56). This study of English primary care data showed that between 2008 and 2015, the rates of prescriptions of stroke preventive treatments increased, and a short-term all-cause mortality after IS stroke declined. However, stroke resulted in poor long-term survival. Hypertension, a modifiable risk factor, was found to be associated with poor survival outcomes in IS patients. Antiplatelet drugs were found to be protective to survival. Better efforts are required to reduce the burden of stroke through health service development and primary prevention.

Keywords: general practice, hazard ratio, health improvement network (THIN), ischaemic stroke, multiple imputation, Weibull-Cox model.

Procedia PDF Downloads 189
2523 Discovering the Effects of Meteorological Variables on the Air Quality of Bogota, Colombia, by Data Mining Techniques

Authors: Fabiana Franceschi, Martha Cobo, Manuel Figueredo

Abstract:

Bogotá, the capital of Colombia, is its largest city and one of the most polluted in Latin America due to the fast economic growth over the last ten years. Bogotá has been affected by high pollution events which led to the high concentration of PM10 and NO2, exceeding the local 24-hour legal limits (100 and 150 g/m3 each). The most important pollutants in the city are PM10 and PM2.5 (which are associated with respiratory and cardiovascular problems) and it is known that their concentrations in the atmosphere depend on the local meteorological factors. Therefore, it is necessary to establish a relationship between the meteorological variables and the concentrations of the atmospheric pollutants such as PM10, PM2.5, CO, SO2, NO2 and O3. This study aims to determine the interrelations between meteorological variables and air pollutants in Bogotá, using data mining techniques. Data from 13 monitoring stations were collected from the Bogotá Air Quality Monitoring Network within the period 2010-2015. The Principal Component Analysis (PCA) algorithm was applied to obtain primary relations between all the parameters, and afterwards, the K-means clustering technique was implemented to corroborate those relations found previously and to find patterns in the data. PCA was also used on a per shift basis (morning, afternoon, night and early morning) to validate possible variation of the previous trends and a per year basis to verify that the identified trends have remained throughout the study time. Results demonstrated that wind speed, wind direction, temperature, and NO2 are the most influencing factors on PM10 concentrations. Furthermore, it was confirmed that high humidity episodes increased PM2,5 levels. It was also found that there are direct proportional relationships between O3 levels and wind speed and radiation, while there is an inverse relationship between O3 levels and humidity. Concentrations of SO2 increases with the presence of PM10 and decreases with the wind speed and wind direction. They proved as well that there is a decreasing trend of pollutant concentrations over the last five years. Also, in rainy periods (March-June and September-December) some trends regarding precipitations were stronger. Results obtained with K-means demonstrated that it was possible to find patterns on the data, and they also showed similar conditions and data distribution among Carvajal, Tunal and Puente Aranda stations, and also between Parque Simon Bolivar and las Ferias. It was verified that the aforementioned trends prevailed during the study period by applying the same technique per year. It was concluded that PCA algorithm is useful to establish preliminary relationships among variables, and K-means clustering to find patterns in the data and understanding its distribution. The discovery of patterns in the data allows using these clusters as an input to an Artificial Neural Network prediction model.

Keywords: air pollution, air quality modelling, data mining, particulate matter

Procedia PDF Downloads 259
2522 Mechanical Properties and Microstructure of Ultra-High Performance Concrete Containing Fly Ash and Silica Fume

Authors: Jisong Zhang, Yinghua Zhao

Abstract:

The present study investigated the mechanical properties and microstructure of Ultra-High Performance Concrete (UHPC) containing supplementary cementitious materials (SCMs), such as fly ash (FA) and silica fume (SF), and to verify the synergistic effect in the ternary system. On the basis of 30% fly ash replacement, the incorporation of either 10% SF or 20% SF show a better performance compared to the reference sample. The efficiency factor (k-value) was calculated as a synergistic effect to predict the compressive strength of UHPC with these SCMs. The SEM of micrographs and pore volume from BJH method indicate a high correlation with compressive strength. Further, an artificial neural networks model was constructed for prediction of the compressive strength of UHPC containing these SCMs.

Keywords: artificial neural network, fly ash, mechanical properties, ultra-high performance concrete

Procedia PDF Downloads 417
2521 Firm's Growth Leading Dimensions of Blockchain Empowered Information Management System: An Empirical Study

Authors: Umang Varshney, Amit Karamchandani, Rohit Kapoor

Abstract:

Practitioners and researchers have realized that Blockchain is not limited to currency. Blockchain as a distributed ledger can ensure a transparent and traceable supply chain. Due to Blockchain-enabled IoTs, a firm’s information management system can now take inputs from other supply chain partners in real-time. This study aims to provide empirical evidence of dimensions responsible for blockchain implemented firm’s growth and highlight how sector (manufacturing or service), state's regulatory environment, and choice of blockchain network affect the blockchain's usefulness. This post-adoption study seeks to validate the findings of pre-adoption studies done on the blockchain. Data will be collected through a survey of managers working in blockchain implemented firms and analyzed through PLS-SEM.

Keywords: blockchain, information management system, PLS-SEM, firm's growth

Procedia PDF Downloads 127
2520 Research on the Updating Strategy of Public Space in Small Towns in Zhejiang Province under the Background of New-Style Urbanization

Authors: Chen Yao, Wang Ke

Abstract:

Small towns are the most basic administrative institutions in our country, which are connected with cities and rural areas. Small towns play an important role in promoting local urban and rural economic development, providing the main public services and maintaining social stability in social governance. With the vigorous development of small towns and the transformation of industrial structure, the changes of social structure, spatial structure, and lifestyle are lagging behind, causing that the spatial form and landscape style do not belong to both cities and rural areas, and seriously affecting the quality of people’s life space and environment. The rural economy in Zhejiang Province has started, the society and the population are also developing in relative stability. In September 2016, Zhejiang Province set out the 'Technical Guidelines for Comprehensive Environmental Remediation of Small Towns in Zhejiang Province,' so as to comprehensively implement the small town comprehensive environmental remediation with the main content of strengthening the plan and design leading, regulating environmental sanitation, urban order and town appearance. In November 2016, Huzhou City started the comprehensive environmental improvement of small towns, strived to use three years to significantly improve the 115 small towns, as well as to create a number of high quality, distinctive and beautiful towns with features of 'clean and livable, rational layout, industrial development, poetry and painting style'. This paper takes Meixi Town, Zhangwu Town and Sanchuan Village in Huzhou City as the empirical cases, analyzes the small town public space by applying the relative theory of actor-network and space syntax. This paper also analyzes the spatial composition in actor and social structure elements, as well as explores the relationship of actor’s spatial practice and public open space by combining with actor-network theory. This paper introduces the relevant theories and methods of spatial syntax, carries out research analysis and design planning analysis of small town spaces from the perspective of quantitative analysis. And then, this paper proposes the effective updating strategy for the existing problems in public space. Through the planning and design in the building level, the dissonant factors produced by various spatial combination of factors and between landscape design and urban texture during small town development will be solved, inhabitant quality of life will be promoted, and town development vitality will be increased.

Keywords: small towns, urbanization, public space, updating

Procedia PDF Downloads 231
2519 Adaptive Data Approximations Codec (ADAC) for AI/ML-based Cyber-Physical Systems

Authors: Yong-Kyu Jung

Abstract:

The fast growth in information technology has led to de-mands to access/process data. CPSs heavily depend on the time of hardware/software operations and communication over the network (i.e., real-time/parallel operations in CPSs (e.g., autonomous vehicles). Since data processing is an im-portant means to overcome the issue confronting data management, reducing the gap between the technological-growth and the data-complexity and channel-bandwidth. An adaptive perpetual data approximation method is intro-duced to manage the actual entropy of the digital spectrum. An ADAC implemented as an accelerator and/or apps for servers/smart-connected devices adaptively rescales digital contents (avg.62.8%), data processing/access time/energy, encryption/decryption overheads in AI/ML applications (facial ID/recognition).

Keywords: adaptive codec, AI, ML, HPC, cyber-physical, cybersecurity

Procedia PDF Downloads 81
2518 The Management Information System for Convenience Stores: Case Study in 7 Eleven Shop in Bangkok

Authors: Supattra Kanchanopast

Abstract:

The purpose of this research is to develop and design a management information system for 7 eleven shop in Bangkok. The system was designed and developed to meet users’ requirements via the internet network by use of application software such as My SQL for database management, Apache HTTP Server for Web Server and PHP Hypertext Preprocessor for an interface between web server, database and users. The system was designed into two subsystems as the main system, or system for head office, and the branch system for branch shops. These consisted of three parts which are classified by user management as shop management, inventory management and Point of Sale (POS) management. The implementation of the MIS for the mini-mart shop, can lessen the amount of paperwork and reduce repeating tasks so it may decrease the capital of the business and support an extension of branches in the future as well.

Keywords: convenience store, the management information system, inventory management, 7 eleven shop

Procedia PDF Downloads 487
2517 Preparation of Papers - Developing a Leukemia Diagnostic System Based on Hybrid Deep Learning Architectures in Actual Clinical Environments

Authors: Skyler Kim

Abstract:

An early diagnosis of leukemia has always been a challenge to doctors and hematologists. On a worldwide basis, it was reported that there were approximately 350,000 new cases in 2012, and diagnosing leukemia was time-consuming and inefficient because of an endemic shortage of flow cytometry equipment in current clinical practice. As the number of medical diagnosis tools increased and a large volume of high-quality data was produced, there was an urgent need for more advanced data analysis methods. One of these methods was the AI approach. This approach has become a major trend in recent years, and several research groups have been working on developing these diagnostic models. However, designing and implementing a leukemia diagnostic system in real clinical environments based on a deep learning approach with larger sets remains complex. Leukemia is a major hematological malignancy that results in mortality and morbidity throughout different ages. We decided to select acute lymphocytic leukemia to develop our diagnostic system since acute lymphocytic leukemia is the most common type of leukemia, accounting for 74% of all children diagnosed with leukemia. The results from this development work can be applied to all other types of leukemia. To develop our model, the Kaggle dataset was used, which consists of 15135 total images, 8491 of these are images of abnormal cells, and 5398 images are normal. In this paper, we design and implement a leukemia diagnostic system in a real clinical environment based on deep learning approaches with larger sets. The proposed diagnostic system has the function of detecting and classifying leukemia. Different from other AI approaches, we explore hybrid architectures to improve the current performance. First, we developed two independent convolutional neural network models: VGG19 and ResNet50. Then, using both VGG19 and ResNet50, we developed a hybrid deep learning architecture employing transfer learning techniques to extract features from each input image. In our approach, fusing the features from specific abstraction layers can be deemed as auxiliary features and lead to further improvement of the classification accuracy. In this approach, features extracted from the lower levels are combined into higher dimension feature maps to help improve the discriminative capability of intermediate features and also overcome the problem of network gradient vanishing or exploding. By comparing VGG19 and ResNet50 and the proposed hybrid model, we concluded that the hybrid model had a significant advantage in accuracy. The detailed results of each model’s performance and their pros and cons will be presented in the conference.

Keywords: acute lymphoblastic leukemia, hybrid model, leukemia diagnostic system, machine learning

Procedia PDF Downloads 188
2516 Long-Term Follow-Up of Dynamic Balance, Pain and Functional Performance in Cruciate Retaining, Posterior Stabilized Total Knee Arthroplasty

Authors: Ahmed R. Z. Baghdadi,  Mona H. Gamal Eldein

Abstract:

Background: With the perceived pain and poor function experienced following knee arthroplasty, patients usually feel unsatisfied. Yet, a controversy still persists on the appropriate operative technique that doesn’t affect proprioception much. Purpose: This study compared the effects of Cruciate Retaining (CR) and Posterior Stabilized (PS) total knee arthroplasty (TKA on dynamic balance, pain and functional performance following rehabilitation. Methods: Thirty patients with CRTKA (group I), thirty with PSTKA (group II) and fifteen indicated for arthroplasty but weren’t operated on yet (group III) participated in the study. The mean age was 54.53±3.44, 55.13±3.48 and 55.33±2.32 years and BMI 35.7±3.03, 35.7±1.99 and 35.73±1.03 kg/m2 for group I, II, and III respectively. The Berg Balance Scale (BBS), WOMAC pain subscale and Timed-Up-and-Go (TUG) and Stair-Climbing (SC) tests were used for assessment. Assessments were conducted four weeks pre- and post-operatively, three, six and twelve months post-operatively with the control group being assessed at the same time intervals. The post-operative rehabilitation involved hospitalization (1st week), home-based (2nd-4th weeks), and outpatient clinic (5th-12th weeks) programs, follow-up to all groups for twelve months. Results: The Mixed design MANOVA revealed that group I had significantly lower pain scores and SC time compared with group II three, six and twelve months post-operatively. Moreover, the BBS scores increased significantly and the pain scores and TUG and SC time decreased significantly six months post-operatively compared with four weeks pre- and post-operatively and three months post-operatively in group I and II with the opposite being true four weeks post-operatively. But no significant differences in BBS scores, pain scores and TUG and SC time between six and twelve months post-operatively in group I and II. Interpretation/Conclusion: CRTKA is preferable to PSTKA, possibly due to the preserved human proprioceptors in the un-excised PCL.

Keywords: dynamic balance, functional performance, knee arthroplasty, long-term

Procedia PDF Downloads 413
2515 Ensemble Machine Learning Approach for Estimating Missing Data from CO₂ Time Series

Authors: Atbin Mahabbati, Jason Beringer, Matthias Leopold

Abstract:

To address the global challenges of climate and environmental changes, there is a need for quantifying and reducing uncertainties in environmental data, including observations of carbon, water, and energy. Global eddy covariance flux tower networks (FLUXNET), and their regional counterparts (i.e., OzFlux, AmeriFlux, China Flux, etc.) were established in the late 1990s and early 2000s to address the demand. Despite the capability of eddy covariance in validating process modelling analyses, field surveys and remote sensing assessments, there are some serious concerns regarding the challenges associated with the technique, e.g. data gaps and uncertainties. To address these concerns, this research has developed an ensemble model to fill the data gaps of CO₂ flux to avoid the limitations of using a single algorithm, and therefore, provide less error and decline the uncertainties associated with the gap-filling process. In this study, the data of five towers in the OzFlux Network (Alice Springs Mulga, Calperum, Gingin, Howard Springs and Tumbarumba) during 2013 were used to develop an ensemble machine learning model, using five feedforward neural networks (FFNN) with different structures combined with an eXtreme Gradient Boosting (XGB) algorithm. The former methods, FFNN, provided the primary estimations in the first layer, while the later, XGB, used the outputs of the first layer as its input to provide the final estimations of CO₂ flux. The introduced model showed slight superiority over each single FFNN and the XGB, while each of these two methods was used individually, overall RMSE: 2.64, 2.91, and 3.54 g C m⁻² yr⁻¹ respectively (3.54 provided by the best FFNN). The most significant improvement happened to the estimation of the extreme diurnal values (during midday and sunrise), as well as nocturnal estimations, which is generally considered as one of the most challenging parts of CO₂ flux gap-filling. The towers, as well as seasonality, showed different levels of sensitivity to improvements provided by the ensemble model. For instance, Tumbarumba showed more sensitivity compared to Calperum, where the differences between the Ensemble model on the one hand and the FFNNs and XGB, on the other hand, were the least of all 5 sites. Besides, the performance difference between the ensemble model and its components individually were more significant during the warm season (Jan, Feb, Mar, Oct, Nov, and Dec) compared to the cold season (Apr, May, Jun, Jul, Aug, and Sep) due to the higher amount of photosynthesis of plants, which led to a larger range of CO₂ exchange. In conclusion, the introduced ensemble model slightly improved the accuracy of CO₂ flux gap-filling and robustness of the model. Therefore, using ensemble machine learning models is potentially capable of improving data estimation and regression outcome when it seems to be no more room for improvement while using a single algorithm.

Keywords: carbon flux, Eddy covariance, extreme gradient boosting, gap-filling comparison, hybrid model, OzFlux network

Procedia PDF Downloads 142