Search results for: biomass carbon
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3758

Search results for: biomass carbon

188 Dendroremediation of a Defunct Lead Acid Battery Recycling Site

Authors: Alejandro Ruiz-Olivares, M. del Carmen González-Chávez, Rogelio Carrillo-González, Martha Reyes-Ramos, Javier Suárez Espinosa

Abstract:

Use of automobiles has increased and proportionally, the demand for batteries to impulse them. When the device is aged, all the battery materials are reused through lead acid battery recycling (LABR). Importation of used lead acid batteries in Mexico has increased in the last years since many recycling factories have been settled in the country. Inadequate disposal of lead-acid battery recycling (LABR) wastes left soil severely polluted with Pb, Cu, and salts (Na+, SO2− 4, PO3− 4). Soil organic amendments may contribute with essential nutrients and sequester (scavenger compounds) metals to allow plant establishment. The objective of this research was to revegetate a former lead-acid battery recycling site aided with organic amendments. Seven tree species (Acacia farnesiana, Casuarina equisetifolia, Cupressus lusitanica, Eucalyptus obliqua, Fraxinus excelsior, Prosopis laevigata and Pinus greggii) and two organic amendments (vermicompost and vermicompost + sawdust mixture) were tested for phytoremediation of a defunct LABR site. Plants were irrigated during the dry season. Monitoring of the soils was carried out during the experiment: Available metals, salts concentrations and their spatial pattern in soil were analyzed. Plant species and amendments were compared through analysis of covariance and longitudinal analysis. High concentrations of extractable (DTPA-TEA-CaCl₂) metals (up to 15,685 mg kg⁻¹ and 478 mg kg⁻¹ for Pb and Cu) and soluble salts (292 mg kg-1 and 23,578 mg kg-1 for PO3− 4and SO2− 4) were found in the soil after three and six months of setting up the experiment. Lead and Cu concentrations were depleted in the rhizosphere after amendments addition. Spatial pattern of PO3− 4, SO2− 4 and DTPA-extractable Pb and Cu changed slightly through time. In spite of extreme soil conditions the plant species planted: A. farnesiana, E. obliqua, C. equisetifolia and F. excelsior had 100% of survival. Available metals and salts differently affected each species. In addition, negative effect on growth due to Pb accumulated in shoots was observed only in C. lusitanica. Many specimens accumulated high concentrations of Pb ( > 1000 mg kg-1) in shoots. C. equisetifolia and C. lusitanica had the best rate of growth. Based on the results, all the evaluated species may be useful for revegetation of Pb-polluted soils. Besides their use in phytoremediation, some ecosystem services can be obtained from the woodland such as encourage wildlife, wood production, and carbon sequestration. Further research should be conducted to analyze these services.

Keywords: heavy metals, inadequate disposal, organic amendments, phytoremediation with trees

Procedia PDF Downloads 261
187 Evaluation of the Potential of Olive Pomace Compost for Using as a Soil Amendment

Authors: M. Černe, I. Palčić, D. Anđelini, D. Cvitan, N. Major, M. Lukić, S. Goreta Ban, D. Ban, T. Rijavec, A. Lapanje

Abstract:

Context: In the Mediterranean basin, large quantities of lignocellulosic by-products, such as olive pomace (OP), are generated during olive processing on an annual basis. Due to the phytotoxic nature of OP, composting is recommended for its stabilisation to produce the end-product safe for agricultural use. Research Aim: This study aims to evaluate the applicability of olive pomace compost (OPC) for use as a soil amendment by considering its physical and chemical characteristics and microbiological parameters. Methodology: The OPC samples were collected from the surface and depth layers of the compost pile after 8 months. The samples were analyzed for their C/N, pH, EC, total phenolic content, residual oils, and elemental content, as well as colloidal properties and microbial community structure. The specific analytical approaches used are detailed in the poster. Findings: The results showed that the pH of OPC ranged from 7.8 to 8.6, while the electrical conductivity was from 770 to 1608 mS/cm. The levels of nitrogen (N), phosphorus (P), and potassium (K) varied within the ranges of 1.5 to 27.2 g/kg d.w., 1.6 to 1.8 g/kg d.w., and 6.5 to 7.5 g/kg d.w., respectively. The contents of potentially toxic metals such as chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn) were below the EU limits for soil improvers. The microbial structure follows the changes of the gradient from the outer to the innermost layer with relatively low amounts of DNA. The gradient nature shows that it is needed to develop better strategies for composting surpassing the conventional approach. However, the low amounts of total phenols and oil residues indicated efficient biodegradation during composting. The carbon-to-nitrogen ratio (C/N) within the range of 13 to 16 suggested that OPC can be used as a soil amendment. Overall, the study suggests that composting can be a promising strategy for environmentally-friendly OP recycling. Theoretical Importance: This study contributes to the understanding of the use of OPC as a soil amendment and its potential benefits in resource recycling and reducing environmental burdens. It also highlights the need for improved composting strategies to optimize its process. Data Collection and Analysis Procedures: The OPC samples were taken from the compost pile and charasterised for selected chemical, physical and microbial parameters. The specific analytical procedures utilized are described in detail in the poster. Question Addressed: This study addresses the question of whether composting can be optimized to improve the biodegradation of OP. Conclusion: The study concludes that OPC has the potential to be used as a soil amendment due to its favorable physical and chemical characteristics, low levels of potentially toxic metals, and efficient biodegradation during composting. However, the results also suggest the need for improved composting strategies to improve the quality of OPC.

Keywords: olive pomace compost, waste valorisation, agricultural use, soil amendment

Procedia PDF Downloads 38
186 Assessment of Community Perceptions of Mangrove Ecosystem Services and Their Link to SDGs in Vanga, Kenya

Authors: Samson Obiene, Khamati Shilabukha, Geoffrey Muga, James Kairo

Abstract:

Mangroves play a vital role in the achievement of multiple goals of global sustainable development (SDG’s), particularly SDG SDG 14 (life under water). Their management, however, is faced with several shortcomings arising from inadequate knowledge on the perceptions of their ecosystem services, hence a need to map mangrove goods and services within SDGs while interrogating the disaggregated perceptions. This study therefore aimed at exploring the parities and disparities in attitudes and perceptions of mangrove ecosystem services among community members of Vanga and the link of the ecosystem services (ESs) to specific SDG targets. The study was based at the Kenya-Tanzania transboundary area in Vanga; where a carbon-offset project on mangroves is being up scaled. Mixed methods approach employing surveys, focus group discussions (FGDs) and reviews of secondary data were used in the study. A two stage cluster samplings was used to select the study population and the sample size. FGDs were conducted purposively selecting active participants in mangrove related activities with distinct socio-demographic characteristics. Sampled respondents comprised of males and females of different occupations and age groups. Secondary data review was used to select specific SDG targets against which mangrove ecosystem services identified through a value chain analysis were mapped. In Vanga, 20 ecosystem services were identified and categorized under supporting, cultural and aesthetic, provisioning and regulating services. According to the findings of this study, 63.9% (95% ci 56.6-69.3) perceived of the ESs as very important for economic development, 10.3% (95% ci 0-21.3) viewed them as important for environmental and ecological development while 25.8% (95% ci 2.2-32.8) were not sure of any role they play in development. In the social-economic disaggregation, ecosystem service values were found to vary with the level of interaction with the ecosystem which depended on gender and other social-economic classes within the study area. The youths, low income earners, women and those with low education levels were also identified as the primary beneficiaries of mangrove ecosystem services. The study also found that of the 17 SDGs, mangroves have a potential of influencing the achievement 12, including, SDGs 1, 2, 3, 4, 6, 8 10, 12, 13, 14, 15 and 17 either directly or indirectly. Generally therefore, the local community is aware of the critical importance mangroves for enhanced livelihood and ecological services but challenges in sustainability still occur as a result the diverse values and of the services and the contradicting interests of the different actors around the ecosystem. It is therefore important to consider parities in values and perception to avoid a ‘tragedy of the commons’ while striving to enhance sustainability of the Mangrove ecosystem.

Keywords: sustainable development, community values, socio-demographics, Vanga, mangrove ecosystem services

Procedia PDF Downloads 127
185 Extracellular Polymeric Substances Study in an MBR System for Fouling Control

Authors: Dimitra C. Banti, Gesthimani Liona, Petros Samaras, Manasis Mitrakas

Abstract:

Municipal and industrial wastewaters are often treated biologically, by the activated sludge process (ASP). The ASP not only requires large aeration and sedimentation tanks, but also generates large quantities of excess sludge. An alternative technology is the membrane bioreactor (MBR), which replaces two stages of the conventional ASP—clarification and settlement—with a single, integrated biotreatment and clarification step. The advantages offered by the MBR over conventional treatment include reduced footprint and sludge production through maintaining a high biomass concentration in the bioreactor. Notwithstanding these advantages, the widespread application of the MBR process is constrained by membrane fouling. Fouling leads to permeate flux decline, making more frequent membrane cleaning and replacement necessary and resulting to increased operating costs. In general, membrane fouling results from the interaction between the membrane material and the components in the activated sludge liquor. The latter includes substrate components, cells, cell debris and microbial metabolites, such as Extracellular Polymeric Substances (EPS) and Sludge Microbial Products (SMPs). The challenge for effective MBR operation is to minimize the rate of Transmembrane Pressure (TMP) increase. This can be achieved by several ways, one of which is the addition of specific additives, that enhance the coagulation and flocculation of compounds, which are responsible for fouling, hence reducing biofilm formation on the membrane surface and limiting the fouling rate. In this project the effectiveness of a non-commercial composite coagulant was studied as an agent for fouling control in a lab scale MBR system consisting in two aerated tanks. A flat sheet membrane module with 0.40 um pore size was submerged into the second tank. The system was fed by50 L/d of municipal wastewater collected from the effluent of the primary sedimentation basin. The TMP increase rate, which is directly related to fouling growth, was monitored by a PLC system. EPS, MLSS and MLVSS measurements were performed in samples of mixed liquor; in addition, influent and effluent samples were collected for the determination of physicochemical characteristics (COD, BOD5, NO3-N, NH4-N, Total N and PO4-P). The coagulant was added in concentrations 2, 5 and 10mg/L during a period of 2 weeks and the results were compared with the control system (without coagulant addition). EPS fractions were extracted by a three stages physical-thermal treatment allowing the identification of Soluble EPS (SEPS) or SMP, Loosely Bound EPS (LBEPS) and Tightly Bound EPS (TBEPS). Proteins and carbohydrates concentrations were measured in EPS fractions by the modified Lowry method and Dubois method, respectively. Addition of 2 mg/L coagulant concentration did not affect SEPS proteins in comparison with control process and their values varied between 32 to 38mg/g VSS. However a coagulant dosage of 5mg/L resulted in a slight increase of SEPS proteins at 35-40 mg/g VSS while 10mg/L coagulant further increased SEPS to 44-48mg/g VSS. Similar results were obtained for SEPS carbohydrates. Carbohydrates values without coagulant addition were similar to the corresponding values measured for 2mg/L coagulant; the addition of mg/L coagulant resulted to a slight increase of carbohydrates SEPS to 6-7mg/g VSS while a dose of 10 mg/L further increased carbohydrates content to 9-10mg/g VSS. Total LBEPS and TBEPS, consisted of proteins and carbohydrates of LBEPS and TBEPS respectively, presented similar variations by the addition of the coagulant. Total LBEPS at 2mg/L dose were almost equal to 17mg/g VSS, and their values increased to 22 and 29 mg/g VSS during the addition of 5 mg/L and 10 mg/L of coagulant respectively. Total TBEPS were almost 37 mg/g VSS at a coagulant dose of 2 mg/L and increased to 42 and 51 mg/g VSS at 5 mg/L and 10 mg/L doses, respectively. Therefore, it can be concluded that coagulant addition could potentially affect microorganisms activities, excreting EPS in greater amounts. Nevertheless, EPS increase, mainly SEPS increase, resulted to a higher membrane fouling rate, as justified by the corresponding TMP increase rate. However, the addition of the coagulant, although affected the EPS content in the reactor mixed liquor, did not change the filtration process: an effluent of high quality was produced, with COD values as low as 20-30 mg/L.

Keywords: extracellular polymeric substances, MBR, membrane fouling, EPS

Procedia PDF Downloads 238
184 Extraction and Electrochemical Behaviors of Au(III) using Phosphonium-Based Ionic Liquids

Authors: Kyohei Yoshino, Masahiko Matsumiya, Yuji Sasaki

Abstract:

Recently, studies have been conducted on Au(III) extraction using ionic liquids (ILs) as extractants or diluents. ILs such as piperidinium, pyrrolidinium, and pyridinium have been studied as extractants for noble metal extractions. Furthermore, the polarity, hydrophobicity, and solvent miscibility of these ILs can be adjusted depending on their intended use. Therefore, the unique properties of ILs make them functional extraction media. The extraction mechanism of Au(III) using phosphonium-based ILs and relevant thermodynamic studies are yet to be reported. In the present work, we focused on the mechanism of Au(III) extraction and related thermodynamic analyses using phosphonium-based ILs. Triethyl-n-pentyl, triethyl-n-octyl, and triethyl-n-dodecyl phosphonium bis(trifluoromethyl-sulfonyl)amide, [P₂₂₂ₓ][NTf₂], (X = 5, 8, and 12) were investigated for Au(III) extraction. The IL–Au complex was identified as [P₂₂₂₅][AuCl₄] using UV–Vis–NIR and Raman spectroscopic analyses. The extraction behavior of Au(III) was investigated with a change in the [P₂₂₂ₓ][NTf₂]IL concentration from 1.0 × 10–4 to 1.0 × 10–1 mol dm−3. The results indicate that Au(III) can be easily extracted by the anion-exchange reaction in the [P₂₂₂ₓ][NTf₂]IL. The slope range 0.96–1.01 on the plot of log D vs log[P₂₂₂ₓ][NTf2]IL indicates the association of one mole of IL with one mole of [AuCl4−] during extraction. Consequently, [P₂₂₂ₓ][NTf₂] is an anion-exchange extractant for the extraction of Au(III) in the form of anions from chloride media. Thus, this type of phosphonium-based IL proceeds via an anion exchange reaction with Au(III). In order to evaluate the thermodynamic parameters on the Au(III) extraction, the equilibrium constant (logKₑₓ’) was determined from the temperature dependence. The plot of the natural logarithm of Kₑₓ’ vs the inverse of the absolute temperature (T–1) yields a slope proportional to the enthalpy (ΔH). By plotting T–1 vs lnKₑₓ’, a line with a slope range 1.129–1.421 was obtained. Thus, the result indicated that the extraction reaction of Au(III) using the [P₂₂₂ₓ][NTf₂]IL (X=5, 8, and 12) was exothermic (ΔH=-9.39〜-11.81 kJ mol-1). The negative value of TΔS (-4.20〜-5.27 kJ mol-1) indicates that microscopic randomness is preferred in the [P₂₂₂₅][NTf₂]IL extraction system over [P₂₂₂₁₂][NTf₂]IL. The total negative alternation in Gibbs energy (-5.19〜-6.55 kJ mol-1) for the extraction reaction would thus be relatively influenced by the TΔS value on the number of carbon atoms in the alkyl side length, even if the efficiency of ΔH is significantly influenced by the total negative alternations in Gibbs energy. Electrochemical analysis revealed that extracted Au(III) can be reduced in two steps: (i) Au(III)/Au(I) and (ii) Au(I)/Au(0). The diffusion coefficients of the extracted Au(III) species in [P₂₂₂ₓ][NTf₂] (X = 5, 8, and 12) were evaluated from 323 to 373 K using semi-integral and semi-differential analyses. Because of the viscosity of the IL medium, the diffusion coefficient of the extracted Au(III) increases with increasing alkyl chain length. The 4f7/2 spectrum based on X-ray photoelectron spectroscopy revealed that the Au electrodeposits obtained after 10 cycles of continuous extraction and electrodeposition were in the metallic state.

Keywords: au(III), electrodeposition, phosphonium-based ionic liquids, solvent extraction

Procedia PDF Downloads 67
183 Characteristics of Wood Plastics Nano-Composites Made of Agricultural Residues and Urban Recycled Polymer Materials

Authors: Amir Nourbakhsh Habibabadi, Alireza Ashori

Abstract:

Context: The growing concern over the management of plastic waste and the high demand for wood-based products have led to the development of wood-plastic composites. Agricultural residues, which are abundantly available, can be used as a source of lignocellulosic fibers in the production of these composites. The use of recycled polymers and nanomaterials is also a promising approach to enhance the mechanical and physical properties of the composites. Research Aim: The aim of this study was to investigate the feasibility of using recycled high-density polyethylene (rHDPE), polypropylene (rPP), and agricultural residues fibers for manufacturing wood-plastic nano-composites. The effects of these materials on the mechanical properties of the composites, specifically tensile and flexural strength, were studied. Methodology: The study utilized an experimental approach where extruders and hot presses were used to fabricate the composites. Five types of cellulosic residues fibers (bagasse, corn stalk, rice straw, sunflower, and canola stem), three levels of nanomaterials (carbon nanotubes, nano silica, and nanoclay), and coupling agent were used to chemically bind the wood/polymer fibers, chemicals, and reinforcement. The mechanical properties of the composites were then analyzed. Findings: The study found that composites made with rHDPE provided moderately superior tensile and flexural properties compared to rPP samples. The addition of agricultural residues in several types of wood-plastic nano-composites significantly improved their bending and tensile properties, with bagasse having the most significant advantage over other lignocellulosic materials. The use of recycled polymers, agricultural residues, and nano-silica resulted in composites with the best strength properties. Theoretical Importance: The study's findings suggest that using agricultural fiber residues as reinforcement in wood/plastic nanocomposites is a viable approach to improve the mechanical properties of the composites. Additionally, the study highlights the potential of using recycled polymers in the development of value-added products without compromising the product's properties. Data Collection and Analysis Procedures: The study collected data on the mechanical properties of the composites using tensile and flexural tests. Statistical analyses were performed to determine the significant effects of the various materials used. Question addressed: Can agricultural residues and recycled polymers be used to manufacture wood-plastic nano-composites with enhanced mechanical properties? Conclusion: The study demonstrates the feasibility of using agricultural residues and recycled polymers in the production of wood-plastic nano-composites. The addition of these materials significantly improved the mechanical properties of the composites, with bagasse being the most effective agricultural residue. The study's findings suggest that composites made from recycled materials can offer value-added products without sacrificing performance.

Keywords: polymer, composites, wood, nano

Procedia PDF Downloads 47
182 Assessment of Amphibian Diversity and Status of Their Habitats through Physico-Chemical Parameters in Sindh, Pakistan

Authors: Kalsoom Shaikh, Ghulam Sarwar Gachal, Saima Memon

Abstract:

Our study aimed to assess diversity and habitats of amphibian fauna in Sindh province as amphibians are among most vulnerable animals and the risk of their extinction is increasing in many parts of world mainly due to habitat degradation. Present study consisted of field surveys and laboratory analytical work; field surveys were carried out to confirm amphibian diversity and collection of water samples from their habitats, whereas laboratory work was conducted for identification of species and analysis of water quality of habitats through physico-chemical parameters. For identification of amphibian species, morphology was thoroughly examined using taxonomic key, whereas water quality was assessed via physico-chemical parameters including pH, electric conductivity (EC), total dissolved solids (TDS), total hardness (T. Hard), total alkalinity (T. Alk), chloride (Cl), carbon dioxide (CO₂), sulfate (SO₄), phosphate (PO₄), nitrite (NO₂) and nitrate (NO₃) using material and methods of analytical grade. pH value was analyzed using pH meter, whereas levels of EC and TDS were recorded using conductivity meter and TDS meter, respectively. Other parameters with exception of non-metallic parameters (SO₄, PO₄, NO₂, and NO₃) were analyzed through distinct titration methods. Concentration of non-metallic parameters was evaluated using ultra-violet spectrophotometer. This study revealed existence of four amphibian species including Hoplobatrachus tigerinus, Euphlyctis cyanophlyctis, Allopa hazarensis belonging to Family Ranidae and Bufo stomaticus (Family Bufonidae) randomly distributed in district Ghotki, Jamshoro, Kashmor, Larkana, Matiari and Shikarpur in Sindh. Assessment of aquatic habitats in different areas found value of parameters as followed: Habitats in district Ghoki (pH: 7.8 ± 0.3, EC: 2165.3 ± 712.6, TDS: 1507.0 ± 413.1, T-Hard: 416.4 ± 67.5, T. Alk: 393.4 ± 78.4, Cl: 362.4 ± 70.1, CO₂: 21.1 ± 3.5, SO₄: 429.3 ± 100.1, PO₄: 487.5 ± 122.5, NO₂: 13.7 ± 1.0, NO₃: 14.7 ± 2.5), district Jamshoro habitats (pH: 8.1 ± 0.4, EC: 2403.8 ± 55.4, TDS: 1697.2 ± 77.0, T. Hard: 548.7 ± 43.2, T. Alk: 294.4 ± 29.0, Cl: 454.7 ± 50.8 CO₂: 16.9 ± 2.4, SO₄: 713.0 ± 49.3, PO₄: 826.2 ± 53.0, NO₂: 15.2 ± 3.4, NO₃: 21.6 ± 3.7), habitats in Kashmor district (pH: 8.0 ± 0.5, EC: 2450.3 ± 610.9, TDS: 1745.3 ± 440.9, T. Hard: 624.6 ± 305.8, T. Alk: 445.7 ± 120.5, Cl: 448.9 ± 128.8, CO₂: 18.9 ± 4.5, SO₄: 619.8 ± 205.8, PO₄: 474.1 ± 94.2, NO₂: 15.2 ± 3.1, NO₃ 14.3 ± 2.6), district Larkana habitats (pH: 8.4 ± 0.4, EC: 2555.8 ± 70.3, TDS: 1784.4 ± 36.9, T. Hard: 623.0 ± 42.5, T. Alk: 329.6 ± 36.7, Cl: 614.3 ± 89.5, CO₂: 17.6 ± 1.2, SO₄: 845.1 ± 67.6, PO₄: 895.0 ± 61.4, NO₂: 13.6 ± 3.8, NO₃: 23.1 ± 2.8), district Matiari habitats (pH: 8.0 ± 0.4 EC: 2492.3 ± 928.1, TDS: 430.0 ± 161.3, T. Hard: 396.7 ± 183.3, T. Alk: 388.1 ± 97.4, Cl: 551.6 ± 73.4, CO₂: 15.8 ± 2.9, SO₄: 576.5 ± 200.0, PO₄: 434.7 ± 100.6, NO₂: 15.8 ± 2.9, NO₃: 15.2 ± 3.0) and habitats in Shikarpur district (pH: 8.1 ± 0.6, EC: 2191.7 ± 765.1, TDS: 1764.9 ± 409.2, T. Hard: 431.9 ± 68.4,T. Alk: 350.3 ± 44.3, Cl: 381.5 ± 29.5, CO₂: 18.0 ± 4.0, SO₄: 518.8 ± 97.9, PO₄: 493.6 ± 64.6, NO₂: 14.0 ± 0.8, NO₃: 16.1 ± 2.8). Values of physico-chemical parameters were found higher than permissible level of Environmental Protectiona Agency (EPA). Monthly variation in concentration of physico-chemical parameters was also prominently recorded at all the study locals. This study discovered poor diversity of amphibian fauna and condition of their habitats was also observed as pitiable. This study established base line information that may be used in execution of an effective management plan and future monitoring of amphibian diversity and their habitats in Sindh.

Keywords: amphibians, diversity, habitats, Pakistan, Sindh

Procedia PDF Downloads 135
181 Modeling Landscape Performance: Evaluating the Performance Benefits of the Olmsted Brothers’ Proposed Parkway Designs for Los Angeles

Authors: Aaron Liggett

Abstract:

This research focuses on the visionary proposal made by the Olmsted Brothers Landscape Architecture firm in the 1920s for a network of interconnected parkways in Los Angeles. Their envisioned parkways aimed to address environmental and cultural strains by providing green space for recreation, wildlife habitat, and stormwater management while serving as multimodal transportation routes. Although the parkways were never constructed, through an evidence-based approach, this research presents a framework for evaluating the potential functionality and success of the parkways by modeling and visualizing their quantitative and qualitative landscape performance and benefits. Historical documents and innovative digital modeling tools produce detailed analysis, modeling, and visualization of the parkway designs. A set of 1928 construction documents are used to analyze and interpret the design intent of the parkways. Grading plans are digitized in CAD and modeled in Sketchup to produce 3D visualizations of the parkway. Drainage plans are digitized to model stormwater performance. Planting plans are analyzed to model urban forestry and biodiversity. The EPA's Storm Water Management Model (SWMM) predicts runoff quantity and quality. The USDA Forests Service tools evaluate carbon sequestration and air quality. Spatial and overlay analysis techniques are employed to assess urban connectivity and the spatial impacts of the parkway designs. The study reveals how the integration of blue infrastructure, green infrastructure, and transportation infrastructure within the parkway design creates a multifunctional landscape capable of offering alternative spatial and temporal uses. The analysis demonstrates the potential for multiple functional, ecological, aesthetic, and social benefits to be derived from the proposed parkways. The analysis of the Olmsted Brothers' proposed Los Angeles parkways, which predated contemporary ecological design and resiliency practices, demonstrates the potential for providing multiple functional, ecological, aesthetic, and social benefits within urban designs. The findings highlight the importance of integrated blue, green, and transportation infrastructure in creating a multifunctional landscape that simultaneously serves multiple purposes. The research contributes new methods for modeling and visualizing landscape performance benefits, providing insights and techniques for informing future designs and sustainable development strategies.

Keywords: landscape architecture, ecological urban design, greenway, landscape performance

Procedia PDF Downloads 95
180 Pixel Façade: An Idea for Programmable Building Skin

Authors: H. Jamili, S. Shakiba

Abstract:

Today, one of the main concerns of human beings is facing the unpleasant changes of the environment. Buildings are responsible for a significant amount of natural resources consumption and carbon emissions production. In such a situation, this thought comes to mind that changing each building into a phenomenon of benefit to the environment. A change in a way that each building functions as an element that supports the environment, and construction, in addition to answering the need of humans, is encouraged, the way planting a tree is, and it is no longer seen as a threat to alive beings and the planet. Prospect: Today, different ideas of developing materials that can smartly function are realizing. For instance, Programmable Materials, which in different conditions, can respond appropriately to the situation and have features of modification in shape, size, physical properties and restoration, and repair quality. Studies are to progress having this purpose to plan for these materials in a way that they are easily available, and to meet this aim, there is no need to use expensive materials and high technologies. In these cases, physical attributes of materials undertake the role of sensors, wires and actuators then materials will become into robots itself. In fact, we experience robotics without robots. In recent decades, AI and technology advances have dramatically improving the performance of materials. These achievements are a combination of software optimizations and physical productions such as multi-materials 3D printing. These capabilities enable us to program materials in order to change shape, appearance, and physical properties to interact with different situations. nIt is expected that further achievements like Memory Materials and Self-learning Materials are also added to the Smart Materials family, which are affordable, available, and of use for a variety of applications and industries. From the architectural standpoint, the building skin is significantly considered in this research, concerning the noticeable surface area the buildings skin have in urban space. The purpose of this research would be finding a way that the programmable materials be used in building skin with the aim of having an effective and positive interaction. A Pixel Façade would be a solution for programming a building skin. The Pixel Facadeincludes components that contain a series of attributes that help buildings for their needs upon their environmental criteria. A PIXEL contains series of smart materials and digital controllers together. It not only benefits its physical properties, such as control the amount of sunlight and heat, but it enhances building performance by providing a list of features, depending on situation criteria. The features will vary depending on locations and have a different function during the daytime and different seasons. The primary role of a PIXEL FAÇADE can be defined as filtering pollutions (for inside and outside of the buildings) and providing clean energy as well as interacting with other PIXEL FACADES to estimate better reactions.

Keywords: building skin, environmental crisis, pixel facade, programmable materials, smart materials

Procedia PDF Downloads 69
179 Plastic Pollution: Analysis of the Current Legal Framework and Perspectives on Future Governance

Authors: Giorgia Carratta

Abstract:

Since the beginning of mass production, plastic items have been crucial in our daily lives. Thanks to their physical and chemical properties, plastic materials have proven almost irreplaceable in a number of economic sectors such as packaging, automotive, building and construction, textile, and many others. At the same time, the disruptive consequences of plastic pollution have been progressively brought to light in all environmental compartments. The overaccumulation of plastics in the environment, and its adverse effects on habitats, wildlife, and (most likely) human health, represents a call for action to decision-makers around the globe. From a regulatory perspective, plastic production is an unprecedented challenge at all levels of governance. At the international level, the design of new legal instruments, the amendment of existing ones, and the coordination among the several relevant policy areas requires considerable effort. Under the pressure of both increasing scientific evidence and a concerned public opinion, countries seem to slowly move towards the discussion of a new international ‘plastic treaty.’ However, whether, how, and with which scopes such instrument would be adopted is still to be seen. Additionally, governments are establishing regional-basedstrategies, prone to consider the specificities of the plastic issue in a certain geographical area. Thanks to the new Circular Economy Action Plan, approved in March 2020 by the European Commission, EU countries are slowly but steadily shifting to a carbon neutral, circular economy in the attempt to reduce the pressure on natural resources and, parallelly, facilitate sustainable economic growth. In this context, the EU Plastic Strategy is promising to change the way plastic is designed, produced, used, and treated after consumption. In fact, only in the EU27 Member States, almost 26 million tons of plastic waste are generated herein every year, whose 24,9% is still destined to landfill. Positive effects of the Strategy also include a more effective protection of our environment, especially the marine one, the reduction of greenhouse gas emissions, a reduced need for imported fossil energy sources, more sustainable production and consumption patterns. As promising as it may sound, the road ahead is still long. The need to implement these measures in domestic legislations makes their outcome difficult to predict at the moment. An analysis of the current international and European Union legal framework on plastic pollution, binding, and voluntary instruments included, could serve to detect ‘blind spots’ in the current governance as well as to facilitate the development of policy interventions along the plastic value chain, where it appears more needed.

Keywords: environmental law, European union, governance, plastic pollution, sustainability

Procedia PDF Downloads 88
178 First Systematic Review on Aerosol Bound Water: Exploring the Existing Knowledge Domain Using the CiteSpace Software

Authors: Kamila Widziewicz-Rzonca

Abstract:

The presence of PM bound water as an integral chemical compound of suspended aerosol particles (PM) has become one of the hottest issues in recent years. The UN climate summits on climate change (COP24) indicate that PM of anthropogenic origin (released mostly from coal combustion) is directly responsible for climate change. Chemical changes at the particle-liquid (water) interface determine many phenomena occurring in the atmosphere such as visibility, cloud formation or precipitation intensity. Since water-soluble particles such as nitrates, sulfates, or sea salt easily become cloud condensation nuclei, they affect the climate for example by increasing cloud droplet concentration. Aerosol water is a master component of atmospheric aerosols and a medium that enables all aqueous-phase reactions occurring in the atmosphere. Thanks to a thorough bibliometric analysis conducted using CiteSpace Software, it was possible to identify past trends and possible future directions in measuring aerosol-bound water. This work, in fact, doesn’t aim at reviewing the existing literature in the related topic but is an in-depth bibliometric analysis exploring existing gaps and new frontiers in the topic of PM-bound water. To assess the major scientific areas related to PM-bound water and clearly define which among those are the most active topics we checked Web of Science databases from 1996 till 2018. We give an answer to the questions: which authors, countries, institutions and aerosol journals to the greatest degree influenced PM-bound water research? Obtained results indicate that the paper with the greatest citation burst was Tang In and Munklewitz H.R. 'water activities, densities, and refractive indices of aqueous sulfates and sodium nitrate droplets of atmospheric importance', 1994. The largest number of articles in this specific field was published in atmospheric chemistry and physics. An absolute leader in the quantity of publications among all research institutions is the National Aeronautics Space Administration (NASA). Meteorology and atmospheric sciences is a category with the most studies in this field. A very small number of studies on PM-bound water conduct a quantitative measurement of its presence in ambient particles or its origin. Most articles rather point PM-bound water as an artifact in organic carbon and ions measurements without any chemical analysis of its contents. This scientometric study presents the current and most actual literature regarding particulate bound water.

Keywords: systematic review, aerosol-bound water, PM-bound water, CiteSpace, knowledge domain

Procedia PDF Downloads 105
177 Impact of Boundary Conditions on the Behavior of Thin-Walled Laminated Column with L-Profile under Uniform Shortening

Authors: Jaroslaw Gawryluk, Andrzej Teter

Abstract:

Simply supported angle columns subjected to uniform shortening are tested. The experimental studies are conducted on a testing machine using additional Aramis and the acoustic emission system. The laminate samples are subjected to axial uniform shortening. The tested columns are loaded with the force values from zero to the maximal load destroying the L-shaped column, which allowed one to observe the column post-buckling behavior until its collapse. Laboratory tests are performed at a constant velocity of the cross-bar equal to 1 mm/min. In order to eliminate stress concentrations between sample and support, flexible pads are used. Analyzed samples are made with carbon-epoxy laminate using the autoclave method. The configurations of laminate layers are: [60,0₂,-60₂,60₃,-60₂,0₃,-60₂,0,60₂]T, where direction 0 is along the length of the profile. Material parameters of laminate are: Young’s modulus along the fiber direction - 170GPa, Young’s modulus along the fiber transverse direction - 7.6GPa, shear modulus in-plane - 3.52GPa, Poisson’s ratio in-plane - 0.36. The dimensions of all columns are: length-300 mm, thickness-0.81mm, width of the flanges-40mm. Next, two numerical models of the column with and without flexible pads are developed using the finite element method in Abaqus software. The L-profile laminate column is modeled using the S8R shell elements. The layup-ply technique is used to define the sequence of the laminate layers. However, the model of grips is made of the R3D4 discrete rigid elements. The flexible pad is consists of the C3D20R type solid elements. In order to estimate the moment of the first laminate layer damage, the following initiation criteria were applied: maximum stress criterion, Tsai-Hill, Tsai-Wu, Azzi-Tsai-Hill, and Hashin criteria. The best compliance of results was observed for the Hashin criterion. It was found that the use of the pad in the numerical model significantly influences the damage mechanism. The model without pads characterized a much more stiffness, as evidenced by a greater bifurcation load and damage initiation load in all analyzed criteria, lower shortening, and less deflection of the column in its center than the model with flexible pads. Acknowledgment: The project/research was financed in the framework of the project Lublin University of Technology-Regional Excellence Initiative, funded by the Polish Ministry of Science and Higher Education (contract no. 030/RID/2018/19).

Keywords: angle column, compression, experiment, FEM

Procedia PDF Downloads 184
176 Assessment of N₂ Fixation and Water-Use Efficiency in a Soybean-Sorghum Rotation System

Authors: Mmatladi D. Mnguni, Mustapha Mohammed, George Y. Mahama, Alhassan L. Abdulai, Felix D. Dakora

Abstract:

Industrial-based nitrogen (N) fertilizers are justifiably credited for the current state of food production across the globe, but their continued use is not sustainable and has an adverse effect on the environment. The search for greener and sustainable technologies has led to an increase in exploiting biological systems such as legumes and organic amendments for plant growth promotion in cropping systems. Although the benefits of legume rotation with cereal crops have been documented, the full benefits of soybean-sorghum rotation systems have not been properly evaluated in Africa. This study explored the benefits of soybean-sorghum rotation through assessing N₂ fixation and water-use efficiency of soybean in rotation with sorghum with and without organic and inorganic amendments. The field trials were conducted from 2017 to 2020. Sorghum was grown on plots previously cultivated to soybean and vice versa. The succeeding sorghum crop received fertilizer amendments [organic fertilizer (5 tons/ha as poultry litter, OF); inorganic fertilizer (80N-60P-60K) IF; organic + inorganic fertilizer (OF+IF); half organic + inorganic fertilizer (HIF+OF); organic + half inorganic fertilizer (OF+HIF); half organic + half inorganic (HOF+HIF) and control] and was arranged in a randomized complete block design. The soybean crop succeeding fertilized sorghum received a blanket application of triple superphosphate at 26 kg P ha⁻¹. Nitrogen fixation and water-use efficiency were respectively assessed at the flowering stage using the ¹⁵N and ¹³C natural abundance techniques. The results showed that the shoot dry matter of soybean plants supplied with HOF+HIF was much higher (43.20 g plant-1), followed by OF+HIF (36.45 g plant⁻¹), and HOF+IF (33.50 g plant⁻¹). Shoot N concentration ranged from 1.60 to 1.66%, and total N content from 339 to 691 mg N plant⁻¹. The δ¹⁵N values of soybean shoots ranged from -1.17‰ to -0.64‰, with plants growing on plots previously treated to HOF+HIF exhibiting much higher δ¹⁵N values, and hence lower percent N derived from N₂ fixation (%Ndfa). Shoot %Ndfa values varied from 70 to 82%. The high %Ndfa values obtained in this study suggest that the previous year’s organic and inorganic fertilizer amendments to sorghum did not inhibit N₂ fixation in the following soybean crop. The amount of N-fixed by soybean ranged from 106 to 197 kg N ha⁻¹. The treatments showed marked variations in carbon (C) content, with HOF+HIF treatment recording the highest C content. Although water-use efficiency varied from -29.32‰ to -27.85‰, shoot water-use efficiency, C concentration, and C:N ratio were not altered by previous fertilizer application to sorghum. This study provides strong evidence that previous HOF+HIF sorghum residues can enhance N nutrition and water-use efficiency in nodulated soybean.

Keywords: ¹³C and ¹⁵N natural abundance, N-fixed, organic and inorganic fertilizer amendments, shoot %Ndfa

Procedia PDF Downloads 143
175 A Methodology Based on Image Processing and Deep Learning for Automatic Characterization of Graphene Oxide

Authors: Rafael do Amaral Teodoro, Leandro Augusto da Silva

Abstract:

Originated from graphite, graphene is a two-dimensional (2D) material that promises to revolutionize technology in many different areas, such as energy, telecommunications, civil construction, aviation, textile, and medicine. This is possible because its structure, formed by carbon bonds, provides desirable optical, thermal, and mechanical characteristics that are interesting to multiple areas of the market. Thus, several research and development centers are studying different manufacturing methods and material applications of graphene, which are often compromised by the scarcity of more agile and accurate methodologies to characterize the material – that is to determine its composition, shape, size, and the number of layers and crystals. To engage in this search, this study proposes a computational methodology that applies deep learning to identify graphene oxide crystals in order to characterize samples by crystal sizes. To achieve this, a fully convolutional neural network called U-net has been trained to segment SEM graphene oxide images. The segmentation generated by the U-net is fine-tuned with a standard deviation technique by classes, which allows crystals to be distinguished with different labels through an object delimitation algorithm. As a next step, the characteristics of the position, area, perimeter, and lateral measures of each detected crystal are extracted from the images. This information generates a database with the dimensions of the crystals that compose the samples. Finally, graphs are automatically created showing the frequency distributions by area size and perimeter of the crystals. This methodological process resulted in a high capacity of segmentation of graphene oxide crystals, presenting accuracy and F-score equal to 95% and 94%, respectively, over the test set. Such performance demonstrates a high generalization capacity of the method in crystal segmentation, since its performance considers significant changes in image extraction quality. The measurement of non-overlapping crystals presented an average error of 6% for the different measurement metrics, thus suggesting that the model provides a high-performance measurement for non-overlapping segmentations. For overlapping crystals, however, a limitation of the model was identified. To overcome this limitation, it is important to ensure that the samples to be analyzed are properly prepared. This will minimize crystal overlap in the SEM image acquisition and guarantee a lower error in the measurements without greater efforts for data handling. All in all, the method developed is a time optimizer with a high measurement value, considering that it is capable of measuring hundreds of graphene oxide crystals in seconds, saving weeks of manual work.

Keywords: characterization, graphene oxide, nanomaterials, U-net, deep learning

Procedia PDF Downloads 137
174 Factors Affecting Air Surface Temperature Variations in the Philippines

Authors: John Christian Lequiron, Gerry Bagtasa, Olivia Cabrera, Leoncio Amadore, Tolentino Moya

Abstract:

Changes in air surface temperature play an important role in the Philippine’s economy, industry, health, and food production. While increasing global mean temperature in the recent several decades has prompted a number of climate change and variability studies in the Philippines, most studies still focus on rainfall and tropical cyclones. This study aims to investigate the trend and variability of observed air surface temperature and determine its major influencing factor/s in the Philippines. A non-parametric Mann-Kendall trend test was applied to monthly mean temperature of 17 synoptic stations covering 56 years from 1960 to 2015 and a mean change of 0.58 °C or a positive trend of 0.0105 °C/year (p < 0.05) was found. In addition, wavelet decomposition was used to determine the frequency of temperature variability show a 12-month, 30-80-month and more than 120-month cycles. This indicates strong annual variations, interannual variations that coincide with ENSO events, and interdecadal variations that are attributed to PDO and CO2 concentrations. Air surface temperature was also correlated with smoothed sunspot number and galactic cosmic rays, the results show a low to no effect. The influence of ENSO teleconnection on temperature, wind pattern, cloud cover, and outgoing longwave radiation on different ENSO phases had significant effects on regional temperature variability. Particularly, an anomalous anticyclonic (cyclonic) flow east of the Philippines during the peak and decay phase of El Niño (La Niña) events leads to the advection of warm southeasterly (cold northeasterly) air mass over the country. Furthermore, an apparent increasing cloud cover trend is observed over the West Philippine Sea including portions of the Philippines, and this is believed to lessen the effect of the increasing air surface temperature. However, relative humidity was also found to be increasing especially on the central part of the country, which results in a high positive trend of heat index, exacerbating the effects on human discomfort. Finally, an assessment of gridded temperature datasets was done to look at the viability of using three high-resolution datasets in future climate analysis and model calibration and verification. Several error statistics (i.e. Pearson correlation, Bias, MAE, and RMSE) were used for this validation. Results show that gridded temperature datasets generally follows the observed surface temperature change and anomalies. In addition, it is more representative of regional temperature rather than a substitute to station-observed air temperature.

Keywords: air surface temperature, carbon dioxide, ENSO, galactic cosmic rays, smoothed sunspot number

Procedia PDF Downloads 288
173 Relationshiop Between Occupants' Behaviour And Indoor Air Quality In Malaysian Public Hospital Outpatient Department

Authors: Farha Ibrahim, Ely Zarina Samsudin, Ahmad Razali Ishak, Jeyanthini Sathasivam

Abstract:

Introduction: Indoor air quality (IAQ) has recently gained substantial traction as the airborne transmission of infectious respiratory disease has become an increasing public health concern. Public hospital outpatient department (OPD). IAQ warrants special consideration as it is the most visited department in which patients and staff are all directly impacted by poor IAQ. However, there is limited evidence on IAQ in these settings. Moreover, occupants’ behavior like occupant’s movement and operation of door, windows and appliances, have been shown to significantly affect IAQ, yet the influence of these determinants on IAQ in such settings have not been established. Objectives: This study aims to examine IAQ in Malaysian public hospitals OPD and assess its relationships with occupants’ behavior. Methodology: A multicenter cross-sectional study in which stratified random sampling of Johor public hospitals OPD (n=6) according to building age was conducted. IAQ measurements include indoor air temperature, relative humidity (RH), air velocity (AV), carbon dioxide (CO2), total bacterial count (TBC) and total fungal count (TFC). Occupants’ behaviors in Malaysian public hospital OPD are assessed using observation forms, and results were analyzed. Descriptive statistics were performed to characterize all study variables, whereas non-parametric Spearman Rank correlation analysis was used to assess the correlation between IAQ and occupants’ behavior. Results: After adjusting for potential cofounder, the study has suggested that occupants’ movement in new building, like seated quietly, is significantly correlated with AV in new building (r 0.642, p-value 0.010), CO2 in new (r 0.772, p-value <0.001) and old building (r -0.559, p-value 0.020), TBC in new (r 0.747, p-value 0.001) and old building (r -0.559, p-value 0.020), and TFC in new (r 0.777, p-value <0.001) and old building (r -0.485, p-value 0.049). In addition, standing relaxed movement is correlated with indoor air temperature (r 0.823, p-value <0.001) in new building, CO2 (r 0.559, p-value 0.020), TBC (r 0.559, p-value 0.020), and TFC (r -0.485, p-value 0.049) in old building, while walking is correlated with AV in new building (r -0.642, p-value 0.001), CO2 in new (r -0.772, p-value <0.001) and old building (r 0.559, p-value 0.020), TBC in new (r -0.747, p-value 0.001) and old building (r 0.559, p-value 0.020), and TFC in old building (r -0.485, p-value 0.049). The indoor air temperature is significantly correlated with number of doors kept opened (r 0.522, p-value 0.046), frequency of door adjustments (r 0.753, p-value 0.001), number of windows kept opened (r 0.522, p-value 0.046), number of air-conditioned (AC) switched on (r 0.698, p-value 0.004) and frequency of AC adjustment (r 0.753, p-value 0.001) in new hospital OPD building. AV is found to be significantly correlated with number of doors kept opened (r 0.642, p-value 0.01), frequency of door adjustments (r 0.553, p-value 0.032), number of windows kept opened (r 0.642, p-value 0.01), and frequency of AC adjustment, number of fans switched on, and frequency of fans adjustment(all with r 0.553, p-value 0.032) in new building. In old hospital OPD building, the number of doors kept opened is significantly correlated with CO₂, TBC (both r -0.559, p-value 0.020) and TFC (r -0.495, p-value 0.049), frequency of door adjustment is significantly correlated with CO₂, TBC (both r-0.559, p-value 0.020) and TFC (r -0.495, p-value 0.049), number of windows kept opened is significantly correlated with CO₂, TBC (both r 0.559, p-value 0.020) and TFC (r 0.495, p-value 0.049), frequency of window adjustment is significantly correlated with CO₂,TBC (both r -0.559, p-value 0.020) and TFC (r -0.495, p-value 0.049), number of AC switched on is significantly correlated with CO₂, TBC (both r -0.559, p-value 0.020) and TFC (r -0.495, p-value 0.049),, frequency of AC adjustment is significantly correlated with CO2 (r 0.559, p-value 0.020), TBC (0.559, p-value 0.020) and TFC (r -0.495, p-value 0.049), number of fans switched on is significantly correlated with CO2, TBC (both r 0.559, p-value 0.020) and TFC (r 0.495, p-value 0.049), and frequency of fans adjustment is significantly correlated with CO2, TBC (both r -0.559, p-value 0.020) and TFC (r -0.495, p-value 0.049). Conclusion: This study provided evidence on IAQ parameters in Malaysian public hospitals OPD and significant factors that may be effective targets of prospective intervention, thus enabling stakeholders to develop appropriate policies and programs to mitigate IAQ issues in Malaysian public hospitals OPD.

Keywords: outpatient department, iaq, occupants practice, public hospital

Procedia PDF Downloads 65
172 Deasphalting of Crude Oil by Extraction Method

Authors: A. N. Kurbanova, G. K. Sugurbekova, N. K. Akhmetov

Abstract:

The asphaltenes are heavy fraction of crude oil. Asphaltenes on oilfield is known for its ability to plug wells, surface equipment and pores of the geologic formations. The present research is devoted to the deasphalting of crude oil as the initial stage refining oil. Solvent deasphalting was conducted by extraction with organic solvents (cyclohexane, carbon tetrachloride, chloroform). Analysis of availability of metals was conducted by ICP-MS and spectral feature at deasphalting was achieved by FTIR. High contents of asphaltenes in crude oil reduce the efficiency of refining processes. Moreover, high distribution heteroatoms (e.g., S, N) were also suggested in asphaltenes cause some problems: environmental pollution, corrosion and poisoning of the catalyst. The main objective of this work is to study the effect of deasphalting process crude oil to improve its properties and improving the efficiency of recycling processes. Experiments of solvent extraction are using organic solvents held in the crude oil JSC “Pavlodar Oil Chemistry Refinery. Experimental results show that deasphalting process also leads to decrease Ni, V in the composition of the oil. One solution to the problem of cleaning oils from metals, hydrogen sulfide and mercaptan is absorption with chemical reagents directly in oil residue and production due to the fact that asphalt and resinous substance degrade operational properties of oils and reduce the effectiveness of selective refining of oils. Deasphalting of crude oil is necessary to separate the light fraction from heavy metallic asphaltenes part of crude oil. For this oil is pretreated deasphalting, because asphaltenes tend to form coke or consume large quantities of hydrogen. Removing asphaltenes leads to partly demetallization, i.e. for removal of asphaltenes V/Ni and organic compounds with heteroatoms. Intramolecular complexes are relatively well researched on the example of porphyinous complex (VO2) and nickel (Ni). As a result of studies of V/Ni by ICP MS method were determined the effect of different solvents-deasphalting – on the process of extracting metals on deasphalting stage and select the best organic solvent. Thus, as the best DAO proved cyclohexane (C6H12), which as a result of ICP MS retrieves V-51.2%, Ni-66.4%? Also in this paper presents the results of a study of physical and chemical properties and spectral characteristics of oil on FTIR with a view to establishing its hydrocarbon composition. Obtained by using IR-spectroscopy method information about the specifics of the whole oil give provisional physical, chemical characteristics. They can be useful in the consideration of issues of origin and geochemical conditions of accumulation of oil, as well as some technological challenges. Systematic analysis carried out in this study; improve our understanding of the stability mechanism of asphaltenes. The role of deasphalted crude oil fractions on the stability asphaltene is described.

Keywords: asphaltenes, deasphalting, extraction, vanadium, nickel, metalloporphyrins, ICP-MS, IR spectroscopy

Procedia PDF Downloads 220
171 Organic Permeation Properties of Hydrophobic Silica Membranes with Different Functional Groups

Authors: Sadao Araki, Daisuke Gondo, Satoshi Imasaka, Hideki Yamamoto

Abstract:

The separation of organic compounds from aqueous solutions is a key technology for recycling valuable organic compounds and for the treatment of wastewater. The wastewater from chemical plants often contains organic compounds such as ethyl acetate (EA), methylethyl ketone (MEK) and isopropyl alcohol (IPA). In this study, we prepared hydrophobic silica membranes by a sol-gel method. We used phenyltrimethoxysilane (PhTMS), ethyltrimethoxysilan (ETMS), Propyltrimethoxysilane (PrTMS), N-butyltrimethoxysilane (BTMS), N-Hexyltrimethoxysilane (HTMS) as silica sources to introduce each functional groups on the membrane surface. Cetyltrimethyl ammonium bromide (CTAB) was used as a molecular template to create suitable pore that enable the permeation of organic compounds. These membranes with five different functional groups were characterized by SEM, FT-IR, and permporometry. Thicknesses and pore diameters of silica layer for all membrane were about 1.0 μm and about 1 nm, respectively. In other words, functional groups had an insignificant effect on the membrane thicknesses and the formation of the pore by CTAB. We confirmed the effect of functional groups on the flux and separation factor for ethyl acetate (EA), methyl ethyl ketone, acetone and 1-butanol (1-BtOH) /water mixtures. All membranes showed a high flux for ethyl acetate compared with other compounds. In particular, the hydrophobic silica membrane prepared by using BTMS showed 0.75 kg m-2 h-1 of flux for EA. For all membranes, the fluxes of organic compounds showed the large values in the order corresponding to EA > MEK > acetone > 1-BtOH. On the other hand, carbon chain length of functional groups among ETMS, PrTMS, BTMS, PrTMS and HTMS did not have a major effect on the organic flux. Although we confirmed the relationship between organic fluxes and organic molecular diameters or fugacity of organic compounds, these factors had a low correlation with organic fluxes. It is considered that these factors affect the diffusivity. Generally, permeation through membranes is based on the diffusivity and solubility. Therefore, it is deemed that organic fluxes through these hydrophobic membranes are strongly influenced by solubility. We tried to estimate the organic fluxes by Hansen solubility parameter (HSP). HSP, which is based on the cohesion energy per molar volume and is composed of dispersion forces (δd), intermolecular dipole interactions (δp), and hydrogen-bonding interactions (δh), has recently attracted attention as a means for evaluating the resolution and aggregation behavior. Evaluation of solubility for two substances can be represented by using the Ra [(MPa)1/2] value, meaning the distance of HSPs for both of substances. A smaller Ra value means a higher solubility for each substance. On the other hand, it can be estimated that the substances with large Ra value show low solubility. We established the correlation equation, which was based on Ra, of organic flux at low concentrations of organic compounds and at 295-325 K.

Keywords: hydrophobic, membrane, Hansen solubility parameter, functional group

Procedia PDF Downloads 346
170 Sunflower Oil as a Nutritional Strategy to Reduce the Impacts of Heat Stress on Meat Quality and Dirtiness Pigs Score

Authors: Angela Cristina Da F. De Oliveira, Salma E. Asmar, Norbert P. Battlori, Yaz Vera, Uriel R. Valencia, Tâmara D. Borges, Antoni D. Bueno, Leandro B. Costa

Abstract:

The present study aimed to evaluate the replacement of 5% of starch per 5% of sunflower oil (SO) on meat quality and animal welfare of growing and finishing pigs (Iberic x Duroc), exposed to a heat stress environment. The experiment lasted 90 days, and it was carried out in a randomized block design, in a 2 x 2 factorial, composed of two diets (starch or sunflower oil (with or without) and two feed intake management (ad libitum and restriction). Seventy-two crossbred males (51± 6,29 kg body weight - BW) were housed in climate-controlled rooms, in collective pens and exposed to heat stress environment (32°C; 35% to 50% humidity). The treatments studies were: 1) control diet (5% starch x 0% SO) with ad libitum intake (n = 18); 2) SO diet (replacement of 5% of starch per 5% of SO) with ad libitum intake (n = 18); 3) control diet with restriction feed intake (n = 18); or 4) SO diet with restriction feed intake (n = 18). Feed were provided in two phases, 50-100 Kg BW for growing and 100-140 Kg BW for finishing, respectively. Within welfare evaluations, dirtiness score was evaluated all morning during ninety days of the experiment. The presence of manure was individually measured based on one side of the pig´s body and scored according to: 0 (less than 20% of the body surface); 1 (more than 20% but less than 50% of the body surface); 2 (over 50% of the body surface). After the experimental period, when animals reach 130-140 kg BW, they were slaughtered using carbon dioxide (CO2) stunning. Carcass weight, leanness and fat content, measured at the last rib, were recorded within 20 min post-mortem (PM). At 24h PM, pH, electrical conductivity and color measures (L, a*, b*) were recorded in the Longissimus thoracis and Semimembranosus muscles. Data shown no interaction between diet (control x SO) and management feed intake (ad libitum x restriction) on the meat quality parameters. Animals in ad libitum management presented an increase (p < 0.05) on BW, carcass weight (CW), back fat thickness (BT), and intramuscular fat content (IM) when compared with animals in restriction management. In contrast, animals in restriction management showing a higher (p < 0.05) carcass yield, percentage of lean and loin thickness. To welfare evaluations, the interaction between diet and management feed intake did not influence the degree of dirtiness. Although, the animals that received SO diet, independently of the management, were cleaner than animals in control group (p < 0,05), which, for pigs, demonstrate an important strategy to reduce body temperature. Based in our results, the diet and management feed intake had a significant influence on meat quality and animal welfare being considered efficient nutritional strategies to reduce heat stress and improved meat quality.

Keywords: dirtiness, environment, meat, pig

Procedia PDF Downloads 235
169 Life Cycle Assessment of Todays and Future Electricity Grid Mixes of EU27

Authors: Johannes Gantner, Michael Held, Rafael Horn, Matthias Fischer

Abstract:

At the United Nations Climate Change Conference 2015 a global agreement on the reduction of climate change was achieved stating CO₂ reduction targets for all countries. For instance, the EU targets a reduction of 40 percent in emissions by 2030 compared to 1990. In order to achieve this ambitious goal, the environmental performance of the different European electricity grid mixes is crucial. First, the electricity directly needed for everyone’s daily life (e.g. heating, plug load, mobility) and therefore a reduction of the environmental impacts of the electricity grid mix reduces the overall environmental impacts of a country. Secondly, the manufacturing of every product depends on electricity. Thereby a reduction of the environmental impacts of the electricity mix results in a further decrease of environmental impacts of every product. As a result, the implementation of the two-degree goal highly depends on the decarbonization of the European electricity mixes. Currently the production of electricity in the EU27 is based on fossil fuels and therefore bears a high GWP impact per kWh. Due to the importance of the environmental impacts of the electricity mix, not only today but also in future, within the European research projects, CommONEnergy and Senskin, time-dynamic Life Cycle Assessment models for all EU27 countries were set up. As a methodology, a combination of scenario modeling and life cycle assessment according to ISO14040 and ISO14044 was conducted. Based on EU27 trends regarding energy, transport, and buildings, the different national electricity mixes were investigated taking into account future changes such as amount of electricity generated in the country, change in electricity carriers, COP of the power plants and distribution losses, imports and exports. As results, time-dynamic environmental profiles for the electricity mixes of each country and for Europe overall were set up. Thereby for each European country, the decarbonization strategies of the electricity mix are critically investigated in order to identify decisions, that can lead to negative environmental effects, for instance on the reduction of the global warming of the electricity mix. For example, the withdrawal of the nuclear energy program in Germany and at the same time compensation of the missing energy by non-renewable energy carriers like lignite and natural gas is resulting in an increase in global warming potential of electricity grid mix. Just after two years this increase countervailed by the higher share of renewable energy carriers such as wind power and photovoltaic. Finally, as an outlook a first qualitative picture is provided, illustrating from environmental perspective, which country has the highest potential for low-carbon electricity production and therefore how investments in a connected European electricity grid could decrease the environmental impacts of the electricity mix in Europe.

Keywords: electricity grid mixes, EU27 countries, environmental impacts, future trends, life cycle assessment, scenario analysis

Procedia PDF Downloads 164
168 Retrofitting Insulation to Historic Masonry Buildings: Improving Thermal Performance and Maintaining Moisture Movement to Minimize Condensation Risk

Authors: Moses Jenkins

Abstract:

Much of the focus when improving energy efficiency in buildings fall on the raising of standards within new build dwellings. However, as a significant proportion of the building stock across Europe is of historic or traditional construction, there is also a pressing need to improve the thermal performance of structures of this sort. On average, around twenty percent of buildings across Europe are built of historic masonry construction. In order to meet carbon reduction targets, these buildings will require to be retrofitted with insulation to improve their thermal performance. At the same time, there is also a need to balance this with maintaining the ability of historic masonry construction to allow moisture movement through building fabric to take place. This moisture transfer, often referred to as 'breathable construction', is critical to the success, or otherwise, of retrofit projects. The significance of this paper is to demonstrate that substantial thermal improvements can be made to historic buildings whilst avoiding damage to building fabric through surface or interstitial condensation. The paper will analyze the results of a wide range of retrofit measures installed to twenty buildings as part of Historic Environment Scotland's technical research program. This program has been active for fourteen years and has seen interventions across a wide range of building types, using over thirty different methods and materials to improve the thermal performance of historic buildings. The first part of the paper will present the range of interventions which have been made. This includes insulating mass masonry walls both internally and externally, warm and cold roof insulation and improvements to floors. The second part of the paper will present the results of monitoring work which has taken place to these buildings after being retrofitted. This will be in terms of both thermal improvement, expressed as a U-value as defined in BS EN ISO 7345:1987, and also, crucially, will present the results of moisture monitoring both on the surface of masonry walls the following retrofit and also within the masonry itself. The aim of this moisture monitoring is to establish if there are any problems with interstitial condensation. This monitoring utilizes Interstitial Hygrothermal Gradient Monitoring (IHGM) and similar methods to establish relative humidity on the surface of and within the masonry. The results of the testing are clear and significant for retrofit projects across Europe. Where a building is of historic construction the use of materials for wall, roof and floor insulation which are permeable to moisture vapor provides both significant thermal improvements (achieving a u-value as low as 0.2 Wm²K) whilst avoiding problems of both surface and intestinal condensation. As the evidence which will be presented in the paper comes from monitoring work in buildings rather than theoretical modeling, there are many important lessons which can be learned and which can inform retrofit projects to historic buildings throughout Europe.

Keywords: insulation, condensation, masonry, historic

Procedia PDF Downloads 140
167 Healthcare Fire Disasters: Readiness, Response and Resilience Strategies: A Real-Time Experience of a Healthcare Organization of North India

Authors: Raman Sharma, Ashok Kumar, Vipin Koushal

Abstract:

Healthcare facilities are always seen as places of haven and protection for managing the external incidents, but the situation becomes more difficult and challenging when such facilities themselves are affected from internal hazards. Such internal hazards are arguably more disruptive than external incidents affecting vulnerable ones, as patients are always dependent on supportive measures and are neither in a position to respond to such crisis situation nor do they know how to respond. The situation becomes more arduous and exigent to manage if, in case critical care areas like Intensive Care Units (ICUs) and Operating Rooms (OR) are convoluted. And, due to these complexities of patients’ in-housed there, it becomes difficult to move such critically ill patients on immediate basis. Healthcare organisations use different types of electrical equipment, inflammable liquids, and medical gases often at a single point of use, hence, any sort of error can spark the fire. Even though healthcare facilities face many fire hazards, damage caused by smoke rather than flames is often more severe. Besides burns, smoke inhalation is primary cause of fatality in fire-related incidents. The greatest cause of illness and mortality in fire victims, particularly in enclosed places, appears to be the inhalation of fire smoke, which contains a complex mixture of gases in addition to carbon monoxide. Therefore, healthcare organizations are required to have a well-planned disaster mitigation strategy, proactive and well prepared manpower to cater all types of exigencies resulting from internal as well as external hazards. This case report delineates a true OR fire incident in Emergency Operation Theatre (OT) of a tertiary care multispecialty hospital and details the real life evidence of the challenges encountered by OR staff in preserving both life and property. No adverse event was reported during or after this fire commotion, yet, this case report aimed to congregate the lessons identified of the incident in a sequential and logical manner. Also, timely smoke evacuation and preventing the spread of smoke to adjoining patient care areas by opting appropriate measures, viz. compartmentation, pressurisation, dilution, ventilation, buoyancy, and airflow, helped to reduce smoke-related fatalities. Henceforth, precautionary measures may be implemented to mitigate such incidents. Careful coordination, continuous training, and fire drill exercises can improve the overall outcomes and minimize the possibility of these potentially fatal problems, thereby making a safer healthcare environment for every worker and patient.

Keywords: healthcare, fires, smoke, management, strategies

Procedia PDF Downloads 44
166 Pump-as-Turbine: Testing and Characterization as an Energy Recovery Device, for Use within the Water Distribution Network

Authors: T. Lydon, A. McNabola, P. Coughlan

Abstract:

Energy consumption in the water distribution network (WDN) is a well established problem equating to the industry contributing heavily to carbon emissions, with 0.9 kg CO2 emitted per m3 of water supplied. It is indicated that 85% of energy wasted in the WDN can be recovered by installing turbines. Existing potential in networks is present at small capacity sites (5-10 kW), numerous and dispersed across networks. However, traditional turbine technology cannot be scaled down to this size in an economically viable fashion, thus alternative approaches are needed. This research aims to enable energy recovery potential within the WDN by exploring the potential of pumps-as-turbines (PATs), to realise this potential. PATs are estimated to be ten times cheaper than traditional micro-hydro turbines, presenting potential to contribute to an economically viable solution. However, a number of technical constraints currently prohibit their widespread use, including the inability of a PAT to control pressure, difficulty in the selection of PATs due to lack of performance data and a lack of understanding on how PATs can cater for fluctuations as extreme as +/- 50% of the average daily flow, characteristic of the WDN. A PAT prototype is undergoing testing in order to identify the capabilities of the technology. Results of preliminary testing, which involved testing the efficiency and power potential of the PAT for varying flow and pressure conditions, in order to develop characteristic and efficiency curves for the PAT and a baseline understanding of the technologies capabilities, are presented here: •The limitations of existing selection methods which convert BEP from pump operation to BEP in turbine operation was highlighted by the failure of such methods to reflect the conditions of maximum efficiency of the PAT. A generalised selection method for the WDN may need to be informed by an understanding of impact of flow variations and pressure control on system power potential capital cost, maintenance costs, payback period. •A clear relationship between flow and efficiency rate of the PAT has been established. The rate of efficiency reductions for flows +/- 50% BEP is significant and more extreme for deviations in flow above the BEP than below, but not dissimilar to the reaction of efficiency of other turbines. •PAT alone is not sufficient to regulate pressure, yet the relationship of pressure across the PAT is foundational in exploring ways which PAT energy recovery systems can maintain required pressure level within the WDN. Efficiencies of systems of PAT energy recovery systems operating conditions of pressure regulation, which have been conceptualise in current literature, need to be established. Initial results guide the focus of forthcoming testing and exploration of PAT technology towards how PATs can form part of an efficiency energy recovery system.

Keywords: energy recovery, pump-as-turbine, water distribution network, water distribution network

Procedia PDF Downloads 237
165 Study on the Rapid Start-up and Functional Microorganisms of the Coupled Process of Short-range Nitrification and Anammox in Landfill Leachate Treatment

Authors: Lina Wu

Abstract:

The excessive discharge of nitrogen in sewage greatly intensifies the eutrophication of water bodies and poses a threat to water quality. Nitrogen pollution control has become a global concern. Currently, the problem of water pollution in China is still not optimistic. As a typical high ammonia nitrogen organic wastewater, landfill leachate is more difficult to treat than domestic sewage because of its complex water quality, high toxicity, and high concentration.Many studies have shown that the autotrophic anammox bacteria in nature can combine nitrous and ammonia nitrogen without carbon source through functional genes to achieve total nitrogen removal, which is very suitable for the removal of nitrogen from leachate. In addition, the process also saves a lot of aeration energy consumption than the traditional nitrogen removal process. Therefore, anammox plays an important role in nitrogen conversion and energy saving. The process composed of short-range nitrification and denitrification coupled an ammo ensures the removal of total nitrogen and improves the removal efficiency, meeting the needs of the society for an ecologically friendly and cost-effective nutrient removal treatment technology. Continuous flow process for treating late leachate [an up-flow anaerobic sludge blanket reactor (UASB), anoxic/oxic (A/O)–anaerobic ammonia oxidation reactor (ANAOR or anammox reactor)] has been developed to achieve autotrophic deep nitrogen removal. In this process, the optimal process parameters such as hydraulic retention time and nitrification flow rate have been obtained, and have been applied to the rapid start-up and stable operation of the process system and high removal efficiency. Besides, finding the characteristics of microbial community during the start-up of anammox process system and analyzing its microbial ecological mechanism provide a basis for the enrichment of anammox microbial community under high environmental stress. One research developed partial nitrification-Anammox (PN/A) using an internal circulation (IC) system and a biological aerated filter (BAF) biofilm reactor (IBBR), where the amount of water treated is closer to that of landfill leachate. However, new high-throughput sequencing technology is still required to be utilized to analyze the changes of microbial diversity of this system, related functional genera and functional genes under optimal conditions, providing theoretical and further practical basis for the engineering application of novel anammox system in biogas slurry treatment and resource utilization.

Keywords: nutrient removal and recovery, leachate, anammox, partial nitrification

Procedia PDF Downloads 24
164 Environmental Impact of Autoclaved Aerated Concrete in Modern Construction: A Case Study from the New Egyptian Administrative Capital

Authors: Esraa A. Khalil, Mohamed N. AbouZeid

Abstract:

Building materials selection is critical for the sustainability of any project. The choice of building materials has a huge impact on the built environment and cost of projects. Building materials emit huge amount of carbon dioxide (CO2) due to the use of cement as a basic component in the manufacturing process and as a binder, which harms our environment. Energy consumption from buildings has increased in the last few years; a huge amount of energy is being wasted from using unsustainable building and finishing materials, as well as from the process of heating and cooling of buildings. In addition, the construction sector in Egypt is taking a good portion of the economy; however, there is a lack of awareness of buildings environmental impacts on the built environment. Using advanced building materials and different wall systems can help in reducing heat consumption, the project’s initial and long-term costs, and minimizing the environmental impacts. Red Bricks is one of the materials that are being used widely in Egypt. There are many other types of bricks such as Autoclaved Aerated Concrete (AAC); however, the use of Red Bricks is dominating the construction industry due to its affordability and availability. This research focuses on the New Egyptian Administrative Capital as a case study to investigate the potential of the influence of using different wall systems such as AAC on the project’s cost and the environment. The aim of this research is to conduct a comparative analysis between the traditional and most commonly used bricks in Egypt, which is Red Bricks, and AAC wall systems. Through an economic and environmental study, the difference between the two wall systems will be justified to encourage the utilization of uncommon techniques in the construction industry to build more affordable, energy efficient and sustainable buildings. The significance of this research is to show the potential of using AAC in the construction industry and its positive influences. The study analyzes the factors associated with choosing suitable building materials for different projects according to the need and criteria of each project and its nature without harming the environment and wasting materials that could be saved or recycled. The New Egyptian Administrative Capital is considered as the country’s new heart, where ideas regarding energy savings and environmental benefits are taken into consideration. Meaning that, Egypt is taking good steps to move towards more sustainable construction. According to the analysis and site visits, there is a potential in reducing the initial costs of buildings by 12.1% and saving energy by using different techniques up to 25%. Interviews with the mega structures project engineers and managers reveal that they are more open to introducing sustainable building materials that will help in saving the environment and moving towards green construction as well as to studying more effective techniques for energy conservation.

Keywords: AAC blocks, building material, environmental impact, modern construction, new Egyptian administrative capital

Procedia PDF Downloads 101
163 Nanostructured Pt/MnO2 Catalysts and Their Performance for Oxygen Reduction Reaction in Air Cathode Microbial Fuel Cell

Authors: Maksudur Rahman Khan, Kar Min Chan, Huei Ruey Ong, Chin Kui Cheng, Wasikur Rahman

Abstract:

Microbial fuel cells (MFCs) represent a promising technology for simultaneous bioelectricity generation and wastewater treatment. Catalysts are significant portions of the cost of microbial fuel cell cathodes. Many materials have been tested as aqueous cathodes, but air-cathodes are needed to avoid energy demands for water aeration. The sluggish oxygen reduction reaction (ORR) rate at air cathode necessitates efficient electrocatalyst such as carbon supported platinum catalyst (Pt/C) which is very costly. Manganese oxide (MnO2) was a representative metal oxide which has been studied as a promising alternative electrocatalyst for ORR and has been tested in air-cathode MFCs. However, the single MnO2 has poor electric conductivity and low stability. In the present work, the MnO2 catalyst has been modified by doping Pt nanoparticle. The goal of the work was to improve the performance of the MFC with minimum Pt loading. MnO2 and Pt nanoparticles were prepared by hydrothermal and sol-gel methods, respectively. Wet impregnation method was used to synthesize Pt/MnO2 catalyst. The catalysts were further used as cathode catalysts in air-cathode cubic MFCs, in which anaerobic sludge was inoculated as biocatalysts and palm oil mill effluent (POME) was used as the substrate in the anode chamber. The as-prepared Pt/MnO2 was characterized comprehensively through field emission scanning electron microscope (FESEM), X-Ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and cyclic voltammetry (CV) where its surface morphology, crystallinity, oxidation state and electrochemical activity were examined, respectively. XPS revealed Mn (IV) oxidation state and Pt (0) nanoparticle metal, indicating the presence of MnO2 and Pt. Morphology of Pt/MnO2 observed from FESEM shows that the doping of Pt did not cause change in needle-like shape of MnO2 which provides large contacting surface area. The electrochemical active area of the Pt/MnO2 catalysts has been increased from 276 to 617 m2/g with the increase in Pt loading from 0.2 to 0.8 wt%. The CV results in O2 saturated neutral Na2SO4 solution showed that MnO2 and Pt/MnO2 catalysts could catalyze ORR with different catalytic activities. MFC with Pt/MnO2 (0.4 wt% Pt) as air cathode catalyst generates a maximum power density of 165 mW/m3, which is higher than that of MFC with MnO2 catalyst (95 mW/m3). The open circuit voltage (OCV) of the MFC operated with MnO2 cathode gradually decreased during 14 days of operation, whereas the MFC with Pt/MnO2 cathode remained almost constant throughout the operation suggesting the higher stability of the Pt/MnO2 catalyst. Therefore, Pt/MnO2 with 0.4 wt% Pt successfully demonstrated as an efficient and low cost electrocatalyst for ORR in air cathode MFC with higher electrochemical activity, stability and hence enhanced performance.

Keywords: microbial fuel cell, oxygen reduction reaction, Pt/MnO2, palm oil mill effluent, polarization curve

Procedia PDF Downloads 535
162 Industrial Waste Multi-Metal Ion Exchange

Authors: Thomas S. Abia II

Abstract:

Intel Chandler Site has internally developed its first-of-kind (FOK) facility-scale wastewater treatment system to achieve multi-metal ion exchange. The process was carried out using a serial process train of carbon filtration, pH / ORP adjustment, and cationic exchange purification to treat dilute metal wastewater (DMW) discharged from a substrate packaging factory. Spanning a trial period of 10 months, a total of 3,271 samples were collected and statistically analyzed (average baseline + standard deviation) to evaluate the performance of a 95-gpm, multi-reactor continuous copper ion exchange treatment system that was consequently retrofitted for manganese ion exchange to meet environmental regulations. The system is also equipped with an inline acid and hot caustic regeneration system to rejuvenate exhausted IX resins and occasionally remove surface crud. Data generated from lab-scale studies was transferred to system operating modifications following multiple trial-and-error experiments. Despite the DMW treatment system failing to meet internal performance specifications for manganese output, it was observed to remove the cation notwithstanding the prevalence of copper in the waste stream. Accordingly, the average manganese output declined from 6.5 + 5.6 mg¹L⁻¹ at pre-pilot to 1.1 + 1.2 mg¹L⁻¹ post-pilot (83% baseline reduction). This milestone was achieved regardless of the average influent manganese to DMW increasing from 1.0 + 13.7 mg¹L⁻¹ at pre-pilot to 2.1 + 0.2 mg¹L⁻¹ post-pilot (110% baseline uptick). Likewise, the pre-trial and post-trial average influent copper values to DMW were 22.4 + 10.2 mg¹L⁻¹ and 32.1 + 39.1 mg¹L⁻¹, respectively (43% baseline increase). As a result, the pre-trial and post-trial average copper output values were 0.1 + 0.5 mg¹L⁻¹ and 0.4 + 1.2 mg¹L⁻¹, respectively (300% baseline uptick). Conclusively, the operating pH range upstream of treatment (between 3.5 and 5) was shown to be the largest single point of influence for optimizing manganese uptake during multi-metal ion exchange. However, the high variability of the influent copper-to-manganese ratio was observed to adversely impact the system functionality. The journal herein intends to discuss the operating parameters such as pH and oxidation-reduction potential (ORP) that were shown to influence the functional versatility of the ion exchange system significantly. The literature also proposes to discuss limitations of the treatment system such as influent copper-to-manganese ratio variations, operational configuration, waste by-product management, and system recovery requirements to provide a balanced assessment of the multi-metal ion exchange process. The take-away from this literature is intended to analyze the overall feasibility of ion exchange for metals manufacturing facilities that lack the capability to expand hardware due to real estate restrictions, aggressive schedules, or budgetary constraints.

Keywords: copper, industrial wastewater treatment, multi-metal ion exchange, manganese

Procedia PDF Downloads 119
161 Evaluation Method for Fouling Risk Using Quartz Crystal Microbalance

Authors: Natsuki Kishizawa, Keiko Nakano, Hussam Organji, Amer Shaiban, Mohammad Albeirutty

Abstract:

One of the most important tasks in operating desalination plants using a reverse osmosis (RO) method is preventing RO membrane fouling caused by foulants found in seawater. Optimal design of the pre-treatment process of RO process for plants enables the reduction of foulants. Therefore, a quantitative evaluation of the fouling risk in pre-treated water, which is fed to RO, is required for optimal design. Some measurement methods for water quality such as silt density index (SDI) and total organic carbon (TOC) have been conservatively applied for evaluations. However, these methods have not been effective in some situations for evaluating the fouling risk of RO feed water. Furthermore, stable management of plants will be possible by alerts and appropriate control of the pre-treatment process by using the method if it can be applied to the inline monitoring system for the fouling risk of RO feed water. The purpose of this study is to develop a method to evaluate the fouling risk of RO feed water. We applied a quartz crystal microbalance (QCM) to measure the amount of foulants found in seawater using a sensor whose surface is coated with polyamide thin film, which is the main material of a RO membrane. The increase of the weight of the sensor after a certain length of time in which the sample water passes indicates the fouling risk of the sample directly. We classified the values as “FP: Fouling Potential”. The characteristics of the method are to measure the very small amount of substances in seawater in a short time: < 2h, and from a small volume of the sample water: < 50mL. Using some RO cell filtration units, a higher correlation between the pressure increase given by RO fouling and the FP from the method than SDI and TOC was confirmed in the laboratory-scale test. Then, to establish the correlation in the actual bench-scale RO membrane module, and to confirm the feasibility of the monitoring system as a control tool for the pre-treatment process, we have started a long-term test at an experimental desalination site by the Red Sea in Jeddah, Kingdom of Saudi Arabia. Implementing inline equipment for the method made it possible to measure FP intermittently (4 times per day) and automatically. Moreover, for two 3-month long operations, the RO operation pressure among feed water samples of different qualities was compared. The pressure increase through a RO membrane module was observed at a high FP RO unit in which feed water was treated by a cartridge filter only. On the other hand, the pressure increase was not observed at a low FP RO unit in which feed water was treated by an ultra-filter during the operation. Therefore, the correlation in an actual scale RO membrane was established in two runs of two types of feed water. The result suggested that the FP method enables the evaluation of the fouling risk of RO feed water.

Keywords: fouling, monitoring, QCM, water quality

Procedia PDF Downloads 191
160 The Torah Scroll of the National Library of the Kingdom of Morocco: Parchment Support and Black Ink Analytical Study

Authors: Oubelkacem Yacine, El Bast Hassan, El Bakkali Abdelmajid, Lamhasni Taibi, Ettakni Mahmoud, Ait Lyazidi Saadia, Haddad Mustapha, Ben-Ncer Abdelouahed, El Ferrane Mohammed, Boufarra Abdelkrim

Abstract:

The present work relates to an on-site and completely non-invasive investigation of one of the most famous west Mediterranean Torah Scroll housed at the National Library of the Kingdom of Morocco. The scroll is 26 m long and consists of 143 parchment sheets of 59 cm x 19 cm, exhibiting only black writings; it is of unknown age. The artifact has been restored by the curator staff of the library. The investigation exploring separately the parchment support and the writing black ink aims at: i) the examination of the parchment conservation/degradation state, ii) the identification of the black ink and iii) the identification of the parchment handcrafting materials. For this purpose, the analyses have been based on combining all of elemental XRF and structural Raman, ATR-FT Infrared Red and Fiber Optical Reflectance spectroscopies, in addition to chroma-metric and pH measurements. pH measurements showing values around 6.5 are in concordance with the absence of any visual corrosion related to the parchment acidity. However, on the basis of the relative intensities and frequency shift of amid I (AI) and amid II (AII) vibrational bands of the collagen, ATR-FTIR spectra revealed diffuse hydrolysis and gelatinization of the parchment writing support; diffuse and non-homogeny degradation by gelatinization has been also confirmed by the IG gelatinization index deduced from the NIR bands on the FOR spectra. This IG index, defined as the ratio I (6860 cm-1) / I (6685 cm-1), ranges in the interval 0.98 – 1 and highlights collagen degradation at the molecular level. Sequentially Shifted Excitation Raman measurements (SSERS) crossed to X-ray fluorescence (XRF) ones on the black writings revealed that the black ink used is an iron-copper gall one, while FOR spectra are typical of pure metal gall inks. These later reflectance measurements exclude, thus, any intentional addition of carbon black to the ink recipe. Moreover, no lead white had been used while pre-drawing the writing lines. On another side, ATR-FTIR measurements highlighted the presence of oxalates as ink degradation products. Considering the parchment handcrafting, the combination of XRF and ATR-FTIR measurements led to the assumption that this writing support had been prepared according to ancient Middle East practices; the parchment infrared fingerprint seems identical to that of the Dead Sea scroll. The present multi-technical analyses are the first ones performed on an ancient Judaic written parchment of Morocco; it is under furthering. The investigation will be extended to other parchments belonging to the Jewish Cultural Heritage Museum of Morocco in Casablanca.

Keywords: torah scroll, parchment, black ink, non-invasive analyses, XRF/ATR-FTIR/RAMAN/FORS

Procedia PDF Downloads 59
159 Condition Assessment and Diagnosis for Aging Drinking Water Pipeline According to Scientific and Reasonable Methods

Authors: Dohwan Kim, Dongchoon Ryou, Pyungjong Yoo

Abstract:

In public water facilities, drinking water distribution systems have played an important role along with water purification systems. The water distribution network is one of the most expensive components of water supply infrastructure systems. To improve the reliability for the drinking rate of tap water, advanced water treatment processes such as granular activated carbon and membrane filtration were used by water service providers in Korea. But, distrust of the people for tap water are still. Therefore, accurate diagnosis and condition assessment for water pipelines are required to supply the clean water. The internal corrosion of water pipe has increased as time passed. Also, the cross-sectional areas in pipe are reduced by the rust, deposits and tubercles. It is the water supply ability decreases as the increase of hydraulic pump capacity is required to supply an amount of water, such as the initial condition. If not, the poor area of water supply will be occurred by the decrease of water pressure. In order to solve these problems, water managers and engineers should be always checked for the current status of the water pipe, such as water leakage and damage of pipe. If problems occur, it should be able to respond rapidly and make an accurate estimate. In Korea, replacement and rehabilitation of aging drinking water pipes are carried out based on the circumstances of simply buried years. So, water distribution system management may not consider the entire water pipeline network. The long-term design and upgrading of a water distribution network should address economic, social, environmental, health, hydraulic, and other technical issues. This is a multi-objective problem with a high level of complexity. In this study, the thickness of the old water pipes, corrosion levels of the inner and outer surface for water pipes, basic data research (i.e. pipe types, buried years, accident record, embedded environment, etc.), specific resistance of soil, ultimate tensile strength and elongation of metal pipes, samples characteristics, and chemical composition analysis were performed about aging drinking water pipes. Samples of water pipes used in this study were cement mortar lining ductile cast iron pipe (CML-DCIP, diameter 100mm) and epoxy lining steel pipe (diameter 65 and 50mm). Buried years of CML-DCIP and epoxy lining steel pipe were respectively 32 and 23 years. The area of embedded environment was marine reclamation zone since 1940’s. The result of this study was that CML-DCIP needed replacement and epoxy lining steel pipe was still useful.

Keywords: drinking water distribution system, water supply, replacement, rehabilitation, water pipe

Procedia PDF Downloads 236