Search results for: transition regression model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20149

Search results for: transition regression model

19819 The Impact of Hybrid Working Models on Employee Engagement

Authors: Sibylle Tellenbach, Julie Haddock-Millar, Francis Bidault

Abstract:

The aim of this research is to understand the extent to which hybrid working models have influenced employee engagement in the Swiss financial sector. The context for this research is the transition out of the pandemic and the changes that have occurred between 2020 and 2023. Since the pandemic, many financial services companies have had to rethink their working model for office-based employees, as this group of employees has been able to experience a new way of working and, thus, greater freedom and flexibility. For a large number of companies, it was a huge change to shift from the traditional office-based to a new hybrid working model. A heightened focus on employee engagement has become a necessity in order to understand and respond to the challenges presented by the shift in a working model. This new way of working, partly office-based and partly virtual, has led to ambiguities about the impact on the engagement of hybrid teams. Therefore, the research question is: How hybrid working models have influenced employee engagement to what extent? The methodological approach is a narrative inquiry with four similar functional teams within four Swiss financial companies. Semi-structured interviews will be conducted with managers from middle management and their individual team members. The findings will demonstrate whether this shift in the working model influenced individual team members’ engagement and to what extent. The contribution of this research is two-fold. First, the research makes a theoretical contribution, presenting evidence of the impact of hybrid working on individual team members’ engagement in a specific sector and context, enhancing current knowledge on the challenges in working model transition. Second, this research will make a practice-based contribution, recommending ways to enhance the engagement of hybrid teams in a specific context. These recommendations may be applied in wider sectors and teams.

Keywords: employee engagement, hybrid teams, hybrid working models, Swiss financial sector, team engagement

Procedia PDF Downloads 96
19818 Electricity Load Modeling: An Application to Italian Market

Authors: Giovanni Masala, Stefania Marica

Abstract:

Forecasting electricity load plays a crucial role regards decision making and planning for economical purposes. Besides, in the light of the recent privatization and deregulation of the power industry, the forecasting of future electricity load turned out to be a very challenging problem. Empirical data about electricity load highlights a clear seasonal behavior (higher load during the winter season), which is partly due to climatic effects. We also emphasize the presence of load periodicity at a weekly basis (electricity load is usually lower on weekends or holidays) and at daily basis (electricity load is clearly influenced by the hour). Finally, a long-term trend may depend on the general economic situation (for example, industrial production affects electricity load). All these features must be captured by the model. The purpose of this paper is then to build an hourly electricity load model. The deterministic component of the model requires non-linear regression and Fourier series while we will investigate the stochastic component through econometrical tools. The calibration of the parameters’ model will be performed by using data coming from the Italian market in a 6 year period (2007- 2012). Then, we will perform a Monte Carlo simulation in order to compare the simulated data respect to the real data (both in-sample and out-of-sample inspection). The reliability of the model will be deduced thanks to standard tests which highlight a good fitting of the simulated values.

Keywords: ARMA-GARCH process, electricity load, fitting tests, Fourier series, Monte Carlo simulation, non-linear regression

Procedia PDF Downloads 395
19817 Life in Bequia in the Era of Climate Change: Societal Perception of Adaptation and Vulnerability

Authors: Sherry Ann Ganase, Sandra Sookram

Abstract:

This study examines adaptation measures and factors that influence adaptation decisions in Bequia by using multiple linear regression and a structural equation model. Using survey data, the results suggest that households are knowledgeable and concerned about climate change but lack knowledge about the measures needed to adapt. The findings from the SEM suggest that a positive relationship exist between vulnerability and adaptation, vulnerability and perception, along with a negative relationship between perception and adaptation. This suggests that being aware of the terms associated with climate change and knowledge about climate change is insufficient for implementing adaptation measures; instead the risk and importance placed on climate change, vulnerability experienced with household flooding, drainage and expected threat of future sea level are the main factors that influence the adaptation decision. The results obtained in this study are beneficial to all as adaptation requires a collective effort by stakeholders.

Keywords: adaptation, Bequia, multiple linear regression, structural equation model

Procedia PDF Downloads 463
19816 Growth Curves Genetic Analysis of Native South Caspian Sea Poultry Using Bayesian Statistics

Authors: Jamal Fayazi, Farhad Anoosheh, Mohammad R. Ghorbani, Ali R. Paydar

Abstract:

In this study, to determine the best non-linear regression model describing the growth curve of native poultry, 9657 chicks of generations 18, 19, and 20 raised in Mazandaran breeding center were used. Fowls and roosters of this center distributed in south of Caspian Sea region. To estimate the genetic variability of none linear regression parameter of growth traits, a Gibbs sampling of Bayesian analysis was used. The average body weight traits in the first day (BW1), eighth week (BW8) and twelfth week (BW12) were respectively estimated as 36.05, 763.03, and 1194.98 grams. Based on the coefficient of determination, mean squares of error and Akaike information criteria, Gompertz model was selected as the best growth descriptive function. In Gompertz model, the estimated values for the parameters of maturity weight (A), integration constant (B) and maturity rate (K) were estimated to be 1734.4, 3.986, and 0.282, respectively. The direct heritability of BW1, BW8 and BW12 were respectively reported to be as 0.378, 0.3709, 0.316, 0.389, 0.43, 0.09 and 0.07. With regard to estimated parameters, the results of this study indicated that there is a possibility to improve some property of growth curve using appropriate selection programs.

Keywords: direct heritability, Gompertz, growth traits, maturity weight, native poultry

Procedia PDF Downloads 264
19815 Developing an Advanced Algorithm Capable of Classifying News, Articles and Other Textual Documents Using Text Mining Techniques

Authors: R. B. Knudsen, O. T. Rasmussen, R. A. Alphinas

Abstract:

The reason for conducting this research is to develop an algorithm that is capable of classifying news articles from the automobile industry, according to the competitive actions that they entail, with the use of Text Mining (TM) methods. It is needed to test how to properly preprocess the data for this research by preparing pipelines which fits each algorithm the best. The pipelines are tested along with nine different classification algorithms in the realm of regression, support vector machines, and neural networks. Preliminary testing for identifying the optimal pipelines and algorithms resulted in the selection of two algorithms with two different pipelines. The two algorithms are Logistic Regression (LR) and Artificial Neural Network (ANN). These algorithms are optimized further, where several parameters of each algorithm are tested. The best result is achieved with the ANN. The final model yields an accuracy of 0.79, a precision of 0.80, a recall of 0.78, and an F1 score of 0.76. By removing three of the classes that created noise, the final algorithm is capable of reaching an accuracy of 94%.

Keywords: Artificial Neural network, Competitive dynamics, Logistic Regression, Text classification, Text mining

Procedia PDF Downloads 121
19814 Predicting Bridge Pier Scour Depth with SVM

Authors: Arun Goel

Abstract:

Prediction of maximum local scour is necessary for the safety and economical design of the bridges. A number of equations have been developed over the years to predict local scour depth using laboratory data and a few pier equations have also been proposed using field data. Most of these equations are empirical in nature as indicated by the past publications. In this paper, attempts have been made to compute local depth of scour around bridge pier in dimensional and non-dimensional form by using linear regression, simple regression and SVM (Poly and Rbf) techniques along with few conventional empirical equations. The outcome of this study suggests that the SVM (Poly and Rbf) based modeling can be employed as an alternate to linear regression, simple regression and the conventional empirical equations in predicting scour depth of bridge piers. The results of present study on the basis of non-dimensional form of bridge pier scour indicates the improvement in the performance of SVM (Poly and Rbf) in comparison to dimensional form of scour.

Keywords: modeling, pier scour, regression, prediction, SVM (Poly and Rbf kernels)

Procedia PDF Downloads 451
19813 Development of a Turbulent Boundary Layer Wall-pressure Fluctuations Power Spectrum Model Using a Stepwise Regression Algorithm

Authors: Zachary Huffman, Joana Rocha

Abstract:

Wall-pressure fluctuations induced by the turbulent boundary layer (TBL) developed over aircraft are a significant source of aircraft cabin noise. Since the power spectral density (PSD) of these pressure fluctuations is directly correlated with the amount of sound radiated into the cabin, the development of accurate empirical models that predict the PSD has been an important ongoing research topic. The sound emitted can be represented from the pressure fluctuations term in the Reynoldsaveraged Navier-Stokes equations (RANS). Therefore, early TBL empirical models (including those from Lowson, Robertson, Chase, and Howe) were primarily derived by simplifying and solving the RANS for pressure fluctuation and adding appropriate scales. Most subsequent models (including Goody, Efimtsov, Laganelli, Smol’yakov, and Rackl and Weston models) were derived by making modifications to these early models or by physical principles. Overall, these models have had varying levels of accuracy, but, in general, they are most accurate under the specific Reynolds and Mach numbers they were developed for, while being less accurate under other flow conditions. Despite this, recent research into the possibility of using alternative methods for deriving the models has been rather limited. More recent studies have demonstrated that an artificial neural network model was more accurate than traditional models and could be applied more generally, but the accuracy of other machine learning techniques has not been explored. In the current study, an original model is derived using a stepwise regression algorithm in the statistical programming language R, and TBL wall-pressure fluctuations PSD data gathered at the Carleton University wind tunnel. The theoretical advantage of a stepwise regression approach is that it will automatically filter out redundant or uncorrelated input variables (through the process of feature selection), and it is computationally faster than machine learning. The main disadvantage is the potential risk of overfitting. The accuracy of the developed model is assessed by comparing it to independently sourced datasets.

Keywords: aircraft noise, machine learning, power spectral density models, regression models, turbulent boundary layer wall-pressure fluctuations

Procedia PDF Downloads 135
19812 Structural and Electrical Properties of VO₂/ZnO Nanostructures

Authors: Sang-Wook Han, Zhenlan Jin, In-Hui Hwang, Chang-In Park

Abstract:

We examined structural and electrical properties of uniformly-oriented VO₂/ZnO nanostructures. VO₂ was deposited on ZnO templates by using a direct current-sputtering deposition. Scanning electron microscope and transmission electron microscope measurements indicated that b-oriented VO₂ were uniformly crystallized on ZnO templates with different lengths. VO₂/ZnO formed nanorods on ZnO nanorods with length longer than 250 nm. X-ray absorption fine structure at V K edge of VO₂/ZnO showed M1 and R phases of VO₂ at 30 and 100 ℃, respectively, suggesting structural phase transition between temperatures. Temperature-dependent resistance measurements of VO₂/ZnO nanostructures revealed metal-to-insulator transition at 65 ℃ and 55 ℃ during heating and cooling, respectively, regardless of ZnO length. The bond lengths of V-O and V-V pairs in VO₂/ZnO nanorods were somewhat distorted, and a substantial amount of structural disorder existed in the atomic pairs, compared to those of VO₂ films without ZnO. Resistance from VO₂/ZnO nanorods revealed a sharp MIT near 65 ℃ during heating and a hysteresis behavior. The resistance results suggest that microchannel for charge carriers exist nearly room temperature during cooling. VO₂/ZnO nanorods are quite stable and reproducible so that they can be widely used for practical applications to electronic devices, gas sensors, and ultra-fast switches, as examples.

Keywords: metal-to-insulator transition, VO₂, ZnO, XAFS, structural-phase transition

Procedia PDF Downloads 483
19811 Satellite LiDAR-Based Digital Terrain Model Correction using Gaussian Process Regression

Authors: Keisuke Takahata, Hiroshi Suetsugu

Abstract:

Forest height is an important parameter for forest biomass estimation, and precise elevation data is essential for accurate forest height estimation. There are several globally or nationally available digital elevation models (DEMs) like SRTM and ASTER. However, its accuracy is reported to be low particularly in mountainous areas where there are closed canopy or steep slope. Recently, space-borne LiDAR, such as the Global Ecosystem Dynamics Investigation (GEDI), have started to provide sparse but accurate ground elevation and canopy height estimates. Several studies have reported the high degree of accuracy in their elevation products on their exact footprints, while it is not clear how this sparse information can be used for wider area. In this study, we developed a digital terrain model correction algorithm by spatially interpolating the difference between existing DEMs and GEDI elevation products by using Gaussian Process (GP) regression model. The result shows that our GP-based methodology can reduce the mean bias of the elevation data from 3.7m to 0.3m when we use airborne LiDAR-derived elevation information as ground truth. Our algorithm is also capable of quantifying the elevation data uncertainty, which is critical requirement for biomass inventory. Upcoming satellite-LiDAR missions, like MOLI (Multi-footprint Observation Lidar and Imager), are expected to contribute to the more accurate digital terrain model generation.

Keywords: digital terrain model, satellite LiDAR, gaussian processes, uncertainty quantification

Procedia PDF Downloads 182
19810 Numerical Study of Laminar Natural Flow Transitions in Rectangular Cavity

Authors: Sabrina Nouri, Abderahmane Ghezal, Said Abboudi, Pierre Spiteri

Abstract:

This paper deals with the numerical study of heat and mass transfer of laminar flow transition at low Prandtl numbers. The model includes the two-directional momentum, the energy and mass transfer equations. These equations are discretized by the finite volume method and solved by a self-made simpler like Fortran code. The effect of governing parameters, namely the Lewis and Prandtl numbers, on the transition of the flow and solute distribution is studied for positive and negative thermal and solutal buoyancy forces ratio. Nusselt and Sherwood numbers are derived for of Prandtl [10⁻²-10¹] and Lewis numbers [1-10⁴]. The results show unicell and multi-cell flow. Solute and flow boundary layers appear for low Prandtl number.

Keywords: natural convection, low Prandtl number, heat and mass transfer, finite volume method

Procedia PDF Downloads 198
19809 Reminiscence Therapy for Alzheimer’s Disease Restrained on Logistic Regression Based Linear Bootstrap Aggregating

Authors: P. S. Jagadeesh Kumar, Mingmin Pan, Xianpei Li, Yanmin Yuan, Tracy Lin Huan

Abstract:

Researchers are doing enchanting research into the inherited features of Alzheimer’s disease and probable consistent therapies. In Alzheimer’s, memories are extinct in reverse order; memories formed lately are more transitory than those from formerly. Reminiscence therapy includes the conversation of past actions, trials and knowledges with another individual or set of people, frequently with the help of perceptible reminders such as photos, household and other acquainted matters from the past, music and collection of tapes. In this manuscript, the competence of reminiscence therapy for Alzheimer’s disease is measured using logistic regression based linear bootstrap aggregating. Logistic regression is used to envisage the experiential features of the patient’s memory through various therapies. Linear bootstrap aggregating shows better stability and accuracy of reminiscence therapy used in statistical classification and regression of memories related to validation therapy, supportive psychotherapy, sensory integration and simulated presence therapy.

Keywords: Alzheimer’s disease, linear bootstrap aggregating, logistic regression, reminiscence therapy

Procedia PDF Downloads 309
19808 SVM-Based Modeling of Mass Transfer Potential of Multiple Plunging Jets

Authors: Surinder Deswal, Mahesh Pal

Abstract:

The paper investigates the potential of support vector machines based regression approach to model the mass transfer capacity of multiple plunging jets, both vertical (θ = 90°) and inclined (θ = 60°). The data set used in this study consists of four input parameters with a total of eighty eight cases. For testing, tenfold cross validation was used. Correlation coefficient values of 0.971 and 0.981 (root mean square error values of 0.0025 and 0.0020) were achieved by using polynomial and radial basis kernel functions based support vector regression respectively. Results suggest an improved performance by radial basis function in comparison to polynomial kernel based support vector machines. The estimated overall mass transfer coefficient, by both the kernel functions, is in good agreement with actual experimental values (within a scatter of ±15 %); thereby suggesting the utility of support vector machines based regression approach.

Keywords: mass transfer, multiple plunging jets, support vector machines, ecological sciences

Procedia PDF Downloads 464
19807 Constitutional Transition and Criminal Justice: Proposals for Reform of Kenya’s Youth Justice System Based on Restorative Justice Principles

Authors: M. Wangai

Abstract:

Following the promulgation of a new Constitution of Kenya in 2010, wide-ranging proposals for reform of the criminal justice system have been made. Proposed measures include a clear and separate system of dealing with juvenile offenders with a greater focus on rehabilitation and reintegration. As part of a broader constitutional transition, this article considers the contribution of restorative justice to reforming the youth justice system. The paper analyses Kenya’s juvenile justice legal framework measured against current international trends in youth justice. It identifies the first post-independence juvenile justice system as a remnant of the colonial period and notes that the post-2001 system is a marked improvement. More recent legal and institutional efforts to incorporate restorative justice are also examined. The paper advocates further development of the juvenile justice system by mainstreaming of restorative justice principles through national level legislative amendments. International and comparative perspectives are used to inform a diversion centered model of restorative justice. In addition, a case is made for the use of existing forms of alternative dispute resolution. Conscious of a tense political climate, the paper also proposes strategies to address challenges posed by a punitive penal environment, chiefly the linking of restorative justice to wider democratic goals and community spirit. The article concludes that restorative justice led juvenile justice reform will contribute to better treatment of young offenders under the criminal justice system and has the potential to set a new precedent for fair, sustainable and effective justice. Further, as part of far-reaching criminal justice reform, the proposed efforts may strengthen democratic progress in Kenya’s ensuing phase of political transition.

Keywords: constitutional transition, criminal justice, restorative justice, young offenders

Procedia PDF Downloads 148
19806 Failure Mode Analysis of a Multiple Layer Explosion Bonded Cryogenic Transition Joint

Authors: Richard Colwell, Thomas Englert

Abstract:

In cryogenic liquefaction processes, brazed aluminum core heat exchangers are used to minimize surface area/volume of the exchanger. Aluminum alloy (5083-H321; UNS A95083) piping must transition to higher melting point 304L stainless steel piping outside of the heat exchanger kettle or cold box for safety reasons. Since aluminum alloys and austenitic stainless steel cannot be directly welded to together, a transition joint consisting of 5 layers of different metals explosively bonded are used. Failures of two of these joints resulted in process shut-down and loss of revenue. Failure analyses, FEA analysis, and mock-up testing were performed by multiple teams to gain a further understanding into the failure mechanisms involved.

Keywords: explosion bonding, intermetallic compound, thermal strain, titanium-nickel Interface

Procedia PDF Downloads 218
19805 On Improving Breast Cancer Prediction Using GRNN-CP

Authors: Kefaya Qaddoum

Abstract:

The aim of this study is to predict breast cancer and to construct a supportive model that will stimulate a more reliable prediction as a factor that is fundamental for public health. In this study, we utilize general regression neural networks (GRNN) to replace the normal predictions with prediction periods to achieve a reasonable percentage of confidence. The mechanism employed here utilises a machine learning system called conformal prediction (CP), in order to assign consistent confidence measures to predictions, which are combined with GRNN. We apply the resulting algorithm to the problem of breast cancer diagnosis. The results show that the prediction constructed by this method is reasonable and could be useful in practice.

Keywords: neural network, conformal prediction, cancer classification, regression

Procedia PDF Downloads 291
19804 Enhancement of Mechanical and Biological Properties in Wollastonite Bioceramics by MgSiO3 Addition

Authors: Jae Hong Kim, Sang Cheol Um, Jong Kook Lee

Abstract:

Strong and biocompatible wollastonite (CaSiO3) was fabricated by pressureless sintering at temperature range of 1250~ 1300 ℃ and phase transition of to β-wollastonite with an addition of MgSiO3. Starting pure α-wollastonite powder were prepared by solid state reaction, and MgSiO3 powder was added to α-wollastonite powder to induce the phase transition α to β-wollastonite over 1250℃. Sintered wollastonite samples at 1250℃ with 5 and 10 wt% MgSiO3 were α+β phase and β phase respectively, and showed higher densification rate than that of α or β-wollastonite, which are almost the same as the theoretical density. Hardness and Young’s modulus of sintered wollastonite were dependent on the apparent density and the amount of β-wollastonite. Young’s modulus (78GPa) of β-wollastonite added 10 wt% MgSiO3 was almost double time of sintered α-wollastonite. From the in-vitro test, biphasic (α+β) wollastonite with 5wt% MgSiO3 addition had good bioactivity in simulated body fluid solution.

Keywords: β-wollastonite, high density, MgSiO3, phase transition

Procedia PDF Downloads 581
19803 Development of Computational Approach for Calculation of Hydrogen Solubility in Hydrocarbons for Treatment of Petroleum

Authors: Abdulrahman Sumayli, Saad M. AlShahrani

Abstract:

For the hydrogenation process, knowing the solubility of hydrogen (H2) in hydrocarbons is critical to improve the efficiency of the process. We investigated the H2 solubility computation in four heavy crude oil feedstocks using machine learning techniques. Temperature, pressure, and feedstock type were considered as the inputs to the models, while the hydrogen solubility was the sole response. Specifically, we employed three different models: Support Vector Regression (SVR), Gaussian process regression (GPR), and Bayesian ridge regression (BRR). To achieve the best performance, the hyper-parameters of these models are optimized using the whale optimization algorithm (WOA). We evaluated the models using a dataset of solubility measurements in various feedstocks, and we compared their performance based on several metrics. Our results show that the WOA-SVR model tuned with WOA achieves the best performance overall, with an RMSE of 1.38 × 10− 2 and an R-squared of 0.991. These findings suggest that machine learning techniques can provide accurate predictions of hydrogen solubility in different feedstocks, which could be useful in the development of hydrogen-related technologies. Besides, the solubility of hydrogen in the four heavy oil fractions is estimated in different ranges of temperatures and pressures of 150 ◦C–350 ◦C and 1.2 MPa–10.8 MPa, respectively

Keywords: temperature, pressure variations, machine learning, oil treatment

Procedia PDF Downloads 69
19802 Machine Vision System for Measuring the Quality of Bulk Sun-dried Organic Raisins

Authors: Navab Karimi, Tohid Alizadeh

Abstract:

An intelligent vision-based system was designed to measure the quality and purity of raisins. A machine vision setup was utilized to capture the images of bulk raisins in ranges of 5-50% mixed pure-impure berries. The textural features of bulk raisins were extracted using Grey-level Histograms, Co-occurrence Matrix, and Local Binary Pattern (a total of 108 features). Genetic Algorithm and neural network regression were used for selecting and ranking the best features (21 features). As a result, the GLCM features set was found to have the highest accuracy (92.4%) among the other sets. Followingly, multiple feature combinations of the previous stage were fed into the second regression (linear regression) to increase accuracy, wherein a combination of 16 features was found to be the optimum. Finally, a Support Vector Machine (SVM) classifier was used to differentiate the mixtures, producing the best efficiency and accuracy of 96.2% and 97.35%, respectively.

Keywords: sun-dried organic raisin, genetic algorithm, feature extraction, ann regression, linear regression, support vector machine, south azerbaijan.

Procedia PDF Downloads 73
19801 Local Interpretable Model-agnostic Explanations (LIME) Approach to Email Spam Detection

Authors: Rohini Hariharan, Yazhini R., Blessy Maria Mathew

Abstract:

The task of detecting email spam is a very important one in the era of digital technology that needs effective ways of curbing unwanted messages. This paper presents an approach aimed at making email spam categorization algorithms transparent, reliable and more trustworthy by incorporating Local Interpretable Model-agnostic Explanations (LIME). Our technique assists in providing interpretable explanations for specific classifications of emails to help users understand the decision-making process by the model. In this study, we developed a complete pipeline that incorporates LIME into the spam classification framework and allows creating simplified, interpretable models tailored to individual emails. LIME identifies influential terms, pointing out key elements that drive classification results, thus reducing opacity inherent in conventional machine learning models. Additionally, we suggest a visualization scheme for displaying keywords that will improve understanding of categorization decisions by users. We test our method on a diverse email dataset and compare its performance with various baseline models, such as Gaussian Naive Bayes, Multinomial Naive Bayes, Bernoulli Naive Bayes, Support Vector Classifier, K-Nearest Neighbors, Decision Tree, and Logistic Regression. Our testing results show that our model surpasses all other models, achieving an accuracy of 96.59% and a precision of 99.12%.

Keywords: text classification, LIME (local interpretable model-agnostic explanations), stemming, tokenization, logistic regression.

Procedia PDF Downloads 47
19800 Investigation on the Structure of Temperature-Responsive N-isopropylacrylamide Microgels Containing a New Hydrophobic Crosslinker

Authors: G. Roshan Deen, J. S. Pedersen

Abstract:

Temperature-responsive poly(N-isopropyl acrylamide) PNIPAM microgels crosslinked with a new hydrophobic chemical crosslinker was prepared by surfactant-mediated precipitation emulsion polymerization. The temperature-responsive property of the microgel and the influence of the crosslinker on the swelling behaviour was studied systematically by light scattering and small-angle X-ray scattering (SAXS). The radius of gyration (Rg) and the hydrodynamic radius (Rh) of the microgels decreased with increase in temperature due to the volume phase transition from a swollen to a collapsed state. The ratio of Rg/Rh below the transition temperature was lower than that of hard-spheres due to the lower crosslinking density of the microgels. The SAXS data was analysed by a model in which the microgels were modelled as core-shell particles with a graded interface. The model at intermediate temperatures included a central core and a more diffuse outer layer describing pending polymer chains with a low crosslinking density. In the fully swollen state, the microgels were modelled with a single component with a broad graded surface. In the collapsed state they were modelled as homogeneous and relatively compact particles. The polymer volume fraction inside the microgel was also derived based on the model and was found to increase with increase in temperature as a result of collapse of the microgel to compact particles. The polymer volume fraction in the core of the microgel in the collapsed state was about 60% which is higher than that of similar microgels crosslinked with hydrophilic and flexible cross-linkers.

Keywords: microgels, SAXS, hydrophobic crosslinker, light scattering

Procedia PDF Downloads 427
19799 Comparison of Applicability of Time Series Forecasting Models VAR, ARCH and ARMA in Management Science: Study Based on Empirical Analysis of Time Series Techniques

Authors: Muhammad Tariq, Hammad Tahir, Fawwad Mahmood Butt

Abstract:

Purpose: This study attempts to examine the best forecasting methodologies in the time series. The time series forecasting models such as VAR, ARCH and the ARMA are considered for the analysis. Methodology: The Bench Marks or the parameters such as Adjusted R square, F-stats, Durban Watson, and Direction of the roots have been critically and empirically analyzed. The empirical analysis consists of time series data of Consumer Price Index and Closing Stock Price. Findings: The results show that the VAR model performed better in comparison to other models. Both the reliability and significance of VAR model is highly appreciable. In contrary to it, the ARCH model showed very poor results for forecasting. However, the results of ARMA model appeared double standards i.e. the AR roots showed that model is stationary and that of MA roots showed that the model is invertible. Therefore, the forecasting would remain doubtful if it made on the bases of ARMA model. It has been concluded that VAR model provides best forecasting results. Practical Implications: This paper provides empirical evidences for the application of time series forecasting model. This paper therefore provides the base for the application of best time series forecasting model.

Keywords: forecasting, time series, auto regression, ARCH, ARMA

Procedia PDF Downloads 348
19798 Effect of Yttrium Doping on Properties of Bi2Sr1.9Ca0.1-xYxCu2O7+δ (Bi-2202) Cuprate Ceramics

Authors: Y. Boudjadja, A. Amira, A. Saoudel, A. Varilci, S. P. Altintas, C. Terzioglu

Abstract:

In this work, we report the effect of Y3+ doping on structural, mechanical and electrical properties of Bi-2202 phase. Samples of Bi2Sr1.9Ca0.1-xYxCu2O7+δ with x = 0, 0.025, 0.05, 0.075 and 0.1 are elaborated in air by conventional solid state reaction and characterized by X-Ray Diffraction (XRD), Scanning Electronic Microscopy (SEM) combined with EDS spectroscopy, density, Vickers micro-hardness and resistivity measurements. A good correlation between the variations of the bulk density and the Vickers micro-hardness with doping is obtained. The SEM photograph shows that the samples are composed of grains with a flat shape that characterizes the Bi-based cuprates. Quantitative EDS analysis confirms the reduction of Ca content and the increase of Y content when x is increased. The variation of resistivity with temperature shows that only samples with x = 0, 0.025 and 0.05 present an onset transition to the superconducting state. The higher onset transition temperature is obtained for x = 0.025 and is about 93.62 K. The transition is wide and is realized in two steps confirming then the presence of the low Tc Bi-2201 phase in the samples. For x = 0.075 and 0.1, a transition to a semiconducting state is seen at low temperatures. Some physical parameters are extracted from these curves and discussed.

Keywords: Bi-2202 phase, doping, structure, mechanical and electrical properties

Procedia PDF Downloads 323
19797 Comprehensive Machine Learning-Based Glucose Sensing from Near-Infrared Spectra

Authors: Bitewulign Mekonnen

Abstract:

Context: This scientific paper focuses on the use of near-infrared (NIR) spectroscopy to determine glucose concentration in aqueous solutions accurately and rapidly. The study compares six different machine learning methods for predicting glucose concentration and also explores the development of a deep learning model for classifying NIR spectra. The objective is to optimize the detection model and improve the accuracy of glucose prediction. This research is important because it provides a comprehensive analysis of various machine-learning techniques for estimating aqueous glucose concentrations. Research Aim: The aim of this study is to compare and evaluate different machine-learning methods for predicting glucose concentration from NIR spectra. Additionally, the study aims to develop and assess a deep-learning model for classifying NIR spectra. Methodology: The research methodology involves the use of machine learning and deep learning techniques. Six machine learning regression models, including support vector machine regression, partial least squares regression, extra tree regression, random forest regression, extreme gradient boosting, and principal component analysis-neural network, are employed to predict glucose concentration. The NIR spectra data is randomly divided into train and test sets, and the process is repeated ten times to increase generalization ability. In addition, a convolutional neural network is developed for classifying NIR spectra. Findings: The study reveals that the SVMR, ETR, and PCA-NN models exhibit excellent performance in predicting glucose concentration, with correlation coefficients (R) > 0.99 and determination coefficients (R²)> 0.985. The deep learning model achieves high macro-averaging scores for precision, recall, and F1-measure. These findings demonstrate the effectiveness of machine learning and deep learning methods in optimizing the detection model and improving glucose prediction accuracy. Theoretical Importance: This research contributes to the field by providing a comprehensive analysis of various machine-learning techniques for estimating glucose concentrations from NIR spectra. It also explores the use of deep learning for the classification of indistinguishable NIR spectra. The findings highlight the potential of machine learning and deep learning in enhancing the prediction accuracy of glucose-relevant features. Data Collection and Analysis Procedures: The NIR spectra and corresponding references for glucose concentration are measured in increments of 20 mg/dl. The data is randomly divided into train and test sets, and the models are evaluated using regression analysis and classification metrics. The performance of each model is assessed based on correlation coefficients, determination coefficients, precision, recall, and F1-measure. Question Addressed: The study addresses the question of whether machine learning and deep learning methods can optimize the detection model and improve the accuracy of glucose prediction from NIR spectra. Conclusion: The research demonstrates that machine learning and deep learning methods can effectively predict glucose concentration from NIR spectra. The SVMR, ETR, and PCA-NN models exhibit superior performance, while the deep learning model achieves high classification scores. These findings suggest that machine learning and deep learning techniques can be used to improve the prediction accuracy of glucose-relevant features. Further research is needed to explore their clinical utility in analyzing complex matrices, such as blood glucose levels.

Keywords: machine learning, signal processing, near-infrared spectroscopy, support vector machine, neural network

Procedia PDF Downloads 94
19796 An Analysis of The Philippines' Legal Transition from Open Dumpsites to Solid Waste Management Facilities

Authors: Mary Elenor Adagio, John Roben Ambas, Ramilyn Bertolano, Julie Ann Garcia

Abstract:

Ecological Solid Waste Management has been a long-time concern in both national and international spheres. The exponential growth of waste generation is not properly matched with a waste management system that is cost-effective. As a result, governments and their communities within inevitably resort to the old ways of opening dumpsites to serve as a giant garbage bin. However, due to the environmental and public health problems these unmanaged dumpsites caused, countries like the Philippines mandated the closure of these dumpsites and converted them into or opened new sanitary landfills. This study aims to determine how the transition from open dumpsites to Solid Waste Management Facilities improve the implementation of the Solid Waste Management Framework of the government pursuant to Republic Act 9003. To test the hypothesis that the mandatory closure of dumpsites is better in the management of wastes in local government units, a review of related literature on analysis reports, news, and case studies was conducted. The results suggest that advocating for the transition of dumpsites to sanitary landfills would not only prevent environmental risks caused by pollution but also reduce problems regarding public health. Although this transition can be effective, data also show that with a lack of funding and resources, many local government units still find it difficult to provide their solid waste management plans and to adapt to the transition to sanitary landfills.

Keywords: solid waste management, environmental law, solid waste management facilities, open dumpsites

Procedia PDF Downloads 157
19795 Photon-Electron Interaction in the Different Medium

Authors: Vahid Borji

Abstract:

The interaction between photons and particles is a common phenomenon in nature that is discussed in order to obtain information about the environment and the conditions governing the phenomena. In the astrophysics, like others, we study these interactions to get useful knowledge and can be predict aftercoming events. One of the events is the transition of photon beam through medium with special conditions, like shocked medium. In our discussion, we have studied this situation and obtained results for different conditions that transition of photon depends on the energy of photon and distributions of electrons in medium.

Keywords: cross section, astrophysics, GRB, photon

Procedia PDF Downloads 89
19794 Identification and Classification of Stakeholders in the Transition to 3D Cadastre

Authors: Qiaowen Lin

Abstract:

The 3D cadastre is an inevitable choice to meet the needs of real cadastral management. Nowadays, more attention is given to the technical aspects of 3D cadastre, resulting in the imbalance within this field. To fulfill this research gap, the stakeholder, which has been regarded as the determining factor in cadastral change has been studied. Delphi method, Michael rating, and stakeholder mapping are used to identify and classify the stakeholders in 3D cadastre. It is concluded that the project managers should pay more attention to the interesting appeal of the key stakeholders and different coping strategies should be adopted to facilitate the transition to 3D cadastre.

Keywords: stakeholders, three dimension, cadastre, transtion

Procedia PDF Downloads 290
19793 Loan Repayment Prediction Using Machine Learning: Model Development, Django Web Integration and Cloud Deployment

Authors: Seun Mayowa Sunday

Abstract:

Loan prediction is one of the most significant and recognised fields of research in the banking, insurance, and the financial security industries. Some prediction systems on the market include the construction of static software. However, due to the fact that static software only operates with strictly regulated rules, they cannot aid customers beyond these limitations. Application of many machine learning (ML) techniques are required for loan prediction. Four separate machine learning models, random forest (RF), decision tree (DT), k-nearest neighbour (KNN), and logistic regression, are used to create the loan prediction model. Using the anaconda navigator and the required machine learning (ML) libraries, models are created and evaluated using the appropriate measuring metrics. From the finding, the random forest performs with the highest accuracy of 80.17% which was later implemented into the Django framework. For real-time testing, the web application is deployed on the Alibabacloud which is among the top 4 biggest cloud computing provider. Hence, to the best of our knowledge, this research will serve as the first academic paper which combines the model development and the Django framework, with the deployment into the Alibaba cloud computing application.

Keywords: k-nearest neighbor, random forest, logistic regression, decision tree, django, cloud computing, alibaba cloud

Procedia PDF Downloads 135
19792 Count Regression Modelling on Number of Migrants in Households

Authors: Tsedeke Lambore Gemecho, Ayele Taye Goshu

Abstract:

The main objective of this study is to identify the determinants of the number of international migrants in a household and to compare regression models for count response. This study is done by collecting data from total of 2288 household heads of 16 randomly sampled districts in Hadiya and Kembata-Tembaro zones of Southern Ethiopia. The Poisson mixed models, as special cases of the generalized linear mixed model, is explored to determine effects of the predictors: age of household head, farm land size, and household size. Two ethnicities Hadiya and Kembata are included in the final model as dummy variables. Stepwise variable selection has indentified four predictors: age of head, farm land size, family size and dummy variable ethnic2 (0=other, 1=Kembata). These predictors are significant at 5% significance level with count response number of migrant. The Poisson mixed model consisting of the four predictors with random effects districts. Area specific random effects are significant with the variance of about 0.5105 and standard deviation of 0.7145. The results show that the number of migrant increases with heads age, family size, and farm land size. In conclusion, there is a significantly high number of international migration per household in the area. Age of household head, family size, and farm land size are determinants that increase the number of international migrant in households. Community-based intervention is needed so as to monitor and regulate the international migration for the benefits of the society.

Keywords: Poisson regression, GLM, number of migrant, Hadiya and Kembata Tembaro zones

Procedia PDF Downloads 283
19791 Solid-State Synthesis Approach and Optical study of Red Emitting Phosphors Li₃BaSrxCa₁₋ₓEu₂.₇Gd₀.₃(MoO₄)₈ for White LEDs

Authors: Priyansha Sharma, Sibani Mund, Sivakumar Vaidyanathan

Abstract:

Solid-state synthesis methods were used for the synthesis of pure red emissive Li¬3BaSrxCa(1-x)Eu2.7Gd0.3(MoO4)8 (x = 0.0 to 1.0) phosphors, XRD, SEM, and FTIR spectra were used to characterize the materials, and their optical properties were thoroughly investigated. PL studies were examined at different excitations 230 nm, 275nm, 465nm, and 395 nm. All the spectra show similar emissions with the highest transition at 616 nm due to ED transition. The given phosphor Li¬3BaSr0.25Ca0.75Eu2.7Gd0.3(MoO4)8 shows the highest intensity and is thus chosen for the temperature-dependent and Quantum yield study. According to the PL investigation, the phosphor-containing Eu3+ emits red light due to the (5D0 7F2) transition. The excitation analysis shows that all of the Eu3+ activated phosphors exhibited broad absorption due to the charge transfer band, O2-Mo6+, O2-Eu3+ transition, as well as narrow absorption bands related to the Eu3+ ion's 4f-4f electronic transition. Excitation spectra show Charge transfer band at 275 nm shows the highest intensity. The primary band in the spectra refers to Eu3+ ions occupying the lattice's non-centrosymmetric location. All of the compositions are monoclinic crystal structures with space group C2/c and match with reference powder patterns. The thermal stability of the 3BaSr0.25Ca0.75Eu2.7Gd0.3(MoO4)8 phosphor was investigated at (300 k- 500 K) as well as at low temperature from (20 K to 275 K) to be utilized for red and white LED fabrication. The Decay Lifetime of all the phosphor was measured. The best phosphor was used for White and Red LED fabrication.

Keywords: PL, phosphor, quantum yield, white LED

Procedia PDF Downloads 74
19790 Determining the Causality Variables in Female Genital Mutilation: A Factor Screening Approach

Authors: Ekele Alih, Enejo Jalija

Abstract:

Female Genital Mutilation (FGM) is made up of three types namely: Clitoridectomy, Excision and Infibulation. In this study, we examine the factors responsible for FGM in order to identify the causality variables in a logistic regression approach. From the result of the survey conducted by the Public Health Division, Nigeria Institute of Medical Research, Yaba, Lagos State, the tau statistic, τ was used to screen 9 factors that causes FGM in order to select few of the predictors before multiple regression equation is obtained. The need for this may be that the sample size may not be able to sustain having a regression with all the predictors or to avoid multi-collinearity. A total of 300 respondents, comprising 150 adult males and 150 adult females were selected for the household survey based on the multi-stage sampling procedure. The tau statistic,

Keywords: female genital mutilation, logistic regression, tau statistic, African society

Procedia PDF Downloads 261