Search results for: short text classification
5883 Air Classification of Dust from Steel Converter Secondary De-dusting for Zinc Enrichment
Authors: C. Lanzerstorfer
Abstract:
The off-gas from the basic oxygen furnace (BOF), where pig iron is converted into steel, is treated in the primary ventilation system. This system is in full operation only during oxygen-blowing when the BOF converter vessel is in a vertical position. When pig iron and scrap are charged into the BOF and when slag or steel are tapped, the vessel is tilted. The generated emissions during charging and tapping cannot be captured by the primary off-gas system. To capture these emissions, a secondary ventilation system is usually installed. The emissions are captured by a canopy hood installed just above the converter mouth in tilted position. The aim of this study was to investigate the dependence of Zn and other components on the particle size of BOF secondary ventilation dust. Because of the high temperature of the BOF process it can be expected that Zn will be enriched in the fine dust fractions. If Zn is enriched in the fine fractions, classification could be applied to split the dust into two size fractions with a different content of Zn. For this air classification experiments with dust from the secondary ventilation system of a BOF were performed. The results show that Zn and Pb are highly enriched in the finest dust fraction. For Cd, Cu and Sb the enrichment is less. In contrast, the non-volatile metals Al, Fe, Mn and Ti were depleted in the fine fractions. Thus, air classification could be considered for the treatment of dust from secondary BOF off-gas cleaning.Keywords: air classification, converter dust, recycling, zinc
Procedia PDF Downloads 4255882 Colored Image Classification Using Quantum Convolutional Neural Networks Approach
Authors: Farina Riaz, Shahab Abdulla, Srinjoy Ganguly, Hajime Suzuki, Ravinesh C. Deo, Susan Hopkins
Abstract:
Recently, quantum machine learning has received significant attention. For various types of data, including text and images, numerous quantum machine learning (QML) models have been created and are being tested. Images are exceedingly complex data components that demand more processing power. Despite being mature, classical machine learning still has difficulties with big data applications. Furthermore, quantum technology has revolutionized how machine learning is thought of, by employing quantum features to address optimization issues. Since quantum hardware is currently extremely noisy, it is not practicable to run machine learning algorithms on it without risking the production of inaccurate results. To discover the advantages of quantum versus classical approaches, this research has concentrated on colored image data. Deep learning classification models are currently being created on Quantum platforms, but they are still in a very early stage. Black and white benchmark image datasets like MNIST and Fashion MINIST have been used in recent research. MNIST and CIFAR-10 were compared for binary classification, but the comparison showed that MNIST performed more accurately than colored CIFAR-10. This research will evaluate the performance of the QML algorithm on the colored benchmark dataset CIFAR-10 to advance QML's real-time applicability. However, deep learning classification models have not been developed to compare colored images like Quantum Convolutional Neural Network (QCNN) to determine how much it is better to classical. Only a few models, such as quantum variational circuits, take colored images. The methodology adopted in this research is a hybrid approach by using penny lane as a simulator. To process the 10 classes of CIFAR-10, the image data has been translated into grey scale and the 28 × 28-pixel image containing 10,000 test and 50,000 training images were used. The objective of this work is to determine how much the quantum approach can outperform a classical approach for a comprehensive dataset of color images. After pre-processing 50,000 images from a classical computer, the QCNN model adopted a hybrid method and encoded the images into a quantum simulator for feature extraction using quantum gate rotations. The measurements were carried out on the classical computer after the rotations were applied. According to the results, we note that the QCNN approach is ~12% more effective than the traditional classical CNN approaches and it is possible that applying data augmentation may increase the accuracy. This study has demonstrated that quantum machine and deep learning models can be relatively superior to the classical machine learning approaches in terms of their processing speed and accuracy when used to perform classification on colored classes.Keywords: CIFAR-10, quantum convolutional neural networks, quantum deep learning, quantum machine learning
Procedia PDF Downloads 1305881 3D Reconstruction of Human Body Based on Gender Classification
Authors: Jiahe Liu, Hongyang Yu, Feng Qian, Miao Luo
Abstract:
SMPL-X was a powerful parametric human body model that included male, neutral, and female models, with significant gender differences between these three models. During the process of 3D human body reconstruction, the correct selection of standard templates was crucial for obtaining accurate results. To address this issue, we developed an efficient gender classification algorithm to automatically select the appropriate template for 3D human body reconstruction. The key to this gender classification algorithm was the precise analysis of human body features. By using the SMPL-X model, the algorithm could detect and identify gender features of the human body, thereby determining which standard template should be used. The accuracy of this algorithm made the 3D reconstruction process more accurate and reliable, as it could adjust model parameters based on individual gender differences. SMPL-X and the related gender classification algorithm have brought important advancements to the field of 3D human body reconstruction. By accurately selecting standard templates, they have improved the accuracy of reconstruction and have broad potential in various application fields. These technologies continue to drive the development of the 3D reconstruction field, providing us with more realistic and accurate human body models.Keywords: gender classification, joint detection, SMPL-X, 3D reconstruction
Procedia PDF Downloads 705880 Hindi Speech Synthesis by Concatenation of Recognized Hand Written Devnagri Script Using Support Vector Machines Classifier
Authors: Saurabh Farkya, Govinda Surampudi
Abstract:
Optical Character Recognition is one of the current major research areas. This paper is focussed on recognition of Devanagari script and its sound generation. This Paper consists of two parts. First, Optical Character Recognition of Devnagari handwritten Script. Second, speech synthesis of the recognized text. This paper shows an implementation of support vector machines for the purpose of Devnagari Script recognition. The Support Vector Machines was trained with Multi Domain features; Transform Domain and Spatial Domain or Structural Domain feature. Transform Domain includes the wavelet feature of the character. Structural Domain consists of Distance Profile feature and Gradient feature. The Segmentation of the text document has been done in 3 levels-Line Segmentation, Word Segmentation, and Character Segmentation. The pre-processing of the characters has been done with the help of various Morphological operations-Otsu's Algorithm, Erosion, Dilation, Filtration and Thinning techniques. The Algorithm was tested on the self-prepared database, a collection of various handwriting. Further, Unicode was used to convert recognized Devnagari text into understandable computer document. The document so obtained is an array of codes which was used to generate digitized text and to synthesize Hindi speech. Phonemes from the self-prepared database were used to generate the speech of the scanned document using concatenation technique.Keywords: Character Recognition (OCR), Text to Speech (TTS), Support Vector Machines (SVM), Library of Support Vector Machines (LIBSVM)
Procedia PDF Downloads 5005879 Satellite Imagery Classification Based on Deep Convolution Network
Authors: Zhong Ma, Zhuping Wang, Congxin Liu, Xiangzeng Liu
Abstract:
Satellite imagery classification is a challenging problem with many practical applications. In this paper, we designed a deep convolution neural network (DCNN) to classify the satellite imagery. The contributions of this paper are twofold — First, to cope with the large-scale variance in the satellite image, we introduced the inception module, which has multiple filters with different size at the same level, as the building block to build our DCNN model. Second, we proposed a genetic algorithm based method to efficiently search the best hyper-parameters of the DCNN in a large search space. The proposed method is evaluated on the benchmark database. The results of the proposed hyper-parameters search method show it will guide the search towards better regions of the parameter space. Based on the found hyper-parameters, we built our DCNN models, and evaluated its performance on satellite imagery classification, the results show the classification accuracy of proposed models outperform the state of the art method.Keywords: satellite imagery classification, deep convolution network, genetic algorithm, hyper-parameter optimization
Procedia PDF Downloads 3025878 The Role of Inventory Classification in Supply Chain Responsiveness in a Build-to-Order and Build-To-Forecast Manufacturing Environment: A Comparative Analysis
Authors: Qamar Iqbal
Abstract:
Companies strive to improve their forecasting methods to predict the fluctuations in customer demand. These fluctuation and variation in demand affect the manufacturing operations and can limit a company’s ability to fulfill customer demand on time. Companies keep the inventory buffer and maintain the stocking levels to reduce the impact of demand variation. A mid-size company deals with thousands of stock keeping units (skus). It is neither easy and nor efficient to control and manage each sku. Inventory classification provides a tool to the management to increase their ability to support customer demand. The paper presents a framework that shows how inventory classification can play a role to increase supply chain responsiveness. A case study will be presented to further elaborate the method both for build-to-order and build-to-forecast manufacturing environments. Results will be compared that will show which manufacturing setting has advantage over another under different circumstances. The outcome of this study is very useful to the management because this will give them an insight on how inventory classification can be used to increase their ability to respond to changing customer needs.Keywords: inventory classification, supply chain responsiveness, forecast, manufacturing environment
Procedia PDF Downloads 5955877 On the Cyclic Property of Groups of Prime Order
Authors: Ying Yi Wu
Abstract:
The study of finite groups is a central topic in algebraic structures, and one of the most fundamental questions in this field is the classification of finite groups up to isomorphism. In this paper, we investigate the cyclic property of groups of prime order, which is a crucial result in the classification of finite abelian groups. We prove the following statement: If p is a prime, then every group G of order p is cyclic. Our proof utilizes the properties of group actions and the class equation, which provide a powerful tool for studying the structure of finite groups. In particular, we first show that any non-identity element of G generates a cyclic subgroup of G. Then, we establish the existence of an element of order p, which implies that G is generated by a single element. Finally, we demonstrate that any two generators of G are conjugate, which shows that G is a cyclic group. Our result has significant implications in the classification of finite groups, as it implies that any group of prime order is isomorphic to the cyclic group of the same order. Moreover, it provides a useful tool for understanding the structure of more complicated finite groups, as any finite abelian group can be decomposed into a direct product of cyclic groups. Our proof technique can also be extended to other areas of group theory, such as the classification of finite p-groups, where p is a prime. Therefore, our work has implications beyond the specific result we prove and can contribute to further research in algebraic structures.Keywords: group theory, finite groups, cyclic groups, prime order, classification.
Procedia PDF Downloads 855876 Sentiment Analysis on the East Timor Accession Process to the ASEAN
Authors: Marcelino Caetano Noronha, Vosco Pereira, Jose Soares Pinto, Ferdinando Da C. Saores
Abstract:
One particularly popular social media platform is Youtube. It’s a video-sharing platform where users can submit videos, and other users can like, dislike or comment on the videos. In this study, we conduct a binary classification task on YouTube’s video comments and review from the users regarding the accession process of Timor Leste to become the eleventh member of the Association of South East Asian Nations (ASEAN). We scrape the data directly from the public YouTube video and apply several pre-processing and weighting techniques. Before conducting the classification, we categorized the data into two classes, namely positive and negative. In the classification part, we apply Support Vector Machine (SVM) algorithm. By comparing with Naïve Bayes Algorithm, the experiment showed SVM achieved 84.1% of Accuracy, 94.5% of Precision, and Recall 73.8% simultaneously.Keywords: classification, YouTube, sentiment analysis, support sector machine
Procedia PDF Downloads 1105875 On the Network Packet Loss Tolerance of SVM Based Activity Recognition
Authors: Gamze Uslu, Sebnem Baydere, Alper K. Demir
Abstract:
In this study, data loss tolerance of Support Vector Machines (SVM) based activity recognition model and multi activity classification performance when data are received over a lossy wireless sensor network is examined. Initially, the classification algorithm we use is evaluated in terms of resilience to random data loss with 3D acceleration sensor data for sitting, lying, walking and standing actions. The results show that the proposed classification method can recognize these activities successfully despite high data loss. Secondly, the effect of differentiated quality of service performance on activity recognition success is measured with activity data acquired from a multi hop wireless sensor network, which introduces high data loss. The effect of number of nodes on the reliability and multi activity classification success is demonstrated in simulation environment. To the best of our knowledge, the effect of data loss in a wireless sensor network on activity detection success rate of an SVM based classification algorithm has not been studied before.Keywords: activity recognition, support vector machines, acceleration sensor, wireless sensor networks, packet loss
Procedia PDF Downloads 4775874 Transient Voltage Distribution on the Single Phase Transmission Line under Short Circuit Fault Effect
Authors: A. Kojah, A. Nacaroğlu
Abstract:
Single phase transmission lines are used to transfer data or energy between two users. Transient conditions such as switching operations and short circuit faults cause the generation of the fluctuation on the waveform to be transmitted. Spatial voltage distribution on the single phase transmission line may change owing to the position and duration of the short circuit fault in the system. In this paper, the state space representation of the single phase transmission line for short circuit fault and for various types of terminations is given. Since the transmission line is modeled in time domain using distributed parametric elements, the mathematical representation of the event is given in state space (time domain) differential equation form. It also makes easy to solve the problem because of the time and space dependent characteristics of the voltage variations on the distributed parametrically modeled transmission line.Keywords: energy transmission, transient effects, transmission line, transient voltage, RLC short circuit, single phase
Procedia PDF Downloads 2235873 Protection of the Valves against AC Faults Using the Fast-Acting HVDC Controls
Authors: Mesbah Tarek, Kelaiaia Samia, Chiheb Sofien, Kelaiaia Mounia Samira, Labar Hocine
Abstract:
Short circuit causes important damage in power systems. The aim of this paper is the investigation of the effect of short circuit at the AC side inverter in HVDC transmission line. The cutoff of HVDC transmission line implies important economic losses. In this paper it is proposed an efficient procedure which can protect and eliminate the fault quickly. The theoretical development and simulation are well detailed and illustrated.Keywords: AC inverter, HVDC, short circuit, switcher gate, power system
Procedia PDF Downloads 5635872 A Study on Information Structure in the Vajrachedika-Prajna-paramita Sutra and Translation Aspect
Authors: Yoon-Cheol Park
Abstract:
This research focuses on examining the information structures in the old Chinese character-Korean translation of the Vajrachedika-prajna-paramita sutra. The background of this research comes from the fact that there were no previous researches which looked into the information structures in the target text of the Vajrachedika-prajna-paramita sutra by now. The existing researches on the Buddhist scripture translation mainly put weight on message conveyance by literal and semantic translation methods. But the message conveyance from one language to another has a necessity to be delivered with equivalent information structure. Thus, this research is intended to investigate on the flow of old and new information in the target text of Buddhist scripture, compared with source text. The Vajrachedika-prajna-paramita sutra unlike other Buddhist scriptures is composed of conversational structures between Buddha and his disciple, Suboli. This implies that the information flow can be changed by utterance context and some propositions. So, this research tries to analyze the flow of old and new information within the source and target text. As a result of analysis, this research can discover the following facts; firstly, there are the differences of the information flow in the message conveyance between the old Chinese character and Korean by language features. The old Chinese character reveals that old-new information flow is developed, while Korean indicates new-old information flow because of word order. Secondly, the source text of the Vajrachedika-prajna-paramita sutra includes abstruse terminologies, jargon and abstract words. These make influence on the target text and cause the change of the information flow. But the repetitive expressions of these words provide the old information in the target text. Lastly, the Vajrachedika-prajna-paramita sutra offers the expository structure from conversations between Buddha and Suboli. It means that the information flow is developed in the way of explaining specific subjects and of paraphrasing unfamiliar phrases and expressions. From the results of analysis above, this research can verify that the information structures in the target text of the Vajrachedika-prajna-paramita sutra are changed by specific subjects and terminologies, developed with the new-old information flow by repetitive expressions or word order and reveal the information structures familiar to target culture. It also implies that the translation of the Vajrachedika-prajna-paramita sutra as a religious book needs the message conveyance to take into account the information structures of two languages.Keywords: abstruse terminologies, the information structure, new and old information, old Chinese character-Korean translation
Procedia PDF Downloads 3695871 Contextual Distribution for Textual Alignment
Authors: Yuri Bizzoni, Marianne Reboul
Abstract:
Our program compares French and Italian translations of Homer’s Odyssey, from the XVIth to the XXth century. We focus on the third point, showing how distributional semantics systems can be used both to improve alignment between different French translations as well as between the Greek text and a French translation. Although we focus on French examples, the techniques we display are completely language independent.Keywords: classical receptions, computational linguistics, distributional semantics, Homeric poems, machine translation, translation studies, text alignment
Procedia PDF Downloads 4355870 Prediction Modeling of Alzheimer’s Disease and Its Prodromal Stages from Multimodal Data with Missing Values
Authors: M. Aghili, S. Tabarestani, C. Freytes, M. Shojaie, M. Cabrerizo, A. Barreto, N. Rishe, R. E. Curiel, D. Loewenstein, R. Duara, M. Adjouadi
Abstract:
A major challenge in medical studies, especially those that are longitudinal, is the problem of missing measurements which hinders the effective application of many machine learning algorithms. Furthermore, recent Alzheimer's Disease studies have focused on the delineation of Early Mild Cognitive Impairment (EMCI) and Late Mild Cognitive Impairment (LMCI) from cognitively normal controls (CN) which is essential for developing effective and early treatment methods. To address the aforementioned challenges, this paper explores the potential of using the eXtreme Gradient Boosting (XGBoost) algorithm in handling missing values in multiclass classification. We seek a generalized classification scheme where all prodromal stages of the disease are considered simultaneously in the classification and decision-making processes. Given the large number of subjects (1631) included in this study and in the presence of almost 28% missing values, we investigated the performance of XGBoost on the classification of the four classes of AD, NC, EMCI, and LMCI. Using 10-fold cross validation technique, XGBoost is shown to outperform other state-of-the-art classification algorithms by 3% in terms of accuracy and F-score. Our model achieved an accuracy of 80.52%, a precision of 80.62% and recall of 80.51%, supporting the more natural and promising multiclass classification.Keywords: eXtreme gradient boosting, missing data, Alzheimer disease, early mild cognitive impairment, late mild cognitive impair, multiclass classification, ADNI, support vector machine, random forest
Procedia PDF Downloads 1895869 Translation Directionality: An Eye Tracking Study
Authors: Elahe Kamari
Abstract:
Research on translation process has been conducted for more than 20 years, investigating various issues and using different research methodologies. Most recently, researchers have started to use eye tracking to study translation processes. They believed that the observable, measurable data that can be gained from eye tracking are indicators of unobservable cognitive processes happening in the translators’ mind during translation tasks. The aim of this study was to investigate directionality in translation processes through using eye tracking. The following hypotheses were tested: 1) processing the target text requires more cognitive effort than processing the source text, in both directions of translation; 2) L2 translation tasks on the whole require more cognitive effort than L1 tasks; 3) cognitive resources allocated to the processing of the source text is higher in L1 translation than in L2 translation; 4) cognitive resources allocated to the processing of the target text is higher in L2 translation than in L1 translation; and 5) in both directions non-professional translators invest more cognitive effort in translation tasks than do professional translators. The performance of a group of 30 male professional translators was compared with that of a group of 30 male non-professional translators. All the participants translated two comparable texts one into their L1 (Persian) and the other into their L2 (English). The eye tracker measured gaze time, average fixation duration, total task length and pupil dilation. These variables are assumed to measure the cognitive effort allocated to the translation task. The data derived from eye tracking only confirmed the first hypothesis. This hypothesis was confirmed by all the relevant indicators: gaze time, average fixation duration and pupil dilation. The second hypothesis that L2 translation tasks requires allocation of more cognitive resources than L1 translation tasks has not been confirmed by all four indicators. The third hypothesis that source text processing requires more cognitive resources in L1 translation than in L2 translation and the fourth hypothesis that target text processing requires more cognitive effort in L2 translation than L1 translation were not confirmed. It seems that source text processing in L2 translation can be just as demanding as in L1 translation. The final hypothesis that non-professional translators allocate more cognitive resources for the same translation tasks than do the professionals was partially confirmed. One of the indicators, average fixation duration, indicated higher cognitive effort-related values for professionals.Keywords: translation processes, eye tracking, cognitive resources, directionality
Procedia PDF Downloads 4675868 Short-Term Operation Planning for Energy Management of Exhibition Hall
Authors: Yooncheol Lee, Jeongmin Kim, Kwang Ryel Ryu
Abstract:
This paper deals with the establishment of a short-term operational plan for an air conditioner for efficient energy management of exhibition hall. The short-term operational plan is composed of a time series of operational schedules, which we have searched using genetic algorithms. Establishing operational schedule should be considered the future trends of the variables affecting the exhibition hall environment. To reflect continuously changing factors such as external temperature and occupant, short-term operational plans should be updated in real time. But it takes too much time to evaluate a short-term operational plan using EnergyPlus, a building emulation tool. For that reason, it is difficult to update the operational plan in real time. To evaluate the short-term operational plan, we designed prediction models based on machine learning with fast evaluation speed. This model, which was created by learning the past operational data, is accurate and fast. The collection of operational data and the verification of operational plans were made using EnergyPlus. Experimental results show that the proposed method can save energy compared to the reactive control method.Keywords: exhibition hall, energy management, predictive model, simulation-based optimization
Procedia PDF Downloads 3395867 The Use of Layered Neural Networks for Classifying Hierarchical Scientific Fields of Study
Authors: Colin Smith, Linsey S Passarella
Abstract:
Due to the proliferation and decentralized nature of academic publication, no widely accepted scheme exists for organizing papers by their scientific field of study (FoS) to the author’s best knowledge. While many academic journals require author provided keywords for papers, these keywords range wildly in scope and are not consistent across papers, journals, or field domains, necessitating alternative approaches to paper classification. Past attempts to perform field-of-study (FoS) classification on scientific texts have largely used a-hierarchical FoS schemas or ignored the schema’s inherently hierarchical structure, e.g. by compressing the structure into a single layer for multi-label classification. In this paper, we introduce an application of a Layered Neural Network (LNN) to the problem of performing supervised hierarchical classification of scientific fields of study (FoS) on research papers. In this approach, paper embeddings from a pretrained language model are fed into a top-down LNN. Beginning with a single neural network (NN) for the highest layer of the class hierarchy, each node uses a separate local NN to classify the subsequent subfield child node(s) for an input embedding of concatenated paper titles and abstracts. We compare our LNN-FOS method to other recent machine learning methods using the Microsoft Academic Graph (MAG) FoS hierarchy and find that the LNN-FOS offers increased classification accuracy at each FoS hierarchical level.Keywords: hierarchical classification, layer neural network, scientific field of study, scientific taxonomy
Procedia PDF Downloads 1345866 Recontextualisation of Political Discourse: A Case Study of Translation of News Stories
Authors: Hossein Sabouri
Abstract:
News stories as one of the branches of political discourse has always been regarded a sensitive and challenging area. Political translators often encounter some struggles that are vitally important when it comes to deal with the political tension between the source culture and the target one. Translating news stories is of prime importance since it has widespread availability and power of defining or even changing the facts. News translation is usually more than straight transfer of source text. Like original text endeavoring to manipulate the readers’ minds with imposing their ideologies, translated text seeking to change these ideologies influenced by ideological power. In other words, translation product is not considered more than a recontextualisation of the source text. The present study examines possible criteria for occurring changes in the translation process of news stories based on the ideological and political stance of translator using theories of ‘critical discourse analysis’and ‘translation and power. Fairclough investigates the ideological issues in (political) discourse and Tymoczko studies the political and power-related engagement of the translator in the process of translation. Incorporation of Fairclough and Gentzler and Tymoczko’s theories paves the way for the researcher to looks at the ideological power position of the translator. Data collection and analysis have been accomplished using 17 political-text samples taken from online news agencies which are related to the ‘Iran’s Nuclear Program’. Based on the findings, recontextualisation is mainly observed in terms of the strategies of ‘substitution, omissions, and addition’ in the translation process. The results of the study suggest that there is a significant relationship between the translation of political texts and ideologies of target culture.Keywords: news translation, recontextualisation, ideological power, political discourse
Procedia PDF Downloads 1945865 Developing House’s Model to Assess the Translation of Key Cultural Texts
Authors: Raja Al-Ghamdi
Abstract:
This paper aims to systematically assess the translation of key cultural texts. The paper, therefore, proposes a modification of the discourse analysis model for translation quality assessment introduced by the linguist Juliane House (1977, 1997, 2015). The data for analysis has been chosen from a religious text that has never been investigated before. It is an overt translation of the biography of Prophet Mohammad. The book is written originally in Arabic and translated into English. A soft copy of the translation, entitled The Sealed Nectar, is posted on numerous websites including the Internet Archive library which offers a free access to everyone. The text abounds with linguistic and cultural phenomena relevant to Islamic and Arab lingua-cultural context which make its translation a challenge, as well as its assessment. Interesting findings show that (1) culturemes are rich points and both the translator’s subjectivity and intervention are apparent in mediating them, (2) given the nature of historical narration, the source text reflects the author’s positive shading, whereas the target text reflects the translator’s axiological orientation as neutrally shaded, and, (3) linguistic gaps, metaphorical expressions and intertextuality are major stimuli to compensation strategies.Keywords: Arabic-English discourse analysis, key cultural texts, overt translation, quality assessment
Procedia PDF Downloads 2835864 A Psychoanalytical Approach to Edgar A. Poe’s Short Story ‘The Tell-Tale Heart’
Authors: José Antonio Núñez
Abstract:
Sigmund Freud’s Theory of Psychoanalysis was a groundbreaking contribution to the province of the human psyche and behavior. Nowadays, psychoanalytic theory is applied to numerous fields. One of them is literature. Literary criticism has put into practice the basis of Freud’s idea to analyze literary works. This essay is about the analysis of Edgar A. Poe’s short story ‘The Tell-Tale Heart,’ under the lens of Freud’s psychoanalytical perspective. In 1919, it was published ‘Das Unheimliche’ (The Uncanny) by Freud. On this article, the famous Austrian psychoanalyst showed his explanations about what he called ‘the uncanny,’ and its relation to the human unconscious. In this paper, Freud’s famous article has been used to analyze Poe’s short story ‘The Tell-Tale Heart,’ and to find the analogies that exist between Poe’s macabre short story and Freud’s theory of ‘the uncanny.’Keywords: psychoanalysis, theory of the unconscious, the uncanny, unheimlich
Procedia PDF Downloads 6645863 A Study on the Performance of 2-PC-D Classification Model
Authors: Nurul Aini Abdul Wahab, Nor Syamim Halidin, Sayidatina Aisah Masnan, Nur Izzati Romli
Abstract:
There are many applications of principle component method for reducing the large set of variables in various fields. Fisher’s Discriminant function is also a popular tool for classification. In this research, the researcher focuses on studying the performance of Principle Component-Fisher’s Discriminant function in helping to classify rice kernels to their defined classes. The data were collected on the smells or odour of the rice kernel using odour-detection sensor, Cyranose. 32 variables were captured by this electronic nose (e-nose). The objective of this research is to measure how well a combination model, between principle component and linear discriminant, to be as a classification model. Principle component method was used to reduce all 32 variables to a smaller and manageable set of components. Then, the reduced components were used to develop the Fisher’s Discriminant function. In this research, there are 4 defined classes of rice kernel which are Aromatic, Brown, Ordinary and Others. Based on the output from principle component method, the 32 variables were reduced to only 2 components. Based on the output of classification table from the discriminant analysis, 40.76% from the total observations were correctly classified into their classes by the PC-Discriminant function. Indirectly, it gives an idea that the classification model developed has committed to more than 50% of misclassifying the observations. As a conclusion, the Fisher’s Discriminant function that was built on a 2-component from PCA (2-PC-D) is not satisfying to classify the rice kernels into its defined classes.Keywords: classification model, discriminant function, principle component analysis, variable reduction
Procedia PDF Downloads 3335862 The Response of LCC to DC System Faults and HVDC Re-Establishment
Authors: Mesbah Tarek, Kelaiaia Samia, Chiheb Sofien, Kelaiaia Mounia Samira, Labar Hocine
Abstract:
As every power systems short circuit failure can occur for HVDC at the DC link. So, the power devices should be protected against over heath produced by this over-current. This can be achieved through the power switchers or fast breaker. After short circuit the system is unable to restart, only after a time delay, because of the potential distribution along the DC link line. An appropriate fast and safety control is proposed and tested successfully. The detailed development and discussion of these faults is presented in this paper.Keywords: HVDC, DC link, switchers, short circuit, faults
Procedia PDF Downloads 5775861 The Design of the Multi-Agent Classification System (MACS)
Authors: Mohamed R. Mhereeg
Abstract:
The paper discusses the design of a .NET Windows Service based agent system called MACS (Multi-Agent Classification System). MACS is a system aims to accurately classify spread-sheet developers competency over a network. It is designed to automatically and autonomously monitor spread-sheet users and gather their development activities based on the utilization of the software Multi-Agent Technology (MAS). This is accomplished in such a way that makes management capable to efficiently allow for precise tailor training activities for future spread-sheet development. The monitoring agents of MACS are intended to be distributed over the WWW in order to satisfy the monitoring and classification of the multiple developer aspect. The Prometheus methodology is used for the design of the agents of MACS. Prometheus has been used to undertake this phase of the system design because it is developed specifically for specifying and designing agent-oriented systems. Additionally, Prometheus specifies also the communication needed between the agents in order to coordinate to achieve their delegated tasks.Keywords: classification, design, MACS, MAS, prometheus
Procedia PDF Downloads 4005860 Hate Speech Detection Using Deep Learning and Machine Learning Models
Authors: Nabil Shawkat, Jamil Saquer
Abstract:
Social media has accelerated our ability to engage with others and eliminated many communication barriers. On the other hand, the widespread use of social media resulted in an increase in online hate speech. This has drastic impacts on vulnerable individuals and societies. Therefore, it is critical to detect hate speech to prevent innocent users and vulnerable communities from becoming victims of hate speech. We investigate the performance of different deep learning and machine learning algorithms on three different datasets. Our results show that the BERT model gives the best performance among all the models by achieving an F1-score of 90.6% on one of the datasets and F1-scores of 89.7% and 88.2% on the other two datasets.Keywords: hate speech, machine learning, deep learning, abusive words, social media, text classification
Procedia PDF Downloads 1395859 Artificial Intelligence Assisted Sentiment Analysis of Hotel Reviews Using Topic Modeling
Authors: Sushma Ghogale
Abstract:
With a surge in user-generated content or feedback or reviews on the internet, it has become possible and important to know consumers' opinions about products and services. This data is important for both potential customers and businesses providing the services. Data from social media is attracting significant attention and has become the most prominent channel of expressing an unregulated opinion. Prospective customers look for reviews from experienced customers before deciding to buy a product or service. Several websites provide a platform for users to post their feedback for the provider and potential customers. However, the biggest challenge in analyzing such data is in extracting latent features and providing term-level analysis of the data. This paper proposes an approach to use topic modeling to classify the reviews into topics and conduct sentiment analysis to mine the opinions. This approach can analyse and classify latent topics mentioned by reviewers on business sites or review sites, or social media using topic modeling to identify the importance of each topic. It is followed by sentiment analysis to assess the satisfaction level of each topic. This approach provides a classification of hotel reviews using multiple machine learning techniques and comparing different classifiers to mine the opinions of user reviews through sentiment analysis. This experiment concludes that Multinomial Naïve Bayes classifier produces higher accuracy than other classifiers.Keywords: latent Dirichlet allocation, topic modeling, text classification, sentiment analysis
Procedia PDF Downloads 975858 Evaluation of Robust Feature Descriptors for Texture Classification
Authors: Jia-Hong Lee, Mei-Yi Wu, Hsien-Tsung Kuo
Abstract:
Texture is an important characteristic in real and synthetic scenes. Texture analysis plays a critical role in inspecting surfaces and provides important techniques in a variety of applications. Although several descriptors have been presented to extract texture features, the development of object recognition is still a difficult task due to the complex aspects of texture. Recently, many robust and scaling-invariant image features such as SIFT, SURF and ORB have been successfully used in image retrieval and object recognition. In this paper, we have tried to compare the performance for texture classification using these feature descriptors with k-means clustering. Different classifiers including K-NN, Naive Bayes, Back Propagation Neural Network , Decision Tree and Kstar were applied in three texture image sets - UIUCTex, KTH-TIPS and Brodatz, respectively. Experimental results reveal SIFTS as the best average accuracy rate holder in UIUCTex, KTH-TIPS and SURF is advantaged in Brodatz texture set. BP neuro network works best in the test set classification among all used classifiers.Keywords: texture classification, texture descriptor, SIFT, SURF, ORB
Procedia PDF Downloads 3715857 A Hierarchical Method for Multi-Class Probabilistic Classification Vector Machines
Authors: P. Byrnes, F. A. DiazDelaO
Abstract:
The Support Vector Machine (SVM) has become widely recognised as one of the leading algorithms in machine learning for both regression and binary classification. It expresses predictions in terms of a linear combination of kernel functions, referred to as support vectors. Despite its popularity amongst practitioners, SVM has some limitations, with the most significant being the generation of point prediction as opposed to predictive distributions. Stemming from this issue, a probabilistic model namely, Probabilistic Classification Vector Machines (PCVM), has been proposed which respects the original functional form of SVM whilst also providing a predictive distribution. As physical system designs become more complex, an increasing number of classification tasks involving industrial applications consist of more than two classes. Consequently, this research proposes a framework which allows for the extension of PCVM to a multi class setting. Additionally, the original PCVM framework relies on the use of type II maximum likelihood to provide estimates for both the kernel hyperparameters and model evidence. In a high dimensional multi class setting, however, this approach has been shown to be ineffective due to bad scaling as the number of classes increases. Accordingly, we propose the application of Markov Chain Monte Carlo (MCMC) based methods to provide a posterior distribution over both parameters and hyperparameters. The proposed framework will be validated against current multi class classifiers through synthetic and real life implementations.Keywords: probabilistic classification vector machines, multi class classification, MCMC, support vector machines
Procedia PDF Downloads 2225856 Neuro-Fuzzy Based Model for Phrase Level Emotion Understanding
Authors: Vadivel Ayyasamy
Abstract:
The present approach deals with the identification of Emotions and classification of Emotional patterns at Phrase-level with respect to Positive and Negative Orientation. The proposed approach considers emotion triggered terms, its co-occurrence terms and also associated sentences for recognizing emotions. The proposed approach uses Part of Speech Tagging and Emotion Actifiers for classification. Here sentence patterns are broken into phrases and Neuro-Fuzzy model is used to classify which results in 16 patterns of emotional phrases. Suitable intensities are assigned for capturing the degree of emotion contents that exist in semantics of patterns. These emotional phrases are assigned weights which supports in deciding the Positive and Negative Orientation of emotions. The approach uses web documents for experimental purpose and the proposed classification approach performs well and achieves good F-Scores.Keywords: emotions, sentences, phrases, classification, patterns, fuzzy, positive orientation, negative orientation
Procedia PDF Downloads 3815855 Comparison of Different Methods to Produce Fuzzy Tolerance Relations for Rainfall Data Classification in the Region of Central Greece
Authors: N. Samarinas, C. Evangelides, C. Vrekos
Abstract:
The aim of this paper is the comparison of three different methods, in order to produce fuzzy tolerance relations for rainfall data classification. More specifically, the three methods are correlation coefficient, cosine amplitude and max-min method. The data were obtained from seven rainfall stations in the region of central Greece and refers to 20-year time series of monthly rainfall height average. Three methods were used to express these data as a fuzzy relation. This specific fuzzy tolerance relation is reformed into an equivalence relation with max-min composition for all three methods. From the equivalence relation, the rainfall stations were categorized and classified according to the degree of confidence. The classification shows the similarities among the rainfall stations. Stations with high similarity can be utilized in water resource management scenarios interchangeably or to augment data from one to another. Due to the complexity of calculations, it is important to find out which of the methods is computationally simpler and needs fewer compositions in order to give reliable results.Keywords: classification, fuzzy logic, tolerance relations, rainfall data
Procedia PDF Downloads 3155854 A Text-Oriented Study on Treatises and the End of the Struggles in Silius
Authors: Arianna Sacerdoti
Abstract:
This paper is original and fills, to our best Knowledge, a gap in secondary literature. It analyzes the presence of treatises in Silius Italicus’ Punica and what happens in the plot when a struggle ends. As a result, we will understand if treatises are stipulated or broken, and which narrative devices go with the presence of treatises and the end of the battles. Methodology will be text-oriented, and all the passages will be presented in the Latin language and discussed. In concluding, it is important to understand – in a poem based on war – the role of treatises and the end of battles in Silius Italicus.Keywords: Flavian Epic, Silius Italicus, Punica, treatises
Procedia PDF Downloads 133