Search results for: semantic clinical classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6134

Search results for: semantic clinical classification

5804 Job Shop Scheduling: Classification, Constraints and Objective Functions

Authors: Majid Abdolrazzagh-Nezhad, Salwani Abdullah

Abstract:

The job-shop scheduling problem (JSSP) is an important decision facing those involved in the fields of industry, economics and management. This problem is a class of combinational optimization problem known as the NP-hard problem. JSSPs deal with a set of machines and a set of jobs with various predetermined routes through the machines, where the objective is to assemble a schedule of jobs that minimizes certain criteria such as makespan, maximum lateness, and total weighted tardiness. Over the past several decades, interest in meta-heuristic approaches to address JSSPs has increased due to the ability of these approaches to generate solutions which are better than those generated from heuristics alone. This article provides the classification, constraints and objective functions imposed on JSSPs that are available in the literature.

Keywords: job-shop scheduling, classification, constraints, objective functions

Procedia PDF Downloads 444
5803 Static vs. Stream Mining Trajectories Similarity Measures

Authors: Musaab Riyadh, Norwati Mustapha, Dina Riyadh

Abstract:

Trajectory similarity can be defined as the cost of transforming one trajectory into another based on certain similarity method. It is the core of numerous mining tasks such as clustering, classification, and indexing. Various approaches have been suggested to measure similarity based on the geometric and dynamic properties of trajectory, the overlapping between trajectory segments, and the confined area between entire trajectories. In this article, an evaluation of these approaches has been done based on computational cost, usage memory, accuracy, and the amount of data which is needed in advance to determine its suitability to stream mining applications. The evaluation results show that the stream mining applications support similarity methods which have low computational cost and memory, single scan on data, and free of mathematical complexity due to the high-speed generation of data.

Keywords: global distance measure, local distance measure, semantic trajectory, spatial dimension, stream data mining

Procedia PDF Downloads 396
5802 Method of Cluster Based Cross-Domain Knowledge Acquisition for Biologically Inspired Design

Authors: Shen Jian, Hu Jie, Ma Jin, Peng Ying Hong, Fang Yi, Liu Wen Hai

Abstract:

Biologically inspired design inspires inventions and new technologies in the field of engineering by mimicking functions, principles, and structures in the biological domain. To deal with the obstacles of cross-domain knowledge acquisition in the existing biologically inspired design process, functional semantic clustering based on functional feature semantic correlation and environmental constraint clustering composition based on environmental characteristic constraining adaptability are proposed. A knowledge cell clustering algorithm and the corresponding prototype system is developed. Finally, the effectiveness of the method is verified by the visual prosthetic device design.

Keywords: knowledge clustering, knowledge acquisition, knowledge based engineering, knowledge cell, biologically inspired design

Procedia PDF Downloads 426
5801 Brain-Computer Interface Based Real-Time Control of Fixed Wing and Multi-Rotor Unmanned Aerial Vehicles

Authors: Ravi Vishwanath, Saumya Kumaar, S. N. Omkar

Abstract:

Brain-computer interfacing (BCI) is a technology that is almost four decades old, and it was developed solely for the purpose of developing and enhancing the impact of neuroprosthetics. However, in the recent times, with the commercialization of non-invasive electroencephalogram (EEG) headsets, the technology has seen a wide variety of applications like home automation, wheelchair control, vehicle steering, etc. One of the latest developed applications is the mind-controlled quadrotor unmanned aerial vehicle. These applications, however, do not require a very high-speed response and give satisfactory results when standard classification methods like Support Vector Machine (SVM) and Multi-Layer Perceptron (MLPC). Issues are faced when there is a requirement for high-speed control in the case of fixed-wing unmanned aerial vehicles where such methods are rendered unreliable due to the low speed of classification. Such an application requires the system to classify data at high speeds in order to retain the controllability of the vehicle. This paper proposes a novel method of classification which uses a combination of Common Spatial Paradigm and Linear Discriminant Analysis that provides an improved classification accuracy in real time. A non-linear SVM based classification technique has also been discussed. Further, this paper discusses the implementation of the proposed method on a fixed-wing and VTOL unmanned aerial vehicles.

Keywords: brain-computer interface, classification, machine learning, unmanned aerial vehicles

Procedia PDF Downloads 283
5800 Composite Approach to Extremism and Terrorism Web Content Classification

Authors: Kolade Olawande Owoeye, George Weir

Abstract:

Terrorism and extremism activities on the internet are becoming the most significant threats to national security because of their potential dangers. In response to this challenge, law enforcement and security authorities are actively implementing comprehensive measures by countering the use of the internet for terrorism. To achieve the measures, there is need for intelligence gathering via the internet. This includes real-time monitoring of potential websites that are used for recruitment and information dissemination among other operations by extremist groups. However, with billions of active webpages, real-time monitoring of all webpages become almost impossible. To narrow down the search domain, there is a need for efficient webpage classification techniques. This research proposed a new approach tagged: SentiPosit-based method. SentiPosit-based method combines features of the Posit-based method and the Sentistrenght-based method for classification of terrorism and extremism webpages. The experiment was carried out on 7500 webpages obtained through TENE-webcrawler by International Cyber Crime Research Centre (ICCRC). The webpages were manually grouped into three classes which include the ‘pro-extremist’, ‘anti-extremist’ and ‘neutral’ with 2500 webpages in each category. A supervised learning algorithm is then applied on the classified dataset in order to build the model. Results obtained was compared with existing classification method using the prediction accuracy and runtime. It was observed that our proposed hybrid approach produced a better classification accuracy compared to existing approaches within a reasonable runtime.

Keywords: sentiposit, classification, extremism, terrorism

Procedia PDF Downloads 278
5799 Classification of Hyperspectral Image Using Mathematical Morphological Operator-Based Distance Metric

Authors: Geetika Barman, B. S. Daya Sagar

Abstract:

In this article, we proposed a pixel-wise classification of hyperspectral images using a mathematical morphology operator-based distance metric called “dilation distance” and “erosion distance”. This method involves measuring the spatial distance between the spectral features of a hyperspectral image across the bands. The key concept of the proposed approach is that the “dilation distance” is the maximum distance a pixel can be moved without changing its classification, whereas the “erosion distance” is the maximum distance that a pixel can be moved before changing its classification. The spectral signature of the hyperspectral image carries unique class information and shape for each class. This article demonstrates how easily the dilation and erosion distance can measure spatial distance compared to other approaches. This property is used to calculate the spatial distance between hyperspectral image feature vectors across the bands. The dissimilarity matrix is then constructed using both measures extracted from the feature spaces. The measured distance metric is used to distinguish between the spectral features of various classes and precisely distinguish between each class. This is illustrated using both toy data and real datasets. Furthermore, we investigated the role of flat vs. non-flat structuring elements in capturing the spatial features of each class in the hyperspectral image. In order to validate, we compared the proposed approach to other existing methods and demonstrated empirically that mathematical operator-based distance metric classification provided competitive results and outperformed some of them.

Keywords: dilation distance, erosion distance, hyperspectral image classification, mathematical morphology

Procedia PDF Downloads 87
5798 Culturally Adapting Videos to Involve Nigerian Patients with Cancer in Clinical Trials

Authors: Abiola Falilat Ibraheem, Akinyimika Sowunmi, Valerie Otti

Abstract:

Background: Introduction of innovative cancer clinical trials to Nigeria is a critical step in addressing global inequities of cancer burden. Low health and clinical trial literacy among Nigerian patients have been sighted as a significant barrier to ensuring that patients enrolled in clinical trials are truly informed. Video intervention has been shown to be the most proactive method to improving patient’s clinical trial knowledge. In the US, video interventions have been successful at improving education about cancer clinical trials among minority patients. Thus, this study aimed to apply and adapt video interventions addressing attitudinal barriers peculiar to Nigerian patients. Methods: A hospital-based representative mixed-method study was conducted at the Lagos State University Teaching Hospital (LASUTH) from July to December 2020, comprising of cancer patients aged 18 and above. Patients were randomly selected during every clinic day, of which 63 patients volunteered to participate in this study. We first administered a cancer literacy survey to determine patients’ knowledge about clinical trials. For patients who had prior knowledge, a pre-intervention test was administered, after which a 15-minute video (attitudes and intention to enroll in therapeutic clinical trials (AIET)) to improve patients’ knowledge, perception, and attitudes towards clinical trials was played, and then ended by administering a post-intervention test to the patients. For patients who had no prior knowledge, the AIET video was played for them, followed by the post-intervention test. Results: Out of 63 patients sampled, 43 (68.3%) had breast cancer. On average, patients agreed to understand their cancer diagnosis and treatment very well. 84.1% of patients had never heard about cancer clinical trials, and 85.7% did not know what cancer clinical trials were. There was a strong positive relationship (r=0.916) between the pretest and posttest, which means that the intervention improved patients’ knowledge, perception, and attitudes about cancer clinical trials. In the focus groups, patients recommended adapting the video in Nigerian settings and representing all religions in order to address trust in local clinical trialists. Conclusion: Due to the small size of patients, change in clinical trial knowledge was not statistically significant. However, there is a trend suggesting that culturally adapted video interventions can be used to improve knowledge and perception about cancer clinical trials.

Keywords: clinical trials, culturally targeted intervention, patient education, video intervention

Procedia PDF Downloads 138
5797 Classification of Red, Green and Blue Values from Face Images Using k-NN Classifier to Predict the Skin or Non-Skin

Authors: Kemal Polat

Abstract:

In this study, it has been estimated whether there is skin by using RBG values obtained from the camera and k-nearest neighbor (k-NN) classifier. The dataset used in this study has an unbalanced distribution and a linearly non-separable structure. This problem can also be called a big data problem. The Skin dataset was taken from UCI machine learning repository. As the classifier, we have used the k-NN method to handle this big data problem. For k value of k-NN classifier, we have used as 1. To train and test the k-NN classifier, 50-50% training-testing partition has been used. As the performance metrics, TP rate, FP Rate, Precision, recall, f-measure and AUC values have been used to evaluate the performance of k-NN classifier. These obtained results are as follows: 0.999, 0.001, 0.999, 0.999, 0.999, and 1,00. As can be seen from the obtained results, this proposed method could be used to predict whether the image is skin or not.

Keywords: k-NN classifier, skin or non-skin classification, RGB values, classification

Procedia PDF Downloads 248
5796 Comparison of Linear Discriminant Analysis and Support Vector Machine Classifications for Electromyography Signals Acquired at Five Positions of Elbow Joint

Authors: Amna Khan, Zareena Kausar, Saad Malik

Abstract:

Bio Mechatronics has extended applications in the field of rehabilitation. It has been contributing since World War II in improving the applicability of prosthesis and assistive devices in real life scenarios. In this paper, classification accuracies have been compared for two classifiers against five positions of elbow. Electromyography (EMG) signals analysis have been acquired directly from skeletal muscles of human forearm for each of the three defined positions and at modified extreme positions of elbow flexion and extension using 8 electrode Myo armband sensor. Features were extracted from filtered EMG signals for each position. Performance of two classifiers, support vector machine (SVM) and linear discriminant analysis (LDA) has been compared by analyzing the classification accuracies. SVM illustrated classification accuracies between 90-96%, in contrast to 84-87% depicted by LDA for five defined positions of elbow keeping the number of samples and selected feature the same for both SVM and LDA.

Keywords: classification accuracies, electromyography, linear discriminant analysis (LDA), Myo armband sensor, support vector machine (SVM)

Procedia PDF Downloads 368
5795 Resource Framework Descriptors for Interestingness in Data

Authors: C. B. Abhilash, Kavi Mahesh

Abstract:

Human beings are the most advanced species on earth; it's all because of the ability to communicate and share information via human language. In today's world, a huge amount of data is available on the web in text format. This has also resulted in the generation of big data in structured and unstructured formats. In general, the data is in the textual form, which is highly unstructured. To get insights and actionable content from this data, we need to incorporate the concepts of text mining and natural language processing. In our study, we mainly focus on Interesting data through which interesting facts are generated for the knowledge base. The approach is to derive the analytics from the text via the application of natural language processing. Using semantic web Resource framework descriptors (RDF), we generate the triple from the given data and derive the interesting patterns. The methodology also illustrates data integration using the RDF for reliable, interesting patterns.

Keywords: RDF, interestingness, knowledge base, semantic data

Procedia PDF Downloads 162
5794 Neural Network Based Decision Trees Using Machine Learning for Alzheimer's Diagnosis

Authors: P. S. Jagadeesh Kumar, Tracy Lin Huan, S. Meenakshi Sundaram

Abstract:

Alzheimer’s disease is one of the prevalent kind of ailment, expected for impudent reconciliation or an effectual therapy is to be accredited hitherto. Probable detonation of patients in the upcoming years, and consequently an enormous deal of apprehension in early discovery of the disorder, this will conceivably chaperon to enhanced healing outcomes. Complex impetuosity of the brain is an observant symbolic of the disease and a unique recognition of genetic sign of the disease. Machine learning alongside deep learning and decision tree reinforces the aptitude to absorb characteristics from multi-dimensional data’s and thus simplifies automatic classification of Alzheimer’s disease. Susceptible testing was prophesied and realized in training the prospect of Alzheimer’s disease classification built on machine learning advances. It was shrewd that the decision trees trained with deep neural network fashioned the excellent results parallel to related pattern classification.

Keywords: Alzheimer's diagnosis, decision trees, deep neural network, machine learning, pattern classification

Procedia PDF Downloads 297
5793 Discrimination and Classification of Vestibular Neuritis Using Combined Fisher and Support Vector Machine Model

Authors: Amine Ben Slama, Aymen Mouelhi, Sondes Manoubi, Chiraz Mbarek, Hedi Trabelsi, Mounir Sayadi, Farhat Fnaiech

Abstract:

Vertigo is a sensation of feeling off balance; the cause of this symptom is very difficult to interpret and needs a complementary exam. Generally, vertigo is caused by an ear problem. Some of the most common causes include: benign paroxysmal positional vertigo (BPPV), Meniere's disease and vestibular neuritis (VN). In clinical practice, different tests of videonystagmographic (VNG) technique are used to detect the presence of vestibular neuritis (VN). The topographical diagnosis of this disease presents a large diversity in its characteristics that confirm a mixture of problems for usual etiological analysis methods. In this study, a vestibular neuritis analysis method is proposed with videonystagmography (VNG) applications using an estimation of pupil movements in the case of an uncontrolled motion to obtain an efficient and reliable diagnosis results. First, an estimation of the pupil displacement vectors using with Hough Transform (HT) is performed to approximate the location of pupil region. Then, temporal and frequency features are computed from the rotation angle variation of the pupil motion. Finally, optimized features are selected using Fisher criterion evaluation for discrimination and classification of the VN disease.Experimental results are analyzed using two categories: normal and pathologic. By classifying the reduced features using the Support Vector Machine (SVM), 94% is achieved as classification accuracy. Compared to recent studies, the proposed expert system is extremely helpful and highly effective to resolve the problem of VNG analysis and provide an accurate diagnostic for medical devices.

Keywords: nystagmus, vestibular neuritis, videonystagmographic system, VNG, Fisher criterion, support vector machine, SVM

Procedia PDF Downloads 136
5792 Multinomial Dirichlet Gaussian Process Model for Classification of Multidimensional Data

Authors: Wanhyun Cho, Soonja Kang, Sanggoon Kim, Soonyoung Park

Abstract:

We present probabilistic multinomial Dirichlet classification model for multidimensional data and Gaussian process priors. Here, we have considered an efficient computational method that can be used to obtain the approximate posteriors for latent variables and parameters needed to define the multiclass Gaussian process classification model. We first investigated the process of inducing a posterior distribution for various parameters and latent function by using the variational Bayesian approximations and important sampling method, and next we derived a predictive distribution of latent function needed to classify new samples. The proposed model is applied to classify the synthetic multivariate dataset in order to verify the performance of our model. Experiment result shows that our model is more accurate than the other approximation methods.

Keywords: multinomial dirichlet classification model, Gaussian process priors, variational Bayesian approximation, importance sampling, approximate posterior distribution, marginal likelihood evidence

Procedia PDF Downloads 444
5791 A Study of Mandarin Ba Constructions from the Perspective of Event Structure

Authors: Changyin Zhou

Abstract:

Ba constructions are a special type of constructions in Chinese. Their syntactic behaviors are closely related to their event structural properties. The existing study which treats the semantic function of Ba as causative meets difficulty in treating the discrepancy between Ba constructions and their corresponding constructions without Ba in expressing causativity. This paper holds that Ba in Ba constructions is a functional category expressing affectedness. The affectedness expressed by Ba can be positive or negative. The functional category Ba expressing negative affectedness has the semantic property of being 'expected'. The precondition of Ba construction is the boundedness of the event concerned. This paper, holding the parallelism between motion events and change-of-state events, proposes a syntactic model based on the notions of boundedness and affectedness, discusses the transformations between Ba constructions and the related resultative constructions, and derivates the various Ba constructions concerned.

Keywords: affectedness, Ba constructions, boundedness, event structure, resultative constructions

Procedia PDF Downloads 421
5790 Retrospective Analysis of Facial Skin Cancer Patients Treated in the Department of Oral and Maxillofacial Surgery Kiel

Authors: Abdullah Saeidi, Aydin Gülses, Christan Flörke

Abstract:

Skin cancer of the face region is the most common type of malignancy and surgical excision is the preferred approach. However, the clinical long term results reported in the literature are still controversial. Objectives: To describe; 1. Demographical characteristics 2. Affected site, distribution and TNM classification regarding tumor type 3. Surgical aspects • Surgical removal: excision principles, safety margins, the need for secondary resection, primary reconstruction/ defect closure, anesthesia protocol, duration of hospital stay (if any) • Secondary intervention for defect closure/reconstruction: Flap technique, anesthesia protocol, duration of hospital stay (if any), postoperative wound management etc. 4. Tumor recurrences 5. Clinical outcomes 6. Studying the possible therapy approach throw Biostatistical relation and correlation between multiple Histological, diagnostics and clinical Faktors. following surgical ablation of the skin cancer of the head and neck region. Methods: Selection and statistical analysis of medical records of patients who had admitted to the Department of Oral and Maxillofacial Surgery, Universitätsklinikum Schleswig Holstein, Campus Kiel during the period of 2015-2019 will be retrospectively evaluated. Data will be collected via ORBIS Information-Management-System (ORBIS AG, Saarbrücken, Germany).

Keywords: non melanoma skin cancer, face skin cancer, skin reconstruction, non melanoma skin cancer recurrence, non melanoma skin cancer metastases

Procedia PDF Downloads 106
5789 Classification System for Soft Tissue Injuries of Face: Bringing Objectiveness to Injury Severity

Authors: Garg Ramneesh, Uppal Sanjeev, Mittal Rajinder, Shah Sheerin, Jain Vikas, Singla Bhupinder

Abstract:

Introduction: Despite advances in trauma care, a classification system for soft tissue injuries of the face still needs to be objectively defined. Aim: To develop a classification system for soft tissue injuries of the face; that is objective, easy to remember, reproducible, universally applicable, aids in surgical management and helps to develop a structured data that can be used for future use. Material and Methods: This classification system includes those patients that need surgical management of facial injuries. Associated underlying bony fractures have been intentionally excluded. Depending upon the severity of soft tissue injury, these can be graded from 0 to IV (O-Abrasions, I-lacerations, II-Avulsion injuries with no skin loss, III-Avulsion injuries with skin loss that would need graft or flap cover, and IV-complex injuries). Anatomically, the face has been divided into three zones (Zone 1/2/3), as per aesthetic subunits. Zone 1e stands for injury of eyebrows; Zones 2 a/b/c stand for nose, upper eyelid and lower eyelid respectively; Zones 3 a/b/c stand for upper lip, lower lip and cheek respectively. Suffices R and L stand for right or left involved side, B for presence of foreign body like glass or pellets, C for extensive contamination and D for depth which can be graded as D 1/2/3 if depth is still fat, muscle or bone respectively. I is for damage to facial nerve or parotid duct. Results and conclusions: This classification system is easy to remember, clinically applicable and would help in standardization of surgical management of soft tissue injuries of face. Certain inherent limitations of this classification system are inability to classify sutured wounds, hematomas and injuries along or against Langer’s lines.

Keywords: soft tissue injuries, face, avulsion, classification

Procedia PDF Downloads 383
5788 A Research Analysis on the Source Technology and Convergence Types

Authors: Kwounghee Choi

Abstract:

Technological convergence between the various sectors is expected to have a very large impact on future industrial and economy. This study attempts to do empirical approach between specific technologies’ classification. For technological convergence classification, it is necessary to set the target technology to be analyzed. This study selected target technology from national research and development plan. At first we found a source technology for analysis. Depending on the weight of source technology, NT-based, BT-based, IT-based, ET-based, CS-based convergence types were classified. This study aims to empirically show the concept of convergence technology and convergence types. If we use the source technology to classify convergence type, it will be useful to make practical strategies of convergence technology.

Keywords: technology convergence, source technology, convergence type, R&D strategy, technology classification

Procedia PDF Downloads 485
5787 Semantic Network Analysis of the Saudi Women Driving Decree

Authors: Dania Aljouhi

Abstract:

September 26th, 2017, is a historic date for all women in Saudi Arabia. On that day, Saudi Arabia announced the decree on allowing Saudi women to drive. With the advent of vision 2030 and its goal to empower women and increase their participation in Saudi society, we see how Saudis’ Twitter users deliberate the 2017 decree from different social, cultural, religious, economic and political factors. This topic bridges social media 'Twitter,' gender and social-cultural studies to offer insights into how Saudis’ tweets reflect a broader discourse on Saudi women in the age of social media. The present study aims to explore the meanings and themes that emerge by Saudis’ Twitter users in response to the 2017 royal decree on women driving. The sample used in the current study involves (n= 1000) tweets that were collected from Sep 2017 to March 2019 to account for the Saudis’ tweets before and after implementing the decree. The paper uses semantic and thematic network analysis methods to examine the Saudis’ Twitter discourse on the women driving issue. The paper argues that Twitter as a platform has mediated the discourse of women driving among the Saudi community and facilitated social changes. Finally, framing theory (Goffman, 1974) and Networked framing (Meraz & Papacharissi 2013) are both used to explain the tweets on the decree of allowing Saudi women to drive based on # Saudi women-driving-cars.

Keywords: Saudi Arabia, women, Twitter, semantic network analysis, framing

Procedia PDF Downloads 155
5786 Design and Implementation of a Counting and Differentiation System for Vehicles through Video Processing

Authors: Derlis Gregor, Kevin Cikel, Mario Arzamendia, Raúl Gregor

Abstract:

This paper presents a self-sustaining mobile system for counting and classification of vehicles through processing video. It proposes a counting and classification algorithm divided in four steps that can be executed multiple times in parallel in a SBC (Single Board Computer), like the Raspberry Pi 2, in such a way that it can be implemented in real time. The first step of the proposed algorithm limits the zone of the image that it will be processed. The second step performs the detection of the mobile objects using a BGS (Background Subtraction) algorithm based on the GMM (Gaussian Mixture Model), as well as a shadow removal algorithm using physical-based features, followed by morphological operations. In the first step the vehicle detection will be performed by using edge detection algorithms and the vehicle following through Kalman filters. The last step of the proposed algorithm registers the vehicle passing and performs their classification according to their areas. An auto-sustainable system is proposed, powered by batteries and photovoltaic solar panels, and the data transmission is done through GPRS (General Packet Radio Service)eliminating the need of using external cable, which will facilitate it deployment and translation to any location where it could operate. The self-sustaining trailer will allow the counting and classification of vehicles in specific zones with difficult access.

Keywords: intelligent transportation system, object detection, vehicle couting, vehicle classification, video processing

Procedia PDF Downloads 323
5785 1/Sigma Term Weighting Scheme for Sentiment Analysis

Authors: Hanan Alshaher, Jinsheng Xu

Abstract:

Large amounts of data on the web can provide valuable information. For example, product reviews help business owners measure customer satisfaction. Sentiment analysis classifies texts into two polarities: positive and negative. This paper examines movie reviews and tweets using a new term weighting scheme, called one-over-sigma (1/sigma), on benchmark datasets for sentiment classification. The proposed method aims to improve the performance of sentiment classification. The results show that 1/sigma is more accurate than the popular term weighting schemes. In order to verify if the entropy reflects the discriminating power of terms, we report a comparison of entropy values for different term weighting schemes.

Keywords: 1/sigma, natural language processing, sentiment analysis, term weighting scheme, text classification

Procedia PDF Downloads 204
5784 Microarray Gene Expression Data Dimensionality Reduction Using PCA

Authors: Fuad M. Alkoot

Abstract:

Different experimental technologies such as microarray sequencing have been proposed to generate high-resolution genetic data, in order to understand the complex dynamic interactions between complex diseases and the biological system components of genes and gene products. However, the generated samples have a very large dimension reaching thousands. Therefore, hindering all attempts to design a classifier system that can identify diseases based on such data. Additionally, the high overlap in the class distributions makes the task more difficult. The data we experiment with is generated for the identification of autism. It includes 142 samples, which is small compared to the large dimension of the data. The classifier systems trained on this data yield very low classification rates that are almost equivalent to a guess. We aim at reducing the data dimension and improve it for classification. Here, we experiment with applying a multistage PCA on the genetic data to reduce its dimensionality. Results show a significant improvement in the classification rates which increases the possibility of building an automated system for autism detection.

Keywords: PCA, gene expression, dimensionality reduction, classification, autism

Procedia PDF Downloads 560
5783 Automatic Classification of Lung Diseases from CT Images

Authors: Abobaker Mohammed Qasem Farhan, Shangming Yang, Mohammed Al-Nehari

Abstract:

Pneumonia is a kind of lung disease that creates congestion in the chest. Such pneumonic conditions lead to loss of life of the severity of high congestion. Pneumonic lung disease is caused by viral pneumonia, bacterial pneumonia, or Covidi-19 induced pneumonia. The early prediction and classification of such lung diseases help to reduce the mortality rate. We propose the automatic Computer-Aided Diagnosis (CAD) system in this paper using the deep learning approach. The proposed CAD system takes input from raw computerized tomography (CT) scans of the patient's chest and automatically predicts disease classification. We designed the Hybrid Deep Learning Algorithm (HDLA) to improve accuracy and reduce processing requirements. The raw CT scans have pre-processed first to enhance their quality for further analysis. We then applied a hybrid model that consists of automatic feature extraction and classification. We propose the robust 2D Convolutional Neural Network (CNN) model to extract the automatic features from the pre-processed CT image. This CNN model assures feature learning with extremely effective 1D feature extraction for each input CT image. The outcome of the 2D CNN model is then normalized using the Min-Max technique. The second step of the proposed hybrid model is related to training and classification using different classifiers. The simulation outcomes using the publically available dataset prove the robustness and efficiency of the proposed model compared to state-of-art algorithms.

Keywords: CT scan, Covid-19, deep learning, image processing, lung disease classification

Procedia PDF Downloads 155
5782 African Horse Sickness a Possible Threat to Horses in Al-Baha

Authors: Ghanem Al-Ghamdi

Abstract:

African Horse Sickness causes significant challenges to horse practitioners and owners in Africa and possibly in certain locations in the Arab Pensila. The aim of this work was to observe a hot spot of epidemic in Al-Baha, Southwestern of Saudi Arabia that could be AHS. A five year-old horse farm that had eight horses with no history of clinical problems was visited in late October 2014. In August 2014, horses showed clinical signs of severe pain, congestion of mucus membranes, foam oozing of the nose, recumbency, difficult breath and ultimately death. The course of the disease averaged 2 days. The farm had no previous history of this episode. Other animals including camel, sheep reside the same farm sharing feeding and water sources however no obvious similar clinical problems were noticed among the two species. Five horses showed the clinical disease and all horses were lost. Veterinary help was not available for diagnosis or treatment. A follow up visit to the farm after one year indicated that the three remaining horses were healthy but were relocated to a different facility out the Al-Baha Region. The most likely cause of such clinical problem is African Horse Sickness, however clinical exam and sampling of other horses in the region is absolute must as well as examining arthropods.

Keywords: African horse sickness, horses, Al-Baha, Saudi Arabia

Procedia PDF Downloads 349
5781 Deep Vision: A Robust Dominant Colour Extraction Framework for T-Shirts Based on Semantic Segmentation

Authors: Kishore Kumar R., Kaustav Sengupta, Shalini Sood Sehgal, Poornima Santhanam

Abstract:

Fashion is a human expression that is constantly changing. One of the prime factors that consistently influences fashion is the change in colour preferences. The role of colour in our everyday lives is very significant. It subconsciously explains a lot about one’s mindset and mood. Analyzing the colours by extracting them from the outfit images is a critical study to examine the individual’s/consumer behaviour. Several research works have been carried out on extracting colours from images, but to the best of our knowledge, there were no studies that extract colours to specific apparel and identify colour patterns geographically. This paper proposes a framework for accurately extracting colours from T-shirt images and predicting dominant colours geographically. The proposed method consists of two stages: first, a U-Net deep learning model is adopted to segment the T-shirts from the images. Second, the colours are extracted only from the T-shirt segments. The proposed method employs the iMaterialist (Fashion) 2019 dataset for the semantic segmentation task. The proposed framework also includes a mechanism for gathering data and analyzing India’s general colour preferences. From this research, it was observed that black and grey are the dominant colour in different regions of India. The proposed method can be adapted to study fashion’s evolving colour preferences.

Keywords: colour analysis in t-shirts, convolutional neural network, encoder-decoder, k-means clustering, semantic segmentation, U-Net model

Procedia PDF Downloads 111
5780 Performance Comparison of Outlier Detection Techniques Based Classification in Wireless Sensor Networks

Authors: Ayadi Aya, Ghorbel Oussama, M. Obeid Abdulfattah, Abid Mohamed

Abstract:

Nowadays, many wireless sensor networks have been distributed in the real world to collect valuable raw sensed data. The challenge is to extract high-level knowledge from this huge amount of data. However, the identification of outliers can lead to the discovery of useful and meaningful knowledge. In the field of wireless sensor networks, an outlier is defined as a measurement that deviates from the normal behavior of sensed data. Many detection techniques of outliers in WSNs have been extensively studied in the past decade and have focused on classic based algorithms. These techniques identify outlier in the real transaction dataset. This survey aims at providing a structured and comprehensive overview of the existing researches on classification based outlier detection techniques as applicable to WSNs. Thus, we have identified key hypotheses, which are used by these approaches to differentiate between normal and outlier behavior. In addition, this paper tries to provide an easier and a succinct understanding of the classification based techniques. Furthermore, we identified the advantages and disadvantages of different classification based techniques and we presented a comparative guide with useful paradigms for promoting outliers detection research in various WSN applications and suggested further opportunities for future research.

Keywords: bayesian networks, classification-based approaches, KPCA, neural networks, one-class SVM, outlier detection, wireless sensor networks

Procedia PDF Downloads 496
5779 Fecal Immunochemical Testing to Deter Colon Cancer

Authors: Valerie A. Conrade

Abstract:

Introduction: A large body of literature suggests patients who complete fecal immunochemical testing (FIT) kits are likely to identify colorectal cancer sooner than those who do not complete FIT kits. Background: Patients who do not participate in preventative measures such as the FIT kit are at a higher risk of colorectal cancer growing unnoticed. The objective was to see if the method the principal investigator (PI) uses to educate clinical staff on the importance of FIT kit administration provides an increased amount of FIT kit dissemination to patients post clinical education. Methodologies: Data collection via manual tallies took place before and after the clinical staff was educated on the importance of FIT kits. Results: The results showed an increase in FIT kit dissemination post clinical staff education. Through enhanced instruction to the clinical staff regarding the importance of FIT kits, expanding their knowledge on preventative measures to detect colorectal cancer positively impacted nurses and, in turn, their patients.

Keywords: colon cancer, education, fecal immunochemical testing, nursing

Procedia PDF Downloads 138
5778 Transfer Learning for Protein Structure Classification at Low Resolution

Authors: Alexander Hudson, Shaogang Gong

Abstract:

Structure determination is key to understanding protein function at a molecular level. Whilst significant advances have been made in predicting structure and function from amino acid sequence, researchers must still rely on expensive, time-consuming analytical methods to visualise detailed protein conformation. In this study, we demonstrate that it is possible to make accurate (≥80%) predictions of protein class and architecture from structures determined at low (>3A) resolution, using a deep convolutional neural network trained on high-resolution (≤3A) structures represented as 2D matrices. Thus, we provide proof of concept for high-speed, low-cost protein structure classification at low resolution, and a basis for extension to prediction of function. We investigate the impact of the input representation on classification performance, showing that side-chain information may not be necessary for fine-grained structure predictions. Finally, we confirm that high resolution, low-resolution and NMR-determined structures inhabit a common feature space, and thus provide a theoretical foundation for boosting with single-image super-resolution.

Keywords: transfer learning, protein distance maps, protein structure classification, neural networks

Procedia PDF Downloads 136
5777 Graph-Based Semantical Extractive Text Analysis

Authors: Mina Samizadeh

Abstract:

In the past few decades, there has been an explosion in the amount of available data produced from various sources with different topics. The availability of this enormous data necessitates us to adopt effective computational tools to explore the data. This leads to an intense growing interest in the research community to develop computational methods focused on processing this text data. A line of study focused on condensing the text so that we are able to get a higher level of understanding in a shorter time. The two important tasks to do this are keyword extraction and text summarization. In keyword extraction, we are interested in finding the key important words from a text. This makes us familiar with the general topic of a text. In text summarization, we are interested in producing a short-length text which includes important information about the document. The TextRank algorithm, an unsupervised learning method that is an extension of the PageRank (algorithm which is the base algorithm of Google search engine for searching pages and ranking them), has shown its efficacy in large-scale text mining, especially for text summarization and keyword extraction. This algorithm can automatically extract the important parts of a text (keywords or sentences) and declare them as a result. However, this algorithm neglects the semantic similarity between the different parts. In this work, we improved the results of the TextRank algorithm by incorporating the semantic similarity between parts of the text. Aside from keyword extraction and text summarization, we develop a topic clustering algorithm based on our framework, which can be used individually or as a part of generating the summary to overcome coverage problems.

Keywords: keyword extraction, n-gram extraction, text summarization, topic clustering, semantic analysis

Procedia PDF Downloads 71
5776 Fuzzy Sentiment Analysis of Customer Product Reviews

Authors: Samaneh Nadali, Masrah Azrifah Azmi Murad

Abstract:

As a result of the growth of the web, people are able to express their views and opinions. They can now post reviews of products at merchant sites and express their views on almost anything in internet forums, discussion groups, and blogs. Therefore, the number of product reviews has grown rapidly. The large numbers of reviews make it difficult for manufacturers or businesses to automatically classify them into different semantic orientations (positive, negative, and neutral). For sentiment classification, most existing methods utilize a list of opinion words whereas this paper proposes a fuzzy approach for evaluating sentiments expressed in customer product reviews, to predict the strength levels (e.g. very weak, weak, moderate, strong and very strong) of customer product reviews by combinations of adjective, adverb and verb. The proposed fuzzy approach has been tested on eight benchmark datasets and obtained 74% accuracy, which leads to help the organization with a more clear understanding of customer's behavior in support of business planning process.

Keywords: fuzzy logic, customer product review, sentiment analysis

Procedia PDF Downloads 363
5775 Integrating Time-Series and High-Spatial Remote Sensing Data Based on Multilevel Decision Fusion

Authors: Xudong Guan, Ainong Li, Gaohuan Liu, Chong Huang, Wei Zhao

Abstract:

Due to the low spatial resolution of MODIS data, the accuracy of small-area plaque extraction with a high degree of landscape fragmentation is greatly limited. To this end, the study combines Landsat data with higher spatial resolution and MODIS data with higher temporal resolution for decision-level fusion. Considering the importance of the land heterogeneity factor in the fusion process, it is superimposed with the weighting factor, which is to linearly weight the Landsat classification result and the MOIDS classification result. Three levels were used to complete the process of data fusion, that is the pixel of MODIS data, the pixel of Landsat data, and objects level that connect between these two levels. The multilevel decision fusion scheme was tested in two sites of the lower Mekong basin. We put forth a comparison test, and it was proved that the classification accuracy was improved compared with the single data source classification results in terms of the overall accuracy. The method was also compared with the two-level combination results and a weighted sum decision rule-based approach. The decision fusion scheme is extensible to other multi-resolution data decision fusion applications.

Keywords: image classification, decision fusion, multi-temporal, remote sensing

Procedia PDF Downloads 124