Search results for: genetic enhancement
2641 Screening of Wheat Wild Relatives as a Gene Pool for Improved Photosynthesis in Wheat Breeding
Authors: Amanda J. Burridge, Keith J. Edwards, Paul A. Wilkinson, Tom Batstone, Erik H. Murchie, Lorna McAusland, Ana Elizabete Carmo-Silva, Ivan Jauregui, Tracy Lawson, Silvere R. M. Vialet-Chabrand
Abstract:
The rate of genetic progress in wheat production must be improved to meet global food security targets. However, past selection for domestication traits has reduced the genetic variation in modern wheat cultivars, a fact that could severely limit the future rate of genetic gain. The genetic variation in agronomically important traits for the wild relatives and progenitors of wheat is far greater than that of the current domesticated cultivars, but transferring these traits into modern cultivars is not straightforward. Between the elite cultivars of wheat, photosynthetic capacity is a key trait for which there is limited variation. Early screening of wheat wild relative and progenitors has shown differences in photosynthetic capacity and efficiency not only between wild relative species but marked differences between the accessions of each species. By identifying wild relative accessions with improved photosynthetic traits and characterising the genetic variation responsible, it is possible to incorporate these traits into advanced breeding programmes by wide crossing and introgression programmes. To identify the potential variety of photosynthetic capacity and efficiency available in the secondary and tertiary genepool, a wide scale survey was carried out for over 600 accessions from 80 species including those from the genus Aegilops, Triticum, Thinopyrum, Elymus, and Secale. Genotype data were generated for each accession using a ‘Wheat Wild Relative’ Single Nucleotide Polymorphism (SNP) genotyping array composed of 35,000 SNP markers polymorphic between wild relatives and elite hexaploid wheat. This genotype data was combined with phenotypic measurements such as gas exchange (CO₂, H₂O), chlorophyll fluorescence, growth, morphology, and RuBisCO activity to identify potential breeding material with enhanced photosynthetic capacity and efficiency. The data and associated analysis tools presented here will prove useful to anyone interested in increasing the genetic diversity in hexaploid wheat or the application of complex genotyping data to plant breeding.Keywords: wheat, wild relatives, pre-breeding, genomics, photosynthesis
Procedia PDF Downloads 2262640 Genetic Structuring of Four Tectona grandis L. F. Seed Production Areas in Southern India
Authors: P. M. Sreekanth
Abstract:
Teak (Tectona grandis L. f.) is a tree species indigenous to India and other Southeastern countries. It produces high-value timber and is easily established in plantations. Reforestation requires a constant supply of high quality seeds. Seed Production Areas (SPA) of teak are improved stands used for collection of open-pollinated quality seeds in large quantities. Information on the genetic diversity of major teak SPAs in India is scanty. The genetic structure of four important seed production areas of Kerala State in Southern India was analyzed employing amplified fragment length polymorphism markers using ten selective primer combinations on 80 samples (4 populations X 20 trees). The study revealed that the gene diversity of the SPAs varied from 0.169 (Konni SPA) to 0.203 (Wayanad SPA). The percentage of polymorphic loci ranged from 74.42 (Parambikulam SPA) to 84.06 (Konni SPA). The mean total gene diversity index (HT) of all the four SPAs was 0.2296 ±0.02. A high proportion of genetic diversity was observed within the populations (83%) while diversity between populations was lower (17%) (GST = 0.17). Principal coordinate analysis and STRUCTURE analysis of the genotypes indicated that the pattern of clustering was in accordance with the origin and geographic location of SPAs, indicating specific identity of each population. A UPGMA dendrogram was prepared and showed that all the twenty samples from each of Konni and Parambikulam SPAs clustered into two separate groups, respectively. However, five Nilambur genotypes and one Wayanad genotype intruded into the Konni cluster. The higher gene flow estimated (Nm = 2.4) reflected the inclusion of Konni origin planting stock in the Nilambur and Wayanad plantations. Evidence for population structure investigated using 3D Principal Coordinate Analysis of FAMD software 1.30 indicated that the pattern of clustering was in accordance with the origin of SPAs. The present study showed that assessment of genetic diversity in seed production plantations can be achieved using AFLP markers. The AFLP fingerprinting was also capable of identifying the geographical origin of planting stock and there by revealing the occurrence of the errors in genotype labeling. Molecular marker-based selective culling of genetically similar trees from a stand so as to increase the genetic base of seed production areas could be a new proposition to improve quality of seeds required for raising commercial plantations of teak. The technique can also be used to assess the genetic diversity status of plus trees within provenances during their selection for raising clonal seed orchards for assuring the quality of seeds available for raising future plantations.Keywords: AFLP, genetic structure, spa, teak
Procedia PDF Downloads 3082639 Harmony Search-Based K-Coverage Enhancement in Wireless Sensor Networks
Authors: Shaimaa M. Mohamed, Haitham S. Hamza, Imane A. Saroit
Abstract:
Many wireless sensor network applications require K-coverage of the monitored area. In this paper, we propose a scalable harmony search based algorithm in terms of execution time, K-Coverage Enhancement Algorithm (KCEA), it attempts to enhance initial coverage, and achieve the required K-coverage degree for a specific application efficiently. Simulation results show that the proposed algorithm achieves coverage improvement of 5.34% compared to K-Coverage Rate Deployment (K-CRD), which achieves 1.31% when deploying one additional sensor. Moreover, the proposed algorithm is more time efficient.Keywords: Wireless Sensor Networks (WSN), harmony search algorithms, K-Coverage, Mobile WSN
Procedia PDF Downloads 5272638 Advances in Sesame Molecular Breeding: A Comprehensive Review
Authors: Micheale Yifter Weldemichael
Abstract:
Sesame (Sesamum indicum L.) is among the most important oilseed crops for its high edible oil quality and quantity. Sesame is grown for food, medicinal, pharmaceutical, and industrial uses. Sesame is also cultivated as a main cash crop in Asia and Africa by smallholder farmers. Despite the global exponential increase in sesame cultivation area, its production and productivity remain low, mainly due to biotic and abiotic constraints. Notwithstanding the efforts to solve these problems, a low level of genetic variation and inadequate genomic resources hinder the progress of sesame improvement. The objective of this paper is, therefore, to review recent advances in the area of molecular breeding and transformation to overcome major production constraints and could result in enhanced and sustained sesame production. This paper reviews various researches conducted to date on molecular breeding and genetic transformation in sesame focusing on molecular markers used in assessing the available online database resources, genes responsible for key agronomic traits as well as transgenic technology and genome editing. The review concentrates on quantitative and semi-quantitative studies on molecular breeding for key agronomic traits such as improvement of yield components, oil and oil-related traits, disease and insect/pest resistance, and drought, waterlogging and salt tolerance, as well as sesame genetic transformation and genome editing techniques. Pitfalls and limitations of existing studies and methodologies used so far are identified and some priorities for future research directions in sesame genetic improvement are identified in this review.Keywords: abiotic stress, biotic stress, improvement, molecular breeding, oil, sesame, shattering
Procedia PDF Downloads 412637 Management and Genetic Characterization of Local Sheep Breeds for Better Productive and Adaptive Traits
Authors: Sonia Bedhiaf-Romdhani
Abstract:
The sheep (Ovis aries) was domesticated, approximately 11,000 years ago (YBP), in the Fertile Crescent from Asian Mouflon (Ovis Orientalis). The Northern African (NA) sheep is 7,000 years old, represents a remarkable diversity of sheep populations reared under traditional and low input farming systems (LIFS) over millennia. The majority of small ruminants in developing countries are encountered in low input production systems and the resilience of local communities in rural areas is often linked to the wellbeing of small ruminants. Regardless of the rich biodiversity encountered in sheep ecotypes there are four main sheep breeds in the country with 61,6 and 35.4 percents of Barbarine (fat tail breed) and Queue Fine de l’Ouest (thin tail breed), respectively. Phoenicians introduced the Barbarine sheep from the steppes of Central Asia in the Carthaginian period, 3000 years ago. The Queue Fine de l’Ouest is a thin-tailed meat breed heavily concentrated in the Western and the central semi-arid regions. The Noire de Thibar breed, involving mutton-fine wool producing animals, has been on the verge of extinction, it’s a composite black coated sheep breed found in the northern sub-humid region because of its higher nutritional requirements and non-tolerance of the prevailing harsher condition. The D'Man breed, originated from Morocco, is mainly located in the southern oases of the extreme arid ecosystem. A genetic investigation of Tunisian sheep breeds using a genome-wide scan of approximately 50,000 SNPs was performed. Genetic analysis of relationship between breeds highlighted the genetic differentiation of Noire de Thibar breed from the other local breeds, reflecting the effect of past events of introgression of European gene pool. The Queue Fine de l’Ouest breed showed a genetic heterogeneity and was close to Barbarine. The D'Man breed shared a considerable gene flow with the thin-tailed Queue Fine de l'Ouest breed. Native small ruminants breeds, are capable to be efficiently productive if essential ingredients and coherent breeding schemes are implemented and followed. Assessing the status of genetic variability of native sheep breeds could provide important clues for research and policy makers to devise better strategies for the conservation and management of genetic resources.Keywords: sheep, farming systems, diversity, SNPs.
Procedia PDF Downloads 1472636 Genetic Improvement Potential for Wood Production in Melaleuca cajuputi
Authors: Hong Nguyen Thi Hai, Ryota Konda, Dat Kieu Tuan, Cao Tran Thanh, Khang Phung Van, Hau Tran Tin, Harry Wu
Abstract:
Melaleuca cajuputi is a moderately fast-growing species and considered as a multi-purpose tree as it provides fuelwood, piles and frame poles in construction, leaf essential oil and honey. It occurs in Australia, Papua New Guinea, and South-East Asia. M. cajuputi plantation can be harvested on 6-7 year rotations for wood products. Its timber can also be used for pulp and paper, fiber and particle board, producing quality charcoal and potentially sawn timber. However, most reported M. cajuputi breeding programs have been focused on oil production rather than wood production. In this study, breeding program of M. cajuputi aimed to improve wood production was examined by estimating genetic parameters for growth (tree height, diameter at breast height (DBH), and volume), stem form, stiffness (modulus of elasticity (MOE)), bark thickness and bark ratio in a half-sib family progeny trial including 80 families in the Mekong Delta of Vietnam. MOE is one of the key wood properties of interest to the wood industry. Non-destructive wood stiffness was measured indirectly by acoustic velocity using FAKOPP Microsecond Timer and especially unaffected by bark mass. Narrow-sense heritability for the seven traits ranged from 0.13 to 0.27 at age 7 years. MOE and stem form had positive genetic correlations with growth while the negative correlation between bark ratio and growth was also favorable. Breeding for simultaneous improvement of multiple traits, faster growth with higher MOE and reduction of bark ratio should be possible in M. cajuputi. Index selection based on volume and MOE showed genetic gains of 31 % in volume, 6 % in MOE and 13 % in stem form. In addition, heritability and age-age genetic correlations for growth traits increased with time and optimal early selection age for growth of M. cajuputi based on DBH alone was 4 years. Selected thinning resulted in an increase of heritability due to considerable reduction of phenotypic variation but little effect on genetic variation.Keywords: acoustic velocity, age-age correlation, bark thickness, heritability, Melaleuca cajuputi, stiffness, thinning effect
Procedia PDF Downloads 1822635 Genomic Identification of Anisakis Simplex Larvae by PCR-RAPD
Authors: Fumiko Kojima, Shuji Fujimoto
Abstract:
Anisakiasis is a disease caused by infection with an anisakid larvae, mostly Anisakis simplex. The larvae commonly infect in marine fish and the disease is frequently reported in areas of the world where fish is consumed raw, lightly pickled or salted. In Japan, people have the habit of eating raw fish such as ‘sushi’ or ‘sashimi’, so they have more chance of infection with larvae of anisakid nematodes. There are three sibling species in A. simplex larvae, namely, A. simplex sensu stricto (Asss), A. pegreffii (Ap) and A. simplex C. It was revealed that Ap is dominant among the larvae from fish (Scomber japonics) in the Japan Sea side and Asss is dominant among those of the Pacific Ocean side conversely. Although anisakiasis has happened in Japan among both the Japan Sea side area and the Pacific Ocean side area. The aim of this study was to investigate genetic variations between the siblings (Asss and Ap) and within the same sibling species by random amplified polymorphic DNA (RAPD) technique. In order to investigate the genetic difference among the each A. simplex larvae, we used RAPD technique to differentiate individuals of A. simplex obtained from Scomber japonics fish those were caught in the Japan sea (Goto Islands in Nagasaki Prefecture) and the cost of Pacific Ocean (Kanagawa Prefecture). The RAPD patterns of the control DNA (Genus Raphidascaris) were markedly different from those of the A. simplex. There were differences in amplification patterns between Asss and Ap. The RAPD patterns for larvae obtained from fish of the same sea were somewhat different and variations were detected even among larvae from the same fish. These results suggest the considerable high genetic variability between Asss and Ap and the possible existence of genetic variation within the sibling species.Keywords: Anisakiasis in Japan, Anisakis simplex, genomic identification, PCR-RAPD
Procedia PDF Downloads 1822634 FLIME - Fast Low Light Image Enhancement for Real-Time Video
Authors: Vinay P., Srinivas K. S.
Abstract:
Low Light Image Enhancement is of utmost impor- tance in computer vision based tasks. Applications include vision systems for autonomous driving, night vision devices for defence systems, low light object detection tasks. Many of the existing deep learning methods are resource intensive during the inference step and take considerable time for processing. The algorithm should take considerably less than 41 milliseconds in order to process a real-time video feed with 24 frames per second and should be even less for a video with 30 or 60 frames per second. The paper presents a fast and efficient solution which has two main advantages, it has the potential to be used for a real-time video feed, and it can be used in low compute environments because of the lightweight nature. The proposed solution is a pipeline of three steps, the first one is the use of a simple function to map input RGB values to output RGB values, the second is to balance the colors and the final step is to adjust the contrast of the image. Hence a custom dataset is carefully prepared using images taken in low and bright lighting conditions. The preparation of the dataset, the proposed model, the processing time are discussed in detail and the quality of the enhanced images using different methods is shown.Keywords: low light image enhancement, real-time video, computer vision, machine learning
Procedia PDF Downloads 2082633 Twenty-Five Polymorphic Microsatellite Loci Used To Genotype Some Camel Types and Subtypes From Sudan, Qatar, Chad, And Somalia
Authors: Wathig Hashim Mohamed Ibrahim
Abstract:
Twenty Five polymorphic microsatellite out of 50 Loci were used to genotype some camel (Camelus dromedarius) types and subtypes in Sudan (Naylawi, Shanapla, Lahawi, Kinani, Rashaydi, Bani-Aamir, Annafi, Bishari Shallagyai and Bishari Arririt) and that from Qatar (OmmaniHJ, OmmaniKH, Majaheem, Pakistani Sindi, Pakistani Punjabi and Pakistani) and for comparative; one type from Somalia (Aarhou) and another from Chad (Spotted) were investigated. The highest number of alleles were 23 in Locus CVRL 01, and lowest were 2 in YWLL 59. The observed heterozygosity (Hobs) were 0.950 and 0.049 for VOLP08 and YWLL09, respectively, while the expected heterozygosity (HExp) were 0.915 and 0.362 for Locus VOLP67 and YWLL58, respectively, and the HExp mean was 0.7378. Polymorphic Information Content (PIC) ranged between 0.907 - 0.345 in Locus VOLP67 and YWLL58, and the PIC mean was 0.7002. The genetic distance ranged between 0.545 – 0.098 for Shallagyai (Bishari subtype) – Pakistani Sindi subtype and between Annafi - Rashaydi, respectively. The genetic distance between spotted and all types ranged between 0.223 with Arririt (Bishari subtype) and 0.463 with Punjabi (Pakistani subtype) that found in Qatar, while all types with Aarhou ranged between 0.215 for Arririt and 0.469 with Punjabi (Pakistani subtype). The dondrogram shows that there is a relationship between the genetic makeup and geographical distributions and also between the genetic makeup and phenotypic characteristic. Individual assignment was calculated, 46.62% correctly assigned and 46.87% quality index. Hardy Weinberg Equivalent (HWE) was also calculated. Key words: Camel, genotype, polymorphic microsatelliteKeywords: camel, genotype, polymorphic microsatellite, types and subtypes
Procedia PDF Downloads 822632 Genetic Association of SIX6 Gene with Pathogenesis of Glaucoma
Authors: Riffat Iqbal, Sidra Ihsan, Andleeb Batool, Maryam Mukhtar
Abstract:
Glaucoma is a gathering of optic neuropathies described by dynamic degeneration of retinal ganglionic cells. It is clinically and innately heterogenous illness containing a couple of particular forms each with various causes and severities. Primary open-angle glaucoma (POAG) is the most generally perceived kind of glaucoma. This study investigated the genetic association of single nucleotide polymorphisms (SNPs; rs10483727 and rs33912345) at the SIX1/SIX6 locus with primary open-angle glaucoma (POAG) in the Pakistani population. The SIX6 gene plays an important role in ocular development and has been associated with morphology of the optic nerve. A total of 100 patients clinically diagnosed with glaucoma and 100 control individuals of age over 40 were enrolled in the study. Genomic DNA was extracted by organic extraction method. The SNP genotyping was done by (i) PCR based restriction fragment length polymorphism (RFLP) and sequencing method. Significant genetic associations were observed for rs10483727 (risk allele T) and rs33912345 (risk allele C) with POAG. Hence, it was concluded that Six6 gene is genetically associated with pathogenesis of Glaucoma in Pakistan.Keywords: genotyping, Pakistani population, primary open-angle glaucoma, SIX6 gene
Procedia PDF Downloads 1862631 Minimum Half Power Beam Width and Side Lobe Level Reduction of Linear Antenna Array Using Particle Swarm Optimization
Authors: Saeed Ur Rahman, Naveed Ullah, Muhammad Irshad Khan, Quensheng Cao, Niaz Muhammad Khan
Abstract:
In this paper the optimization performance of non-uniform linear antenna array is presented. The Particle Swarm Optimization (PSO) algorithm is presented to minimize Side Lobe Level (SLL) and Half Power Beamwidth (HPBW). The purpose of using the PSO algorithm is to get the optimum values for inter-element spacing and excitation amplitude of linear antenna array that provides a radiation pattern with minimum SLL and HPBW. Various design examples are considered and the obtain results using PSO are confirmed by comparing with results achieved using other nature inspired metaheuristic algorithms such as real coded genetic algorithm (RGA) and biogeography (BBO) algorithm. The comparative results show that optimization of linear antenna array using the PSO provides considerable enhancement in the SLL and HPBW.Keywords: linear antenna array, minimum side lobe level, narrow half power beamwidth, particle swarm optimization
Procedia PDF Downloads 5532630 Phylogenetic Studies of Six Egyptian Sheep Breeds Using Cytochrome B
Authors: Othman Elmahdy Othman, Agnés Germot, Daniel Petit, Muhammad Khodary, Abderrahman Maftah
Abstract:
Recently, the control (D-loop) and cytochrome b (Cyt b) regions of mtDNA have received more attention due to their role in the genetic diversity and phylogenetic studies in different livestock which give important knowledge towards the genetic resource conservation. Studies based on sequencing of sheep mitochondrial DNA showed that there are five maternal lineages in the world for domestic sheep breeds; A, B, C, D and E. By using cytochrome B sequencing, we aimed to clarify the genetic affinities and phylogeny of six Egyptian sheep breeds. Blood samples were collected from 111 animals belonging to six Egyptian sheep breeds; Barki, Rahmani, Ossimi, Saidi, Sohagi and Fallahi. The total DNA was extracted and the specific primers were used for conventional PCR amplification of the cytochrome B region of mtDNA. PCR amplified products were purified and sequenced. The alignment of sequences was done using BioEdit software and DnaSP 5.00 software was used to identify the sequence variation and polymorphic sites in the aligned sequences. The result showed that the presence of 39 polymorphic sites leading to the formation of 29 haplotypes. The haplotype diversity in six tested breeds ranged from 0.643 in Rahmani breed to 0.871 in Barki breed. The lowest genetic distance was observed between Rahmani and Saidi (D: 1.436 and Dxy: 0.00127) while the highest distance was observed between Ossimi and Sohagi (D: 6.050 and Dxy: 0.00534). Neighbour-joining (Phylogeny) tree was constructed using Mega 5.0 software. The sequences of 111 analyzed samples were aligned with references sequences of different haplogroups; A, B, C, D and E. The phylogeny result showed the presence of four haplogroups; HapA, HapB, HapC and HapE in the examined samples whereas the haplogroup D was not found. The result showed that 88 out of 111 tested animals cluster with haplogroup B (79.28%), whereas 12 tested animals cluster with haplogroup A (10.81%), 10 animals cluster with haplogroup C (9.01%) and one animal belongs to haplogroup E (0.90%).Keywords: phylogeny, genetic biodiversity, MtDNA, cytochrome B, Egyptian sheep
Procedia PDF Downloads 3472629 Genetically Modified Organisms
Authors: Mudrika Singhal
Abstract:
The research paper is basically about how the genetically modified organisms evolved and their significance in today’s world. It also highlights about the various pros and cons of the genetically modified organisms and the progress of India in this field. A genetically modified organism is the one whose genetic material has been altered using genetic engineering techniques. They have a wide range of uses such as transgenic plants, genetically modified mammals such as mouse and also in insects and aquatic life. Their use is rooted back to the time around 12,000 B.C. when humans domesticated plants and animals. At that humans used genetically modified organisms produced by the procedure of selective breeding and not by genetic engineering techniques. Selective breeding is the procedure in which selective traits are bred in plants and animals and then are domesticated. Domestication of wild plants into a suitable cultigen is a well known example of this technique. GMOs have uses in varied fields ranging from biological and medical research, production of pharmaceutical drugs to agricultural fields. The first organisms to be genetically modified were the microbes because of their simpler genetics. At present the genetically modified protein insulin is used to treat diabetes. In the case of plants transgenic plants, genetically modified crops and cisgenic plants are the examples of genetic modification. In the case of mammals, transgenic animals such as mice, rats etc. serve various purposes such as researching human diseases, improvement in animal health etc. Now coming upon the pros and cons related to the genetically modified organisms, pros include crops with higher yield, less growth time and more predictable in comparison to traditional breeding. Cons include that they are dangerous to mammals such as rats, these products contain protein which would trigger allergic reactions. In India presently, group of GMOs include GM microorganisms, transgenic crops and animals. There are varied applications in the field of healthcare and agriculture. In the nutshell, the research paper is about the progress in the field of genetic modification, taking along the effects in today’s world.Keywords: applications, mammals, transgenic, engineering and technology
Procedia PDF Downloads 5982628 Relay Node Placement for Connectivity Restoration in Wireless Sensor Networks Using Genetic Algorithms
Authors: Hanieh Tarbiat Khosrowshahi, Mojtaba Shakeri
Abstract:
Wireless Sensor Networks (WSNs) consist of a set of sensor nodes with limited capability. WSNs may suffer from multiple node failures when they are exposed to harsh environments such as military zones or disaster locations and lose connectivity by getting partitioned into disjoint segments. Relay nodes (RNs) are alternatively introduced to restore connectivity. They cost more than sensors as they benefit from mobility, more power and more transmission range, enforcing a minimum number of them to be used. This paper addresses the problem of RN placement in a multiple disjoint network by developing a genetic algorithm (GA). The problem is reintroduced as the Steiner tree problem (which is known to be an NP-hard problem) by the aim of finding the minimum number of Steiner points where RNs are to be placed for restoring connectivity. An upper bound to the number of RNs is first computed to set up the length of initial chromosomes. The GA algorithm then iteratively reduces the number of RNs and determines their location at the same time. Experimental results indicate that the proposed GA is capable of establishing network connectivity using a reasonable number of RNs compared to the best existing work.Keywords: connectivity restoration, genetic algorithms, multiple-node failure, relay nodes, wireless sensor networks
Procedia PDF Downloads 2432627 Prevalence and Genetic Determinant of Drug Resistant Tuberculosis among Patients Completing Intensive Phase of Treatment in a Tertiary Referral Center in Nigeria
Authors: Aminu Bashir Mohammad, Agwu Ezera, Abdulrazaq G. Habib, Garba Iliyasu
Abstract:
Background: Drug resistance tuberculosis (DR-TB) continues to be a challenge in developing countries with poor resources. Routine screening for primary DR-TB before commencing treatment is not done in public hospitals in Nigeria, even with the large body of evidence that shows a high prevalence of primary DR-TB. Data on drug resistance and its genetic determinant among follow up TB patients is lacking in Nigeria. Hence the aim of this study was to determine the prevalence and genetic determinant of drug resistance among follow up TB patients in a tertiary hospital in Nigeria. Methods: This was a cross-sectional laboratory-based study conducted on 384 sputum samples collected from consented follow-up tuberculosis patients. Standard microbiology methods (Zeil-Nielsen staining and microscopy) and PCR (Line Probe Assay)] were used to analyze the samples collected. Person’s Chi-square was used to analyze the data generated. Results: Out of three hundred and eighty-four (384) sputum samples analyzed for mycobacterium tuberculosis (MTB) and DR-TB twenty-five 25 (6.5%) were found to be AFB positive. These samples were subjected to PCR (Line Probe Assay) out of which 18(72%) tested positive for DR-TB. Mutations conferring resistance to rifampicin (rpo B) and isoniazid (katG, and or inhA) were detected in 12/18(66.7%) and 6/18(33.3%), respectively. Transmission dynamic of DR-TB was not significantly (p>0.05) dependent on demographic characteristics. Conclusion: There is a need to strengthened the laboratory capacity for diagnosis of TB and drug resistance testing and make these services available, affordable, and accessible to the patients who need them.Keywords: drug resistance tuberculosis, genetic determinant, intensive phase, Nigeria
Procedia PDF Downloads 2882626 Optimal Sensing Technique for Estimating Stress Distribution of 2-D Steel Frame Structure Using Genetic Algorithm
Authors: Jun Su Park, Byung Kwan Oh, Jin Woo Hwang, Yousok Kim, Hyo Seon Park
Abstract:
For the structural safety, the maximum stress calculated from the stress distribution of a structure is widely used. The stress distribution can be estimated by deformed shape of the structure obtained from measurement. Although the estimation of stress is strongly affected by the location and number of sensing points, most studies have conducted the stress estimation without reasonable basis on sensing plan such as the location and number of sensors. In this paper, an optimal sensing technique for estimating the stress distribution is proposed. This technique proposes the optimal location and number of sensing points for a 2-D frame structure while minimizing the error of stress distribution between analytical model and estimation by cubic smoothing splines using genetic algorithm. To verify the proposed method, the optimal sensor measurement technique is applied to simulation tests on 2-D steel frame structure. The simulation tests are performed under various loading scenarios. Through those tests, the optimal sensing plan for the structure is suggested and verified.Keywords: genetic algorithm, optimal sensing, optimizing sensor placements, steel frame structure
Procedia PDF Downloads 5332625 Analysis of Expert Possibilities While Identifying Human Teeth
Authors: Saule Mussabekova
Abstract:
Forensic investigation of human teeth plays an important role in detection of crime, particularly in cases of personal identification of dead bodies changed by putrefactive processes or skeletonized bodies as well as when finding bodies of unknown persons. 152 teeth have been investigated; 85 of them belonged to men and 67 belonged to women taken from alive people of different age. Teeth have been investigated after extraction. Two types of teeth have been investigated: teeth without integrity violation of dental crown and teeth with different degrees of its violation. Additionally, 517 teeth have been investigated that were collected from dead bodies, 252 of which belonged to women and 265 belonged to men, whatever the cause of death with death limitation from 1 month to 20 years. Isohemagglutinating serums and Coliclons of different series have been used for the research of tooth-group specificity by serological methods according to the AB0 system. Standard protocols of different techniques have been used for DNA purification from teeth (by reagent Chelex 100 produced by Bio-Rad using reagent kit 'DNA IQTM System' produced by Promega company (USA) and using columns 'QIAamp DNA Investigator Kit' produced by Qiagen company). Results of comparative forensic investigation of human teeth using serological and molecular genetic methods have shown that use of serological methods for forensic identification is sensible only in cases of preselection prior to the next molecular genetic investigation as well as in cases of impossibility of corresponding genetic investigation for different objective reasons. A number of advantages of methods of molecular genetics in the dental investigation have been marked, particularly in putrefactive changes, in personal identification. Key moments of modern condition of personal identification have been reflected according to dental state. Prospective directions of advance preparation of material have been emphasized for identification of teeth in forensic practice.Keywords: dental state, forensic identification, molecular genetic analysis, teeth
Procedia PDF Downloads 1422624 Interaction of Low-Impact Development Techniques and Urban River Flooding on the Zoning – Case Study Qomroud
Authors: Mohammad Reza Kavianpour, Arsalan Behzadifard Pour, Ali Aghazadeh Cloudy, Abolfazl Moqimi
Abstract:
In recent decades, and with increasing of urban population and development of the city, the amount of impermeable surfaces has been increased. This cause urban runoff enhancement. This enhancement, especially in cities with urban river, increases the possibility of urban flooding caused by the river flooding interaction and urban runoff. In this research, we tried SWMM utilizes software development methods and practices that seek to reduce the impact of runoff to the river flows to reduce Qomroud and Effects using Arc GIS and HEC-RAS software on how we see the flood zone.Keywords: flood management, SWMM, runoff, flood zone
Procedia PDF Downloads 6142623 An Efficient Machine Learning Model to Detect Metastatic Cancer in Pathology Scans Using Principal Component Analysis Algorithm, Genetic Algorithm, and Classification Algorithms
Authors: Bliss Singhal
Abstract:
Machine learning (ML) is a branch of Artificial Intelligence (AI) where computers analyze data and find patterns in the data. The study focuses on the detection of metastatic cancer using ML. Metastatic cancer is the stage where cancer has spread to other parts of the body and is the cause of approximately 90% of cancer-related deaths. Normally, pathologists spend hours each day to manually classifying whether tumors are benign or malignant. This tedious task contributes to mislabeling metastasis being over 60% of the time and emphasizes the importance of being aware of human error and other inefficiencies. ML is a good candidate to improve the correct identification of metastatic cancer, saving thousands of lives and can also improve the speed and efficiency of the process, thereby taking fewer resources and time. So far, the deep learning methodology of AI has been used in research to detect cancer. This study is a novel approach to determining the potential of using preprocessing algorithms combined with classification algorithms in detecting metastatic cancer. The study used two preprocessing algorithms: principal component analysis (PCA) and the genetic algorithm, to reduce the dimensionality of the dataset and then used three classification algorithms: logistic regression, decision tree classifier, and k-nearest neighbors to detect metastatic cancer in the pathology scans. The highest accuracy of 71.14% was produced by the ML pipeline comprising of PCA, the genetic algorithm, and the k-nearest neighbor algorithm, suggesting that preprocessing and classification algorithms have great potential for detecting metastatic cancer.Keywords: breast cancer, principal component analysis, genetic algorithm, k-nearest neighbors, decision tree classifier, logistic regression
Procedia PDF Downloads 832622 Ordinary Differentiation Equations (ODE) Reconstruction of High-Dimensional Genetic Networks through Game Theory with Application to Dissecting Tree Salt Tolerance
Authors: Libo Jiang, Huan Li, Rongling Wu
Abstract:
Ordinary differentiation equations (ODE) have proven to be powerful for reconstructing precise and informative gene regulatory networks (GRNs) from dynamic gene expression data. However, joint modeling and analysis of all genes, essential for the systematical characterization of genetic interactions, are challenging due to high dimensionality and a complex pattern of genetic regulation including activation, repression, and antitermination. Here, we address these challenges by unifying variable selection and game theory through ODE. Each gene within a GRN is co-expressed with its partner genes in a way like a game of multiple players, each of which tends to choose an optimal strategy to maximize its “fitness” across the whole network. Based on this unifying theory, we designed and conducted a real experiment to infer salt tolerance-related GRNs for Euphrates poplar, a hero tree that can grow in the saline desert. The pattern and magnitude of interactions between several hub genes within these GRNs were found to determine the capacity of Euphrates poplar to resist to saline stress.Keywords: gene regulatory network, ordinary differential equation, game theory, LASSO, saline resistance
Procedia PDF Downloads 6402621 An Improved GA to Address Integrated Formulation of Project Scheduling and Material Ordering with Discount Options
Authors: Babak H. Tabrizi, Seyed Farid Ghaderi
Abstract:
Concurrent planning of the resource constraint project scheduling and material ordering problems have received significant attention within the last decades. Hence, the issue has been investigated here with the aim to minimize total project costs. Furthermore, the presented model considers different discount options in order to approach the real world conditions. The incorporated alternatives consist of all-unit and incremental discount strategies. On the other hand, a modified version of the genetic algorithm is applied in order to solve the model for larger sizes, in particular. Finally, the applicability and efficiency of the given model is tested by different numerical instances.Keywords: genetic algorithm, material ordering, project management, project scheduling
Procedia PDF Downloads 3032620 Low Light Image Enhancement with Multi-Stage Interconnected Autoencoders Integration in Pix to Pix GAN
Authors: Muhammad Atif, Cang Yan
Abstract:
The enhancement of low-light images is a significant area of study aimed at enhancing the quality of captured images in challenging lighting environments. Recently, methods based on convolutional neural networks (CNN) have gained prominence as they offer state-of-the-art performance. However, many approaches based on CNN rely on increasing the size and complexity of the neural network. In this study, we propose an alternative method for improving low-light images using an autoencoder-based multiscale knowledge transfer model. Our method leverages the power of three autoencoders, where the encoders of the first two autoencoders are directly connected to the decoder of the third autoencoder. Additionally, the decoder of the first two autoencoders is connected to the encoder of the third autoencoder. This architecture enables effective knowledge transfer, allowing the third autoencoder to learn and benefit from the enhanced knowledge extracted by the first two autoencoders. We further integrate the proposed model into the PIX to PIX GAN framework. By integrating our proposed model as the generator in the GAN framework, we aim to produce enhanced images that not only exhibit improved visual quality but also possess a more authentic and realistic appearance. These experimental results, both qualitative and quantitative, show that our method is better than the state-of-the-art methodologies.Keywords: low light image enhancement, deep learning, convolutional neural network, image processing
Procedia PDF Downloads 852619 Integrating a Universal Forensic DNA Database: Anticipated Deterrent Effects
Authors: Karen Fang
Abstract:
Investigative genetic genealogy has attracted much interest in both the field of ethics and the public eye due to its global application in criminal cases. Arguments have been made regarding privacy and informed consent, especially with law enforcement using consumer genetic testing results to convict individuals. In the case of public interest, DNA databases have the strong potential to significantly reduce crime, which in turn leads to safer communities and better futures. With the advancement of genetic technologies, the integration of a universal forensic DNA database in violent crimes, crimes against children, and missing person cases is expected to deter crime while protecting one’s privacy. Rather than collecting whole genomes from the whole population, STR profiles can be used to identify unrelated individuals without compromising personal information such as physical appearance, disease risk, and geographical origin, and additionally, reduce cost and storage space. STR DNA profiling is already used in the forensic science field and going a step further benefits several areas, including the reduction in recidivism, improved criminal court case turnaround time, and just punishment. Furthermore, adding individuals to the database as early as possible prevents young offenders and first-time offenders from participating in criminal activity. It is important to highlight that DNA databases should be inclusive and tightly governed, and the misconception on the use of DNA based on crime television series and other media sources should be addressed. Nonetheless, deterrent effects have been observed in countries like the US and Denmark with DNA databases that consist of serious violent offenders. Fewer crimes were reported, and fewer people were convicted of those crimes- a favorable outcome, not even the death penalty could provide. Currently, there is no better alternative than a universal forensic DNA database made up of STR profiles. It can open doors for investigative genetic genealogy and fostering better communities. Expanding the appropriate use of DNA databases is ethically acceptable and positively impacts the public.Keywords: bioethics, deterrent effects, DNA database, investigative genetic genealogy, privacy, public interest
Procedia PDF Downloads 1502618 Bioinformatic Approaches in Population Genetics and Phylogenetic Studies
Authors: Masoud Sheidai
Abstract:
Biologists with a special field of population genetics and phylogeny have different research tasks such as populations’ genetic variability and divergence, species relatedness, the evolution of genetic and morphological characters, and identification of DNA SNPs with adaptive potential. To tackle these problems and reach a concise conclusion, they must use the proper and efficient statistical and bioinformatic methods as well as suitable genetic and morphological characteristics. In recent years application of different bioinformatic and statistical methods, which are based on various well-documented assumptions, are the proper analytical tools in the hands of researchers. The species delineation is usually carried out with the use of different clustering methods like K-means clustering based on proper distance measures according to the studied features of organisms. A well-defined species are assumed to be separated from the other taxa by molecular barcodes. The species relationships are studied by using molecular markers, which are analyzed by different analytical methods like multidimensional scaling (MDS) and principal coordinate analysis (PCoA). The species population structuring and genetic divergence are usually investigated by PCoA and PCA methods and a network diagram. These are based on bootstrapping of data. The Association of different genes and DNA sequences to ecological and geographical variables is determined by LFMM (Latent factor mixed model) and redundancy analysis (RDA), which are based on Bayesian and distance methods. Molecular and morphological differentiating characters in the studied species may be identified by linear discriminant analysis (DA) and discriminant analysis of principal components (DAPC). We shall illustrate these methods and related conclusions by giving examples from different edible and medicinal plant species.Keywords: GWAS analysis, K-Means clustering, LFMM, multidimensional scaling, redundancy analysis
Procedia PDF Downloads 1262617 Milk Yield and Fingerprinting of Beta-Casein Precursor (CSN2) Gene in Some Saudi Camel Breeds
Authors: Amr A. El Hanafy, Yasser M. Saad, Saleh A. Alkarim, Hussein A. Almehdar, Elrashdy M. Redwan
Abstract:
Camels are substantial providers of transport, milk, sport, meat, shelter, fuel, security and capital in many countries, particularly Saudi Arabia. Identification of animal breeds has progressed rapidly during the last decade. Advanced molecular techniques are playing a significant role in breeding or strain protection laws. On the other hand, fingerprinting of some molecular markers related to some productive traits in farm animals represents most important studies to our knowledge, which aim to conserve these local genetic resources, and to the genetic improvement of such local breeds by selective programs depending on gene markers. Milk records were taken two days in each week from female camels of Majahem, Safara, Wathaha, and Hamara breeds, respectively from different private farms in northern Jeddah, Riyadh and Alwagh governorates and average weekly yields were calculated. DNA sequencing for CSN2 gene was used for evaluating the genetic variations and calculating the genetic distance values among four Saudi camel populations which are Hamra(R), Safra(Y), Wadha(W) and Majaheim(M). In addition, this marker was analyzed for reconstructing the Neighbor joining tree among evaluating camel breeds. In respect to milk yield during winter season, result indicated that average weekly milk yield of Safara camel breed (30.05 Kg/week) is significantly (p < 0.05) lower than the other 3 breeds which ranged from 39.68 for Hamara to 42.42 Kg/week for Majahem, while there are not significant differences between these three breeds. The Neighbor Joining analysis that re-constructed based on DNA variations showed that samples are clustered into two unique clades. The first clade includes Y (from Y4 to Y18) and M (from M1, to M9). On the other hand, the second cluster is including all R (from R1 to R6) and W (from W1 to W6). The genetic distance values were equal 0.0068 (between the groups M&Y and R&W) and equal 0 (within each group).Keywords: milk yield, beta-casein precursor (CSN2), Saudi camel, molecular markers
Procedia PDF Downloads 2162616 Evaluation of Cognitive Benefits among Differently Abled Subjects with Video Game as Intervention
Authors: H. Nagendra, Vinod Kumar, S. Mukherjee
Abstract:
In this study, the potential benefits of playing action video game among congenitally deaf and dumb subjects is reported in terms of EEG ratio indices. The frontal and occipital lobes are associated with development of motor skills, cognition, and visual information processing and color recognition. The sixteen hours of First-Person shooter action video game play resulted in the increase of the ratios β/(α+θ) and β/θ in frontal and occipital lobes. This can be attributed to the enhancement of certain aspect of cognition among deaf and dumb subjects.Keywords: cognitive enhancement, video games, EEG band powers, deaf and dumb subjects
Procedia PDF Downloads 4362615 EDM for Prediction of Academic Trends and Patterns
Authors: Trupti Diwan
Abstract:
Predicting student failure at school has changed into a difficult challenge due to both the large number of factors that can affect the reduced performance of students and the imbalanced nature of these kinds of data sets. This paper surveys the two elements needed to make prediction on Students’ Academic Performances which are parameters and methods. This paper also proposes a framework for predicting the performance of engineering students. Genetic programming can be used to predict student failure/success. Ranking algorithm is used to rank students according to their credit points. The framework can be used as a basis for the system implementation & prediction of students’ Academic Performance in Higher Learning Institute.Keywords: classification, educational data mining, student failure, grammar-based genetic programming
Procedia PDF Downloads 4232614 Physicians’ Knowledge and Perception of Gene Profiling in Malaysia: A Pilot Study
Authors: Farahnaz Amini, Woo Yun Kin, Lazwani Kolandaiveloo
Abstract:
Availability of different genetic tests after completion of Human Genome Project increases the physicians’ responsibility to keep themselves update on the potential implementation of these genetic tests in their daily practice. However, due to numbers of barriers, still many of physicians are not either aware of these tests or are not willing to offer or refer their patients for genetic tests. This study was conducted an anonymous, cross-sectional, mailed-based survey to develop a primary data of Malaysian physicians’ level of knowledge and perception of gene profiling. Questionnaire had 29 questions. Total scores on selected questions were used to assess the level of knowledge. The highest possible score was 11. Descriptive statistics, one way ANOVA and chi-squared test was used for statistical analysis. Sixty three completed questionnaires was returned by 27 general practitioners (GPs) and 36 medical specialists. Responders’ age range from 24 to 55 years old (mean 30.2 ± 6.4). About 40% of the participants rated themselves as having poor level of knowledge in genetics in general whilst 60% believed that they have fair level of knowledge. However, almost half (46%) of the respondents felt that they were not knowledgeable about available genetic tests. A majority (94%) of the responders were not aware of any lab or company which is offering gene profiling services in Malaysia. Only 4% of participants were aware of using gene profiling for detection of dosage of some drugs. Respondents perceived greater utility of gene profiling for breast cancer (38%) compared to the colorectal familial cancer (3%). The score of knowledge ranged from 2 to 8 (mean 4.38 ± 1.67). Non-significant differences between score of knowledge of GPs and specialists were observed, with score of 4.19 and 4.58 respectively. There was no significant association between any demographic factors and level of knowledge. However, those who graduated between years 2001 to 2005 had higher level of knowledge. Overall, 83% of participants showed relatively high level of perception on value of gene profiling to detect patient’s risk of disease. However, low perception was observed for both statements of using gene profiling for general population in order to alter their lifestyle (25%) as well as having the full sequence of a patient genome for the purpose of determining a patient’s best match for treatment (18%). The lack of clinical guidelines, limited provider knowledge and awareness, lack of time and resources to educate patients, lack of evidence-based clinical information and cost of tests were the most barriers of ordering gene profiling mentioned by physicians. In conclusion Malaysian physicians who participate in this study had mediocre level of knowledge and awareness in gene profiling. The low exposure to the genetic questions and problems might be a key predictor of lack of awareness and knowledge on available genetic tests. Educational and training workshop might be useful in helping Malaysian physicians incorporate genetic profiling into practice for eligible patients.Keywords: gene profiling, knowledge, Malaysia, physician
Procedia PDF Downloads 3262613 Decision Support System for Solving Multi-Objective Routing Problem
Authors: Ismail El Gayar, Ossama Ismail, Yousri El Gamal
Abstract:
This paper presented a technique to solve one of the transportation problems that faces us in real life which is the Bus Scheduling Problem. Most of the countries using buses in schools, companies and traveling offices as an example to transfer multiple passengers from many places to specific place and vice versa. This transferring process can cost time and money, so we build a decision support system that can solve this problem. In this paper, a genetic algorithm with the shortest path technique is used to generate a competitive solution to other well-known techniques. It also presents a comparison between our solution and other solutions for this problem.Keywords: bus scheduling problem, decision support system, genetic algorithm, shortest path
Procedia PDF Downloads 4162612 Image Inpainting Model with Small-Sample Size Based on Generative Adversary Network and Genetic Algorithm
Authors: Jiawen Wang, Qijun Chen
Abstract:
The performance of most machine-learning methods for image inpainting depends on the quantity and quality of the training samples. However, it is very expensive or even impossible to obtain a great number of training samples in many scenarios. In this paper, an image inpainting model based on a generative adversary network (GAN) is constructed for the cases when the number of training samples is small. Firstly, a feature extraction network (F-net) is incorporated into the GAN network to utilize the available information of the inpainting image. The weighted sum of the extracted feature and the random noise acts as the input to the generative network (G-net). The proposed network can be trained well even when the sample size is very small. Secondly, in the phase of the completion for each damaged image, a genetic algorithm is designed to search an optimized noise input for G-net; based on this optimized input, the parameters of the G-net and F-net are further learned (Once the completion for a certain damaged image ends, the parameters restore to its original values obtained in the training phase) to generate an image patch that not only can fill the missing part of the damaged image smoothly but also has visual semantics.Keywords: image inpainting, generative adversary nets, genetic algorithm, small-sample size
Procedia PDF Downloads 130