Search results for: estimation method
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20055

Search results for: estimation method

19725 Comparative Study on Daily Discharge Estimation of Soolegan River

Authors: Redvan Ghasemlounia, Elham Ansari, Hikmet Kerem Cigizoglu

Abstract:

Hydrological modeling in arid and semi-arid regions is very important. Iran has many regions with these climate conditions such as Chaharmahal and Bakhtiari province that needs lots of attention with an appropriate management. Forecasting of hydrological parameters and estimation of hydrological events of catchments, provide important information that used for design, management and operation of water resources such as river systems, and dams, widely. Discharge in rivers is one of these parameters. This study presents the application and comparison of some estimation methods such as Feed-Forward Back Propagation Neural Network (FFBPNN), Multi Linear Regression (MLR), Gene Expression Programming (GEP) and Bayesian Network (BN) to predict the daily flow discharge of the Soolegan River, located at Chaharmahal and Bakhtiari province, in Iran. In this study, Soolegan, station was considered. This Station is located in Soolegan River at 51° 14՜ Latitude 31° 38՜ longitude at North Karoon basin. The Soolegan station is 2086 meters higher than sea level. The data used in this study are daily discharge and daily precipitation of Soolegan station. Feed Forward Back Propagation Neural Network(FFBPNN), Multi Linear Regression (MLR), Gene Expression Programming (GEP) and Bayesian Network (BN) models were developed using the same input parameters for Soolegan's daily discharge estimation. The results of estimation models were compared with observed discharge values to evaluate performance of the developed models. Results of all methods were compared and shown in tables and charts.

Keywords: ANN, multi linear regression, Bayesian network, forecasting, discharge, gene expression programming

Procedia PDF Downloads 559
19724 Development of a Model Based on Wavelets and Matrices for the Treatment of Weakly Singular Partial Integro-Differential Equations

Authors: Somveer Singh, Vineet Kumar Singh

Abstract:

We present a new model based on viscoelasticity for the Non-Newtonian fluids.We use a matrix formulated algorithm to approximate solutions of a class of partial integro-differential equations with the given initial and boundary conditions. Some numerical results are presented to simplify application of operational matrix formulation and reduce the computational cost. Convergence analysis, error estimation and numerical stability of the method are also investigated. Finally, some test examples are given to demonstrate accuracy and efficiency of the proposed method.

Keywords: Legendre Wavelets, operational matrices, partial integro-differential equation, viscoelasticity

Procedia PDF Downloads 333
19723 Foil Bearing Stiffness Estimation with Pseudospectral Scheme

Authors: Balaji Sankar, Sadanand Kulkarni

Abstract:

Compliant foil gas lubricated bearings are used for the support of light loads in the order of few kilograms at high speeds, in the order of 50,000 RPM. The stiffness of the foil bearings depends both on the stiffness of the compliant foil and on the lubricating gas film. The stiffness of the bearings plays a crucial role in the stable operation of the supported rotor over a range of speeds. This paper describes a numerical approach to estimate the stiffness of the bearings using pseudo spectral scheme. Methodology to obtain the stiffness of the foil bearing as a function of weight of the shaft is given and the results are presented.

Keywords: foil bearing, simulation, numerical, stiffness estimation

Procedia PDF Downloads 340
19722 Ultra-High Frequency Passive Radar Coverage for Cars Detection in Semi-Urban Scenarios

Authors: Pedro Gómez-del-Hoyo, Jose-Luis Bárcena-Humanes, Nerea del-Rey-Maestre, María-Pilar Jarabo-Amores, David Mata-Moya

Abstract:

A study of achievable coverages using passive radar systems in terrestrial traffic monitoring applications is presented. The study includes the estimation of the bistatic radar cross section of different commercial vehicle models that provide challenging low values which make detection really difficult. A semi-urban scenario is selected to evaluate the impact of excess propagation losses generated by an irregular relief. A bistatic passive radar exploiting UHF frequencies radiated by digital video broadcasting transmitters is assumed. A general method of coverage estimation using electromagnetic simulators in combination with estimated car average bistatic radar cross section is applied. In order to reduce the computational cost, hybrid solution is implemented, assuming free space for the target-receiver path but estimating the excess propagation losses for the transmitter-target one.

Keywords: bistatic radar cross section, passive radar, propagation losses, radar coverage

Procedia PDF Downloads 334
19721 Mobile Smart Application Proposal for Predicting Calories in Food

Authors: Marcos Valdez Alexander Junior, Igor Aguilar-Alonso

Abstract:

Malnutrition is the root of different diseases that universally affect everyone, diseases such as obesity and malnutrition. The objective of this research is to predict the calories of the food to be eaten, developing a smart mobile application to show the user if a meal is balanced. Due to the large percentage of obesity and malnutrition in Peru, the present work is carried out. The development of the intelligent application is proposed with a three-layer architecture, and for the prediction of the nutritional value of the food, the use of pre-trained models based on convolutional neural networks is proposed.

Keywords: volume estimation, calorie estimation, artificial vision, food nutrition

Procedia PDF Downloads 98
19720 Hydrodynamic Analysis on the Body of a Solar Autonomous Underwater Vehicle by Numerical Method

Authors: Mohammad Moonesun, Ehsan Asadi Asrami, Julia Bodnarchuk

Abstract:

In the case of Solar Autonomous Underwater Vehicle, which uses photovoltaic panels to provide its required power, due to limitation of energy, accurate estimation of resistance and energy has major sensitivity. In this work, hydrodynamic calculations by numerical method for a solar autonomous underwater vehicle equipped by two 50 W photovoltaic panels has been studied. To evaluate the required power and energy, hull hydrodynamic resistance in several velocities should be taken into account. To do this assessment, the ANSYS FLUENT 18 applied as Computational Fluid Dynamics (CFD) tool that solves Reynolds Average Navier Stokes (RANS) equations around AUV hull, and K-ω SST is used as turbulence model. To validate of solution method and modeling approach, the model of Myring submarine that it’s experimental data was available, is simulated. There is good agreement between numerical and experimental results. Also, these results showed that the K-ω SST Turbulence model is an ideal method to simulate the AUV motion in low velocities.

Keywords: underwater vehicle, hydrodynamic resistance, numerical modelling, CFD, RANS

Procedia PDF Downloads 203
19719 Evaluation of Dual Polarization Rainfall Estimation Algorithm Applicability in Korea: A Case Study on Biseulsan Radar

Authors: Chulsang Yoo, Gildo Kim

Abstract:

Dual polarization radar provides comprehensive information about rainfall by measuring multiple parameters. In Korea, for the rainfall estimation, JPOLE and CSU-HIDRO algorithms are generally used. This study evaluated the local applicability of JPOLE and CSU-HIDRO algorithms in Korea by using the observed rainfall data collected on August, 2014 by the Biseulsan dual polarization radar data and KMA AWS. A total of 11,372 pairs of radar-ground rain rate data were classified according to thresholds of synthetic algorithms into suitable and unsuitable data. Then, evaluation criteria were derived by comparing radar rain rate and ground rain rate, respectively, for entire, suitable, unsuitable data. The results are as follows: (1) The radar rain rate equation including KDP, was found better in the rainfall estimation than the other equations for both JPOLE and CSU-HIDRO algorithms. The thresholds were found to be adequately applied for both algorithms including specific differential phase. (2) The radar rain rate equation including horizontal reflectivity and differential reflectivity were found poor compared to the others. The result was not improved even when only the suitable data were applied. Acknowledgments: This work was supported by the Basic Science Research Program through the National Research Foundation of Korea, funded by the Ministry of Education (NRF-2013R1A1A2011012).

Keywords: CSU-HIDRO algorithm, dual polarization radar, JPOLE algorithm, radar rainfall estimation algorithm

Procedia PDF Downloads 210
19718 Estimation of Implicit Colebrook White Equation by Preferable Explicit Approximations in the Practical Turbulent Pipe Flow

Authors: Itissam Abuiziah

Abstract:

In several hydraulic systems, it is necessary to calculate the head losses which depend on the resistance flow friction factor in Darcy equation. Computing the resistance friction is based on implicit Colebrook-White equation which is considered as the standard for the friction calculation, but it needs high computational cost, therefore; several explicit approximation methods are used for solving an implicit equation to overcome this issue. It follows that the relative error is used to determine the most accurate method among the approximated used ones. Steel, cast iron and polyethylene pipe materials investigated with practical diameters ranged from 0.1m to 2.5m and velocities between 0.6m/s to 3m/s. In short, the results obtained show that the suitable method for some cases may not be accurate for other cases. For example, when using steel pipe materials, Zigrang and Silvester's method has revealed as the most precise in terms of low velocities 0.6 m/s to 1.3m/s. Comparatively, Halland method showed a less relative error with the gradual increase in velocity. Accordingly, the simulation results of this study might be employed by the hydraulic engineers, so they can take advantage to decide which is the most applicable method according to their practical pipe system expectations.

Keywords: Colebrook–White, explicit equation, friction factor, hydraulic resistance, implicit equation, Reynolds numbers

Procedia PDF Downloads 185
19717 Estimation and Removal of Chlorophenolic Compounds from Paper Mill Waste Water by Electrochemical Treatment

Authors: R. Sharma, S. Kumar, C. Sharma

Abstract:

A number of toxic chlorophenolic compounds are formed during pulp bleaching. The nature and concentration of these chlorophenolic compounds largely depends upon the amount and nature of bleaching chemicals used. These compounds are highly recalcitrant and difficult to remove but are partially removed by the biochemical treatment processes adopted by the paper industry. Identification and estimation of these chlorophenolic compounds has been carried out in the primary and secondary clarified effluents from the paper mill by GCMS. Twenty-six chorophenolic compounds have been identified and estimated in paper mill waste waters. Electrochemical treatment is an efficient method for oxidation of pollutants and has successfully been used to treat textile and oil waste water. Electrochemical treatment using less expensive anode material, stainless steel electrodes has been tried to study their removal. The electrochemical assembly comprised a DC power supply, a magnetic stirrer and stainless steel (316 L) electrode. The optimization of operating conditions has been carried out and treatment has been performed under optimized treatment conditions. Results indicate that 68.7% and 83.8% of cholorphenolic compounds are removed during 2 h of electrochemical treatment from primary and secondary clarified effluent respectively. Further, there is a reduction of 65.1, 60 and 92.6% of COD, AOX and color, respectively for primary clarified and 83.8%, 75.9% and 96.8% of COD, AOX and color, respectively for secondary clarified effluent. EC treatment has also been found to increase significantly the biodegradability index of wastewater because of conversion of non- biodegradable fraction into biodegradable fraction. Thus, electrochemical treatment is an efficient method for the degradation of cholorophenolic compounds, removal of color, AOX and other recalcitrant organic matter present in paper mill waste water.

Keywords: chlorophenolics, effluent, electrochemical treatment, wastewater

Procedia PDF Downloads 385
19716 Improved Distance Estimation in Dynamic Environments through Multi-Sensor Fusion with Extended Kalman Filter

Authors: Iffat Ara Ebu, Fahmida Islam, Mohammad Abdus Shahid Rafi, Mahfuzur Rahman, Umar Iqbal, John Ball

Abstract:

The application of multi-sensor fusion for enhanced distance estimation accuracy in dynamic environments is crucial for advanced driver assistance systems (ADAS) and autonomous vehicles. Limitations of single sensors such as cameras or radar in adverse conditions motivate the use of combined camera and radar data to improve reliability, adaptability, and object recognition. A multi-sensor fusion approach using an extended Kalman filter (EKF) is proposed to combine sensor measurements with a dynamic system model, achieving robust and accurate distance estimation. The research utilizes the Mississippi State University Autonomous Vehicular Simulator (MAVS) to create a controlled environment for data collection. Data analysis is performed using MATLAB. Qualitative (visualization of fused data vs ground truth) and quantitative metrics (RMSE, MAE) are employed for performance assessment. Initial results with simulated data demonstrate accurate distance estimation compared to individual sensors. The optimal sensor measurement noise variance and plant noise variance parameters within the EKF are identified, and the algorithm is validated with real-world data from a Chevrolet Blazer. In summary, this research demonstrates that multi-sensor fusion with an EKF significantly improves distance estimation accuracy in dynamic environments. This is supported by comprehensive evaluation metrics, with validation transitioning from simulated to real-world data, paving the way for safer and more reliable autonomous vehicle control.

Keywords: sensor fusion, EKF, MATLAB, MAVS, autonomous vehicle, ADAS

Procedia PDF Downloads 41
19715 Biomass Carbon Credit Estimation for Sustainable Urban Planning and Micro-climate Assessment

Authors: R. Niranchana, K. Meena Alias Jeyanthi

Abstract:

As a result of the present climate change dilemma, the energy balancing strategy is to construct a sustainable environment has become a top concern for researchers worldwide. The environment itself has always been a solution from the earliest days of human evolution. Carbon capture begins with its accurate estimation and monitoring credit inventories, and its efficient use. Sustainable urban planning with deliverables of re-use energy models might benefit from assessment methods like biomass carbon credit ranking. The term "biomass energy" refers to the various ways in which living organisms can potentially be converted into a source of energy. The approaches that can be applied to biomass and an algorithm for evaluating carbon credits are presented in this paper. The micro-climate evaluation using Computational Fluid dynamics was carried out across the location (1 km x1 km) at Dindigul, India (10°24'58.68" North, 77°54.1.80 East). Sustainable Urban design must be carried out considering environmental and physiological convection, conduction, radiation and evaporative heat exchange due to proceeding solar access and wind intensities.

Keywords: biomass, climate assessment, urban planning, multi-regression, carbon estimation algorithm

Procedia PDF Downloads 93
19714 Switched System Diagnosis Based on Intelligent State Filtering with Unknown Models

Authors: Nada Slimane, Foued Theljani, Faouzi Bouani

Abstract:

The paper addresses the problem of fault diagnosis for systems operating in several modes (normal or faulty) based on states assessment. We use, for this purpose, a methodology consisting of three main processes: 1) sequential data clustering, 2) linear model regression and 3) state filtering. Typically, Kalman Filter (KF) is an algorithm that provides estimation of unknown states using a sequence of I/O measurements. Inevitably, although it is an efficient technique for state estimation, it presents two main weaknesses. First, it merely predicts states without being able to isolate/classify them according to their different operating modes, whether normal or faulty modes. To deal with this dilemma, the KF is endowed with an extra clustering step based fully on sequential version of the k-means algorithm. Second, to provide state estimation, KF requires state space models, which can be unknown. A linear regularized regression is used to identify the required models. To prove its effectiveness, the proposed approach is assessed on a simulated benchmark.

Keywords: clustering, diagnosis, Kalman Filtering, k-means, regularized regression

Procedia PDF Downloads 181
19713 Stability Indicating Method Development and Validation for Estimation of Antiasthmatic Drug in Combined Dosages Formed by RP-HPLC

Authors: Laxman H. Surwase, Lalit V. Sonawane, Bhagwat N. Poul

Abstract:

A simple stability indicating high performance liquid chromatographic method has been developed for the simultaneous determination of Levosalbutamol Sulphate and Ipratropium Bromide in bulk and pharmaceutical dosage form using reverse phase Zorbax Eclipse Plus C8 column (250mm×4.6mm), with mobile phase phosphate buffer (0.05M KH2PO4): acetonitrile (55:45v/v) pH 3.5 adjusted with ortho-phosphoric acid, the flow rate was 1.0 mL/min and the detection was carried at 212 nm. The retention times of Levosalbutamol Sulphate and Ipratropium Bromide were 2.2007 and 2.6611 min respectively. The correlation coefficient of Levosalbutamol Sulphate and Ipratropium Bromide was found to be 0.997 and 0.998.Calibration plots were linear over the concentration ranges 10-100µg/mL for both Levosalbutamol Sulphate and Ipratropium Bromide. The LOD and LOQ of Levosalbutamol Sulphate were 2.520µg/mL and 7.638µg/mL while for Ipratropium Bromide was 1.201µg/mL and 3.640 µg/mL. The accuracy of the proposed method was determined by recovery studies and found to be 100.15% for Levosalbutamol Sulphate and 100.19% for Ipratropium Bromide respectively. The method was validated for accuracy, linearity, sensitivity, precision, robustness, system suitability. The proposed method could be utilized for routine analysis of Levosalbutamol Sulphate and Ipratropium Bromide in bulk and pharmaceutical capsule dosage form.

Keywords: levosalbutamol sulphate, ipratropium bromide, RP-HPLC, phosphate buffer, acetonitrile

Procedia PDF Downloads 349
19712 Cooling Profile Analysis of Hot Strip Coil Using Finite Volume Method

Authors: Subhamita Chakraborty, Shubhabrata Datta, Sujay Kumar Mukherjea, Partha Protim Chattopadhyay

Abstract:

Manufacturing of multiphase high strength steel in hot strip mill have drawn significant attention due to the possibility of forming low temperature transformation product of austenite under continuous cooling condition. In such endeavor, reliable prediction of temperature profile of hot strip coil is essential in order to accesses the evolution of microstructure at different location of hot strip coil, on the basis of corresponding Continuous Cooling Transformation (CCT) diagram. Temperature distribution profile of the hot strip coil has been determined by using finite volume method (FVM) vis-à-vis finite difference method (FDM). It has been demonstrated that FVM offer greater computational reliability in estimation of contact pressure distribution and hence the temperature distribution for curved and irregular profiles, owing to the flexibility in selection of grid geometry and discrete point position, Moreover, use of finite volume concept allows enforcing the conservation of mass, momentum and energy, leading to enhanced accuracy of prediction.

Keywords: simulation, modeling, thermal analysis, coil cooling, contact pressure, finite volume method

Procedia PDF Downloads 471
19711 The Generalized Pareto Distribution as a Model for Sequential Order Statistics

Authors: Mahdy ‎Esmailian, Mahdi ‎Doostparast, Ahmad ‎Parsian

Abstract:

‎In this article‎, ‎sequential order statistics (SOS) censoring type II samples coming from the generalized Pareto distribution are considered‎. ‎Maximum likelihood (ML) estimators of the unknown parameters are derived on the basis of the available multiple SOS data‎. ‎Necessary conditions for existence and uniqueness of the derived ML estimates are given‎. Due to complexity in the proposed likelihood function‎, ‎a useful re-parametrization is suggested‎. ‎For illustrative purposes‎, ‎a Monte Carlo simulation study is conducted and an illustrative example is analysed‎.

Keywords: bayesian estimation‎, generalized pareto distribution‎, ‎maximum likelihood estimation‎, sequential order statistics

Procedia PDF Downloads 508
19710 Supply, Trade-offs, and Synergies Estimation for Regulating Ecosystem Services of a Local Forest

Authors: Jang-Hwan Jo

Abstract:

The supply management of ecosystem services of local forests is an essential issue as it is linked to the ecological welfare of local residents. This study aims to estimate the supply, trade-offs, and synergies of local forest regulating ecosystem services using a land cover classification map (LCCM) and a forest types map (FTM). Rigorous literature reviews and Expert Delphi analysis were conducted using the detailed variables of 1:5,000 LCCM and FTM. Land-use scoring method and Getis-Ord Gi* Analysis were utilized on detailed variables to propose a method for estimating supply, trade-offs, and synergies of the local forest regulating ecosystem services. The analysis revealed that the rank order (1st to 5th) of supply of regulating ecosystem services was Erosion prevention, Air quality regulation, Heat island mitigation, Water quality regulation, and Carbon storage. When analyzing the correlation between defined services of the entire city, almost all services showed a synergistic effect. However, when analyzing locally, trade-off effects (Heat island mitigation – Air quality regulation, Water quality regulation – Air quality regulation) appeared in the eastern and northwestern forest areas. This suggests the need to consider not only the synergy and trade-offs of the entire forest between specific ecosystem services but also the synergy and trade-offs of local areas in managing the regulating ecosystem services of local forests. The study result can provide primary data for the stakeholders to determine the initial conditions of the planning stage when discussing the establishment of policies related to the adjustment of the supply of regulating ecosystem services of the forests with limited access. Moreover, the study result can also help refine the estimation of the supply of the regulating ecosystem services with the availability of other forms of data.

Keywords: ecosystem service, getis ord gi* analysis, land use scoring method, regional forest, regulating service, synergies, trade-offs

Procedia PDF Downloads 85
19709 Biosensor: An Approach towards Sustainable Environment

Authors: Purnima Dhall, Rita Kumar

Abstract:

Introduction: River Yamuna, in the national capital territory (NCT), and also the primary source of drinking water for the city. Delhi discharges about 3,684 MLD of sewage through its 18 drains in to the Yamuna. Water quality monitoring is an important aspect of water management concerning to the pollution control. Public concern and legislation are now a day’s demanding better environmental control. Conventional method for estimating BOD5 has various drawbacks as they are expensive, time-consuming, and require the use of highly trained personnel. Stringent forthcoming regulations on the wastewater have necessitated the urge to develop analytical system, which contribute to greater process efficiency. Biosensors offer the possibility of real time analysis. Methodology: In the present study, a novel rapid method for the determination of biochemical oxygen demand (BOD) has been developed. Using the developed method, the BOD of a sample can be determined within 2 hours as compared to 3-5 days with the standard BOD3-5day assay. Moreover, the test is based on specified consortia instead of undefined seeding material therefore it minimizes the variability among the results. The device is coupled to software which automatically calculates the dilution required, so, the prior dilution of the sample is not required before BOD estimation. The developed BOD-Biosensor makes use of immobilized microorganisms to sense the biochemical oxygen demand of industrial wastewaters having low–moderate–high biodegradability. The method is quick, robust, online and less time consuming. Findings: The results of extensive testing of the developed biosensor on drains demonstrate that the BOD values obtained by the device correlated with conventional BOD values the observed R2 value was 0.995. The reproducibility of the measurements with the BOD biosensor was within a percentage deviation of ±10%. Advantages of developed BOD biosensor • Determines the water pollution quickly in 2 hours of time; • Determines the water pollution of all types of waste water; • Has prolonged shelf life of more than 400 days; • Enhanced repeatability and reproducibility values; • Elimination of COD estimation. Distinctiveness of Technology: • Bio-component: can determine BOD load of all types of waste water; • Immobilization: increased shelf life > 400 days, extended stability and viability; • Software: Reduces manual errors, reduction in estimation time. Conclusion: BiosensorBOD can be used to measure the BOD value of the real wastewater samples. The BOD biosensor showed good reproducibility in the results. This technology is useful in deciding treatment strategies well ahead and so facilitating discharge of properly treated water to common water bodies. The developed technology has been transferred to M/s Forbes Marshall Pvt Ltd, Pune.

Keywords: biosensor, biochemical oxygen demand, immobilized, monitoring, Yamuna

Procedia PDF Downloads 278
19708 Estimation of Aquifer Properties Using Pumping Tests: Case Study of Pydibhimavaram Industrial Area, Srikakulam, India

Authors: G. Venkata Rao, P. Kalpana, R. Srinivasa Rao

Abstract:

Adequate and reliable estimates of aquifer parameters are of utmost importance for proper management of vital groundwater resources. At present scenario the ground water is polluted because of industrial waste disposed over the land and the contaminants are transported in the aquifer from one area to another area which is depending on the characteristics of the aquifer and contaminants. To know the contaminant transport, the accurate estimation of aquifer properties is highly needed. Conventionally, these properties are estimated through pumping tests carried out on water wells. The occurrence and movement of ground water in the aquifer are characteristically defined by the aquifer parameters. The pumping (aquifer) test is the standard technique for estimating various hydraulic properties of aquifer systems, viz, transmissivity (T), hydraulic conductivity (K), storage coefficient (S) etc., for which the graphical method is widely used. The study area for conducting pumping test is Pydibheemavaram Industrial area near the coastal belt of Srikulam, AP, India. The main objective of the present work is to estimate the aquifer properties for developing contaminant transport model for the study area.

Keywords: aquifer, contaminant transport, hydraulic conductivity, industrial waste, pumping test

Procedia PDF Downloads 445
19707 High Speed Motion Tracking with Magnetometer in Nonuniform Magnetic Field

Authors: Jeronimo Cox, Tomonari Furukawa

Abstract:

Magnetometers have become more popular in inertial measurement units (IMU) for their ability to correct estimations using the earth's magnetic field. Accelerometer and gyroscope-based packages fail with dead-reckoning errors accumulated over time. Localization in robotic applications with magnetometer-inclusive IMUs has become popular as a way to track the odometry of slower-speed robots. With high-speed motions, the accumulated error increases over smaller periods of time, making them difficult to track with IMU. Tracking a high-speed motion is especially difficult with limited observability. Visual obstruction of motion leaves motion-tracking cameras unusable. When motions are too dynamic for estimation techniques reliant on the observability of the gravity vector, the use of magnetometers is further justified. As available magnetometer calibration methods are limited with the assumption that background magnetic fields are uniform, estimation in nonuniform magnetic fields is problematic. Hard iron distortion is a distortion of the magnetic field by other objects that produce magnetic fields. This kind of distortion is often observed as the offset from the origin of the center of data points when a magnetometer is rotated. The magnitude of hard iron distortion is dependent on proximity to distortion sources. Soft iron distortion is more related to the scaling of the axes of magnetometer sensors. Hard iron distortion is more of a contributor to the error of attitude estimation with magnetometers. Indoor environments or spaces inside ferrite-based structures, such as building reinforcements or a vehicle, often cause distortions with proximity. As positions correlate to areas of distortion, methods of magnetometer localization include the production of spatial mapping of magnetic field and collection of distortion signatures to better aid location tracking. The goal of this paper is to compare magnetometer methods that don't need pre-productions of magnetic field maps. Mapping the magnetic field in some spaces can be costly and inefficient. Dynamic measurement fusion is used to track the motion of a multi-link system with us. Conventional calibration by data collection of rotation at a static point, real-time estimation of calibration parameters each time step, and using two magnetometers for determining local hard iron distortion are compared to confirm the robustness and accuracy of each technique. With opposite-facing magnetometers, hard iron distortion can be accounted for regardless of position, Rather than assuming that hard iron distortion is constant regardless of positional change. The motion measured is a repeatable planar motion of a two-link system connected by revolute joints. The links are translated on a moving base to impulse rotation of the links. Equipping the joints with absolute encoders and recording the motion with cameras to enable ground truth comparison to each of the magnetometer methods. While the two-magnetometer method accounts for local hard iron distortion, the method fails where the magnetic field direction in space is inconsistent.

Keywords: motion tracking, sensor fusion, magnetometer, state estimation

Procedia PDF Downloads 84
19706 Automatic Post Stroke Detection from Computed Tomography Images

Authors: C. Gopi Jinimole, A. Harsha

Abstract:

For detecting strokes, Computed Tomography (CT) scan is preferred for imaging the abnormalities or infarction in the brain. Because of the problems in the window settings used to evaluate brain CT images, they are very poor in the early stage infarction detection. This paper presents an automatic estimation method for the window settings of the CT images for proper contrast of the hyper infarction present in the brain. In the proposed work the window width is estimated automatically for each slice and the window centre is changed to a new value of 31HU, which is the average of the HU values of the grey matter and white matter in the brain. The automatic window width estimation is based on the average of median of statistical central moments. Thus with the new suggested window centre and estimated window width, the hyper infarction or post-stroke regions in CT brain images are properly detected. The proposed approach assists the radiologists in CT evaluation for early quantitative signs of delayed stroke, which leads to severe hemorrhage in the future can be prevented by providing timely medication to the patients.

Keywords: computed tomography (CT), hyper infarction or post stroke region, Hounsefield Unit (HU), window centre (WC), window width (WW)

Procedia PDF Downloads 202
19705 Construction Unit Rate Factor Modelling Using Neural Networks

Authors: Balimu Mwiya, Mundia Muya, Chabota Kaliba, Peter Mukalula

Abstract:

Factors affecting construction unit cost vary depending on a country’s political, economic, social and technological inclinations. Factors affecting construction costs have been studied from various perspectives. Analysis of cost factors requires an appreciation of a country’s practices. Identified cost factors provide an indication of a country’s construction economic strata. The purpose of this paper is to identify the essential factors that affect unit cost estimation and their breakdown using artificial neural networks. Twenty-five (25) identified cost factors in road construction were subjected to a questionnaire survey and employing SPSS factor analysis the factors were reduced to eight. The 8 factors were analysed using the neural network (NN) to determine the proportionate breakdown of the cost factors in a given construction unit rate. NN predicted that political environment accounted 44% of the unit rate followed by contractor capacity at 22% and financial delays, project feasibility, overhead and profit each at 11%. Project location, material availability and corruption perception index had minimal impact on the unit cost from the training data provided. Quantified cost factors can be incorporated in unit cost estimation models (UCEM) to produce more accurate estimates. This can create improvements in the cost estimation of infrastructure projects and establish a benchmark standard to assist the process of alignment of work practises and training of new staff, permitting the on-going development of best practises in cost estimation to become more effective.

Keywords: construction cost factors, neural networks, roadworks, Zambian construction industry

Procedia PDF Downloads 361
19704 Estimation of State of Charge, State of Health and Power Status for the Li-Ion Battery On-Board Vehicle

Authors: S. Sabatino, V. Calderaro, V. Galdi, G. Graber, L. Ippolito

Abstract:

Climate change is a rapidly growing global threat caused mainly by increased emissions of carbon dioxide (CO₂) into the atmosphere. These emissions come from multiple sources, including industry, power generation, and the transport sector. The need to tackle climate change and reduce CO₂ emissions is indisputable. A crucial solution to achieving decarbonization in the transport sector is the adoption of electric vehicles (EVs). These vehicles use lithium (Li-Ion) batteries as an energy source, making them extremely efficient and with low direct emissions. However, Li-Ion batteries are not without problems, including the risk of overheating and performance degradation. To ensure its safety and longevity, it is essential to use a battery management system (BMS). The BMS constantly monitors battery status, adjusts temperature and cell balance, ensuring optimal performance and preventing dangerous situations. From the monitoring carried out, it is also able to optimally manage the battery to increase its life. Among the parameters monitored by the BMS, the main ones are State of Charge (SoC), State of Health (SoH), and State of Power (SoP). The evaluation of these parameters can be carried out in two ways: offline, using benchtop batteries tested in the laboratory, or online, using batteries installed in moving vehicles. Online estimation is the preferred approach, as it relies on capturing real-time data from batteries while operating in real-life situations, such as in everyday EV use. Actual battery usage conditions are highly variable. Moving vehicles are exposed to a wide range of factors, including temperature variations, different driving styles, and complex charge/discharge cycles. This variability is difficult to replicate in a controlled laboratory environment and can greatly affect performance and battery life. Online estimation captures this variety of conditions, providing a more accurate assessment of battery behavior in real-world situations. In this article, a hybrid approach based on a neural network and a statistical method for real-time estimation of SoC, SoH, and SoP parameters of interest is proposed. These parameters are estimated from the analysis of a one-day driving profile of an electric vehicle, assumed to be divided into the following four phases: (i) Partial discharge (SoC 100% - SoC 50%), (ii) Partial discharge (SoC 50% - SoC 80%), (iii) Deep Discharge (SoC 80% - SoC 30%) (iv) Full charge (SoC 30% - SoC 100%). The neural network predicts the values of ohmic resistance and incremental capacity, while the statistical method is used to estimate the parameters of interest. This reduces the complexity of the model and improves its prediction accuracy. The effectiveness of the proposed model is evaluated by analyzing its performance in terms of square mean error (RMSE) and percentage error (MAPE) and comparing it with the reference method found in the literature.

Keywords: electric vehicle, Li-Ion battery, BMS, state-of-charge, state-of-health, state-of-power, artificial neural networks

Procedia PDF Downloads 67
19703 Determining the Width and Depths of Cut in Milling on the Basis of a Multi-Dexel Model

Authors: Jens Friedrich, Matthias A. Gebele, Armin Lechler, Alexander Verl

Abstract:

Chatter vibrations and process instabilities are the most important factors limiting the productivity of the milling process. Chatter can leads to damage of the tool, the part or the machine tool. Therefore, the estimation and prediction of the process stability is very important. The process stability depends on the spindle speed, the depth of cut and the width of cut. In milling, the process conditions are defined in the NC-program. While the spindle speed is directly coded in the NC-program, the depth and width of cut are unknown. This paper presents a new simulation based approach for the prediction of the depth and width of cut of a milling process. The prediction is based on a material removal simulation with an analytically represented tool shape and a multi-dexel approach for the work piece. The new calculation method allows the direct estimation of the depth and width of cut, which are the influencing parameters of the process stability, instead of the removed volume as existing approaches do. The knowledge can be used to predict the stability of new, unknown parts. Moreover with an additional vibration sensor, the stability lobe diagram of a milling process can be estimated and improved based on the estimated depth and width of cut.

Keywords: dexel, process stability, material removal, milling

Procedia PDF Downloads 524
19702 Joint Simulation and Estimation for Geometallurgical Modeling of Crushing Consumption Energy in the Mineral Processing Plants

Authors: Farzaneh Khorram, Xavier Emery

Abstract:

In this paper, it is aimed to create a crushing consumption energy (CCE) block model and determine the blocks with the potential to have the maximum grinding process energy consumption for the study area. For this purpose, a joint estimate (co-kriging) and joint simulation (turning band method and plurigaussian methods) to predict the CCE based on its correlation with SAG power index (SPI), A×B, and ball mill bond work Index (BWI). The analysis shows that TBCOSIM and plurigaussian have the more realistic results compared to cokriging. It seems logical due to the nature of the data geometallurgical and the linearity of the kriging method and the smoothing effect of kriging.

Keywords: plurigaussian, turning band, cokriging, geometallurgy

Procedia PDF Downloads 67
19701 Ratio Type Estimators for the Estimation of Population Coefficient of Variation under Two-Stage Sampling

Authors: Muhammad Jabbar

Abstract:

In this paper we propose two ratio and ratio type exponential estimator for the estimation of population coefficient of variation using the auxiliary information under two-stage sampling. The properties of these estimators are derived up to first order of approximation. The efficiency conditions under which suggested estimator are more efficient, are obtained. Numerical and simulated studies are conducted to support the superiority of the estimators. Theoretically and numerically, we have found that our proposed estimator is always more efficient as compared to its competitor estimator.

Keywords: two-stage sampling, coefficient of variation, ratio type exponential estimator

Procedia PDF Downloads 526
19700 Alternating Expectation-Maximization Algorithm for a Bilinear Model in Isoform Quantification from RNA-Seq Data

Authors: Wenjiang Deng, Tian Mou, Yudi Pawitan, Trung Nghia Vu

Abstract:

Estimation of isoform-level gene expression from RNA-seq data depends on simplifying assumptions, such as uniform reads distribution, that are easily violated in real data. Such violations typically lead to biased estimates. Most existing methods provide a bias correction step(s), which is based on biological considerations, such as GC content–and applied in single samples separately. The main problem is that not all biases are known. For example, new technologies such as single-cell RNA-seq (scRNA-seq) may introduce new sources of bias not seen in bulk-cell data. This study introduces a method called XAEM based on a more flexible and robust statistical model. Existing methods are essentially based on a linear model Xβ, where the design matrix X is known and derived based on the simplifying assumptions. In contrast, XAEM considers Xβ as a bilinear model with both X and β unknown. Joint estimation of X and β is made possible by simultaneous analysis of multi-sample RNA-seq data. Compared to existing methods, XAEM automatically performs empirical correction of potentially unknown biases. XAEM implements an alternating expectation-maximization (AEM) algorithm, alternating between estimation of X and β. For speed XAEM utilizes quasi-mapping for read alignment, thus leading to a fast algorithm. Overall XAEM performs favorably compared to other recent advanced methods. For simulated datasets, XAEM obtains higher accuracy for multiple-isoform genes, particularly for paralogs. In a differential-expression analysis of a real scRNA-seq dataset, XAEM achieves substantially greater rediscovery rates in an independent validation set.

Keywords: alternating EM algorithm, bias correction, bilinear model, gene expression, RNA-seq

Procedia PDF Downloads 140
19699 Least Squares Solution for Linear Quadratic Gaussian Problem with Stochastic Approximation Approach

Authors: Sie Long Kek, Wah June Leong, Kok Lay Teo

Abstract:

Linear quadratic Gaussian model is a standard mathematical model for the stochastic optimal control problem. The combination of the linear quadratic estimation and the linear quadratic regulator allows the state estimation and the optimal control policy to be designed separately. This is known as the separation principle. In this paper, an efficient computational method is proposed to solve the linear quadratic Gaussian problem. In our approach, the Hamiltonian function is defined, and the necessary conditions are derived. In addition to this, the output error is defined and the least-square optimization problem is introduced. By determining the first-order necessary condition, the gradient of the sum squares of output error is established. On this point of view, the stochastic approximation approach is employed such that the optimal control policy is updated. Within a given tolerance, the iteration procedure would be stopped and the optimal solution of the linear-quadratic Gaussian problem is obtained. For illustration, an example of the linear-quadratic Gaussian problem is studied. The result shows the efficiency of the approach proposed. In conclusion, the applicability of the approach proposed for solving the linear quadratic Gaussian problem is highly demonstrated.

Keywords: iteration procedure, least squares solution, linear quadratic Gaussian, output error, stochastic approximation

Procedia PDF Downloads 183
19698 Validation of the Linear Trend Estimation Technique for Prediction of Average Water and Sewerage Charge Rate Prices in the Czech Republic

Authors: Aneta Oblouková, Eva Vítková

Abstract:

The article deals with the issue of water and sewerage charge rate prices in the Czech Republic. The research is specifically focused on the analysis of the development of the average prices of water and sewerage charge rate in the Czech Republic in the years 1994-2021 and on the validation of the chosen methodology relevant for the prediction of the development of the average prices of water and sewerage charge rate in the Czech Republic. The research is based on data collection. The data for this research was obtained from the Czech Statistical Office. The aim of the paper is to validate the relevance of the mathematical linear trend estimate technique for the calculation of the predicted average prices of water and sewerage charge rates. The real values of the average prices of water and sewerage charge rates in the Czech Republic in the years 1994-2018 were obtained from the Czech Statistical Office and were converted into a mathematical equation. The same type of real data was obtained from the Czech Statistical Office for the years 2019-2021. Prediction of the average prices of water and sewerage charge rates in the Czech Republic in the years 2019-2021 were also calculated using a chosen method -a linear trend estimation technique. The values obtained from the Czech Statistical Office and the values calculated using the chosen methodology were subsequently compared. The research result is a validation of the chosen mathematical technique to be a suitable technique for this research.

Keywords: Czech Republic, linear trend estimation, price prediction, water and sewerage charge rate

Procedia PDF Downloads 119
19697 The Evaluation of the Performance of Different Filtering Approaches in Tracking Problem and the Effect of Noise Variance

Authors: Mohammad Javad Mollakazemi, Farhad Asadi, Aref Ghafouri

Abstract:

Performance of different filtering approaches depends on modeling of dynamical system and algorithm structure. For modeling and smoothing the data the evaluation of posterior distribution in different filtering approach should be chosen carefully. In this paper different filtering approaches like filter KALMAN, EKF, UKF, EKS and smoother RTS is simulated in some trajectory tracking of path and accuracy and limitation of these approaches are explained. Then probability of model with different filters is compered and finally the effect of the noise variance to estimation is described with simulations results.

Keywords: Gaussian approximation, Kalman smoother, parameter estimation, noise variance

Procedia PDF Downloads 437
19696 Urban Big Data: An Experimental Approach to Building-Value Estimation Using Web-Based Data

Authors: Sun-Young Jang, Sung-Ah Kim, Dongyoun Shin

Abstract:

Current real-estate value estimation, difficult for laymen, usually is performed by specialists. This paper presents an automated estimation process based on big data and machine-learning technology that calculates influences of building conditions on real-estate price measurement. The present study analyzed actual building sales sample data for Nonhyeon-dong, Gangnam-gu, Seoul, Korea, measuring the major influencing factors among the various building conditions. Further to that analysis, a prediction model was established and applied using RapidMiner Studio, a graphical user interface (GUI)-based tool for derivation of machine-learning prototypes. The prediction model is formulated by reference to previous examples. When new examples are applied, it analyses and predicts accordingly. The analysis process discerns the crucial factors effecting price increases by calculation of weighted values. The model was verified, and its accuracy determined, by comparing its predicted values with actual price increases.

Keywords: apartment complex, big data, life-cycle building value analysis, machine learning

Procedia PDF Downloads 370