Search results for: deep gaining knowledge of
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9723

Search results for: deep gaining knowledge of

9393 Comparison Study between Deep Mixed Columns and Encased Sand Column for Soft Clay Soil in Egypt

Authors: Walid El Kamash

Abstract:

Sand columns (or granular piles) can be employed as soil strengthening for flexible constructions such as road embankments, oil storage tanks in addition to multistory structures. The challenge of embedding the sand columns in soft soil is that the surrounding soft soil cannot avail the enough confinement stress in order to keep the form of the sand column. Therefore, the sand columns which were installed in such soil will lose their ability to perform needed load-bearing capacity. The encasement, besides increasing the strength and stiffness of the sand column, prevents the lateral squeezing of sands when the column is installed even in extremely soft soils, thus enabling quicker and more economical installation. This paper investigates the improvement in load capacity of the sand column by encasement through a comprehensive parametric study using the 3-D finite difference analysis for the soft clay of soil in Egypt. Moreover, the study was extended to include a comparison study between encased sand column and Deep Mixed columns (DM). The study showed that confining the sand by geosynthetic resulted in an increment of shear strength. That result paid the attention to use encased sand stone rather than deep mixed columns due to relative high permeability of the first material.

Keywords: encased sand column, Deep mixed column, numerical analysis, improving soft soil

Procedia PDF Downloads 377
9392 Knowledge Management Strategies as a Tool to Change the Organizational Culture

Authors: Doaa Abbas Zaher

Abstract:

For the past two decades demand for knowledge has been increasing. Management of society’s knowledge has far reaching effects to economic growth through increased capacity to complete viable activities. Organizations use information technology to effect organizational change. This is a challenge for the less developed nations whose capacity to integrate knowledge in core functions is limited. This creates organizational problems as there is global competition amongst organizations. Cross-cultural perceptions influence difference knowledge Management. This study provides a cross-cultural analysis on the influence in knowledge culture in Japan and Saudi Arabia to effect change in organizations. Since different countries adopt different knowledge management strategies, this dictates the state of organizational development through enriched organizational culture. The research uses a mixed approach design to collect data from primary and secondary sources. Primary source will use the questionnaires while secondary sources uses case analysis from books, articles, reports, and journals. The study will take a period of three years to come up with a complete paper.

Keywords: knowledge management, organizational culture, information, society knowledge

Procedia PDF Downloads 355
9391 A Case from China on the Situation of Knowledge Management in Government

Authors: Qiaoyun Yang

Abstract:

Organizational scholars have paid enormous attention on how local governments manage their knowledge during the past two decades. Government knowledge management (KM) research recognizes that the management of knowledge flows and networks is critical to reforms on government service efficiency and the effect of administration. When dealing with complex affairs, all the limitations resulting from a lack of KM concept, processes and technologies among all the involved organizations begin to be exposed and further compound the processing difficulty of the affair. As a result, the challenges for individual or group knowledge sharing, knowledge digging and organizations’ collaboration in government's activities are diverse and immense. This analysis presents recent situation of government KM in China drawing from a total of more than 300 questionnaires and highlights important challenges that remain. The causes of the lapses in KM processes within and across the government agencies are discussed.

Keywords: KM processes, KM technologies, government, KM situation

Procedia PDF Downloads 358
9390 Enhanced Retrieval-Augmented Generation (RAG) Method with Knowledge Graph and Graph Neural Network (GNN) for Automated QA Systems

Authors: Zhihao Zheng, Zhilin Wang, Linxin Liu

Abstract:

In the research of automated knowledge question-answering systems, accuracy and efficiency are critical challenges. This paper proposes a knowledge graph-enhanced Retrieval-Augmented Generation (RAG) method, combined with a Graph Neural Network (GNN) structure, to automatically determine the correctness of knowledge competition questions. First, a domain-specific knowledge graph was constructed from a large corpus of academic journal literature, with key entities and relationships extracted using Natural Language Processing (NLP) techniques. Then, the RAG method's retrieval module was expanded to simultaneously query both text databases and the knowledge graph, leveraging the GNN to further extract structured information from the knowledge graph. During answer generation, contextual information provided by the knowledge graph and GNN is incorporated to improve the accuracy and consistency of the answers. Experimental results demonstrate that the knowledge graph and GNN-enhanced RAG method perform excellently in determining the correctness of questions, achieving an accuracy rate of 95%. Particularly in cases involving ambiguity or requiring contextual information, the structured knowledge provided by the knowledge graph and GNN significantly enhances the RAG method's performance. This approach not only demonstrates significant advantages in improving the accuracy and efficiency of automated knowledge question-answering systems but also offers new directions and ideas for future research and practical applications.

Keywords: knowledge graph, graph neural network, retrieval-augmented generation, NLP

Procedia PDF Downloads 37
9389 Utilizing Federated Learning for Accurate Prediction of COVID-19 from CT Scan Images

Authors: Jinil Patel, Sarthak Patel, Sarthak Thakkar, Deepti Saraswat

Abstract:

Recently, the COVID-19 outbreak has spread across the world, leading the World Health Organization to classify it as a global pandemic. To save the patient’s life, the COVID-19 symptoms have to be identified. But using an AI (Artificial Intelligence) model to identify COVID-19 symptoms within the allotted time was challenging. The RT-PCR test was found to be inadequate in determining the COVID status of a patient. To determine if the patient has COVID-19 or not, a Computed Tomography Scan (CT scan) of patient is a better alternative. It will be challenging to compile and store all the data from various hospitals on the server, though. Federated learning, therefore, aids in resolving this problem. Certain deep learning models help to classify Covid-19. This paper will have detailed work of certain deep learning models like VGG19, ResNet50, MobileNEtv2, and Deep Learning Aggregation (DLA) along with maintaining privacy with encryption.

Keywords: federated learning, COVID-19, CT-scan, homomorphic encryption, ResNet50, VGG-19, MobileNetv2, DLA

Procedia PDF Downloads 71
9388 Physics Informed Deep Residual Networks Based Type-A Aortic Dissection Prediction

Authors: Joy Cao, Min Zhou

Abstract:

Purpose: Acute Type A aortic dissection is a well-known cause of extremely high mortality rate. A highly accurate and cost-effective non-invasive predictor is critically needed so that the patient can be treated at earlier stage. Although various CFD approaches have been tried to establish some prediction frameworks, they are sensitive to uncertainty in both image segmentation and boundary conditions. Tedious pre-processing and demanding calibration procedures requirement further compound the issue, thus hampering their clinical applicability. Using the latest physics informed deep learning methods to establish an accurate and cost-effective predictor framework are amongst the main goals for a better Type A aortic dissection treatment. Methods: Via training a novel physics-informed deep residual network, with non-invasive 4D MRI displacement vectors as inputs, the trained model can cost-effectively calculate all these biomarkers: aortic blood pressure, WSS, and OSI, which are used to predict potential type A aortic dissection to avoid the high mortality events down the road. Results: The proposed deep learning method has been successfully trained and tested with both synthetic 3D aneurysm dataset and a clinical dataset in the aortic dissection context using Google colab environment. In both cases, the model has generated aortic blood pressure, WSS, and OSI results matching the expected patient’s health status. Conclusion: The proposed novel physics-informed deep residual network shows great potential to create a cost-effective, non-invasive predictor framework. Additional physics-based de-noising algorithm will be added to make the model more robust to clinical data noises. Further studies will be conducted in collaboration with big institutions such as Cleveland Clinic with more clinical samples to further improve the model’s clinical applicability.

Keywords: type-a aortic dissection, deep residual networks, blood flow modeling, data-driven modeling, non-invasive diagnostics, deep learning, artificial intelligence.

Procedia PDF Downloads 87
9387 A Deep Learning Based Integrated Model For Spatial Flood Prediction

Authors: Vinayaka Gude Divya Sampath

Abstract:

The research introduces an integrated prediction model to assess the susceptibility of roads in a future flooding event. The model consists of deep learning algorithm for forecasting gauge height data and Flood Inundation Mapper (FIM) for spatial flooding. An optimal architecture for Long short-term memory network (LSTM) was identified for the gauge located on Tangipahoa River at Robert, LA. Dropout was applied to the model to evaluate the uncertainty associated with the predictions. The estimates are then used along with FIM to identify the spatial flooding. Further geoprocessing in ArcGIS provides the susceptibility values for different roads. The model was validated based on the devastating flood of August 2016. The paper discusses the challenges for generalization the methodology for other locations and also for various types of flooding. The developed model can be used by the transportation department and other emergency response organizations for effective disaster management.

Keywords: deep learning, disaster management, flood prediction, urban flooding

Procedia PDF Downloads 144
9386 The EFL Mental Lexicon: Connectivity and the Acquisition of Lexical Knowledge Depth

Authors: Khalid Soussi

Abstract:

The study at hand has attempted to describe the acquisition of three EFL lexical knowledge aspects - meaning, synonymy and collocation – across three academic levels: Baccalaureate, second year and fourth year university levels in Morocco. The research also compares the development of the three lexical knowledge aspects between knowledge (reception) and use (production) and attempts to trace their order of acquisition. This has led to the use of three main data collection tasks: translation, acceptability judgment and multiple choices. The study has revealed the following findings. First, L1 and EFL mental lexicons are connected at the lexical knowledge depth. Second, such connection is active whether in language reception or use. Third, the connectivity between L1 and EFL mental lexicons tends to relatively decrease as the academic level of the learners increases. Finally, the research has revealed a significant 'order' of acquisition between the three lexical aspects, though not a very strong one.

Keywords: vocabulary acquisition, EFL lexical knowledge, mental lexicon, vocabulary knowledge depth

Procedia PDF Downloads 281
9385 Single-Camera Basketball Tracker through Pose and Semantic Feature Fusion

Authors: Adrià Arbués-Sangüesa, Coloma Ballester, Gloria Haro

Abstract:

Tracking sports players is a widely challenging scenario, specially in single-feed videos recorded in tight courts, where cluttering and occlusions cannot be avoided. This paper presents an analysis of several geometric and semantic visual features to detect and track basketball players. An ablation study is carried out and then used to remark that a robust tracker can be built with Deep Learning features, without the need of extracting contextual ones, such as proximity or color similarity, nor applying camera stabilization techniques. The presented tracker consists of: (1) a detection step, which uses a pretrained deep learning model to estimate the players pose, followed by (2) a tracking step, which leverages pose and semantic information from the output of a convolutional layer in a VGG network. Its performance is analyzed in terms of MOTA over a basketball dataset with more than 10k instances.

Keywords: basketball, deep learning, feature extraction, single-camera, tracking

Procedia PDF Downloads 136
9384 DLtrace: Toward Understanding and Testing Deep Learning Information Flow in Deep Learning-Based Android Apps

Authors: Jie Zhang, Qianyu Guo, Tieyi Zhang, Zhiyong Feng, Xiaohong Li

Abstract:

With the widespread popularity of mobile devices and the development of artificial intelligence (AI), deep learning (DL) has been extensively applied in Android apps. Compared with traditional Android apps (traditional apps), deep learning based Android apps (DL-based apps) need to use more third-party application programming interfaces (APIs) to complete complex DL inference tasks. However, existing methods (e.g., FlowDroid) for detecting sensitive information leakage in Android apps cannot be directly used to detect DL-based apps as they are difficult to detect third-party APIs. To solve this problem, we design DLtrace; a new static information flow analysis tool that can effectively recognize third-party APIs. With our proposed trace and detection algorithms, DLtrace can also efficiently detect privacy leaks caused by sensitive APIs in DL-based apps. Moreover, using DLtrace, we summarize the non-sequential characteristics of DL inference tasks in DL-based apps and the specific functionalities provided by DL models for such apps. We propose two formal definitions to deal with the common polymorphism and anonymous inner-class problems in the Android static analyzer. We conducted an empirical assessment with DLtrace on 208 popular DL-based apps in the wild and found that 26.0% of the apps suffered from sensitive information leakage. Furthermore, DLtrace has a more robust performance than FlowDroid in detecting and identifying third-party APIs. The experimental results demonstrate that DLtrace expands FlowDroid in understanding DL-based apps and detecting security issues therein.

Keywords: mobile computing, deep learning apps, sensitive information, static analysis

Procedia PDF Downloads 173
9383 Upconversion Nanomaterials for Applications in Life Sciences and Medicine

Authors: Yong Zhang

Abstract:

Light has proven to be useful in a wide range of biomedical applications such as fluorescence imaging, photoacoustic imaging, optogenetics, photodynamic therapy, photothermal therapy, and light controlled drug/gene delivery. Taking photodynamic therapy (PDT) as an example, PDT has been proven clinically effective in early lung cancer, bladder cancer, head, and neck cancer and is the primary treatment for skin cancer as well. However, clinical use of PDT is severely constrained by the low penetration depth of visible light through thick tissue, limiting its use to target regions only a few millimeters deep. One way to enhance the range is to use invisible near-infrared (NIR) light within the optical window (700–1100nm) for biological tissues, extending the depth up to 1cm with no observable damage to the intervening tissue. We have demonstrated use of NIR-to-visible upconversion fluorescent nanoparticles (UCNPs), emitting visible fluorescence when excited by a NIR light at 980nm, as a nanotransducer for PDT to convert deep tissue-penetrating NIR light to visible light suitable for activating photosensitizers. The unique optical properties of UCNPs enable the upconversion wavelength to be tuned and matched to the activation absorption wavelength of the photosensitizer. At depths beyond 1cm, however, tissue remains inaccessible to light even within the NIR window, and this critical depth limitation renders existing phototherapy ineffective against most deep-seated cancers. We have demonstrated some new treatment modalities for deep-seated cancers based on UCNP hydrogel implants and miniaturized, wirelessly powered optoelectronic devices for light delivery to deep tissues.

Keywords: upconversion, fluorescent, nanoparticle, bioimaging, photodynamic therapy

Procedia PDF Downloads 159
9382 Rethinking of Self-Monitoring and Self-Response Roles in Teaching Grammar Knowledge to Iranian EFL Learners

Authors: Gholam Reza Parvizi, Ali Reza Kargar, Amir Arani

Abstract:

In the present days, learning and teaching researchers have emphasized the role which teachers, tutors, and trainers’ constraint knowledge treat in resizing and trimming what they perform in educational atmosphere. Regarding English language as subject to teaching, although the prominence of instructor’s knowledge about grammar has also been stressed, but the lack of empirical insights into the relationship between teacher’ self-monitoring and self-response of grammar knowledge have been observed. With particular attention to the grammar this article indicates and discusses information obtained self- feedback and conversing teachers of a kind who backwash the issue. The result of the study indicates that enabling teachers to progress and maintain a logical and realistic awareness of their knowledge about grammar have to be prominent goal for teachers’ education and development programs.

Keywords: grammar knowledge, self-monitoring, self-response, teaching grammar, language teaching program

Procedia PDF Downloads 558
9381 Knowledge Management Efficiency of Personnel in Rajamangala University of Technology Srivijaya Songkhla, Thailand

Authors: Nongyao Intasaso, Atchara Rattanama, Navarat Pewnual

Abstract:

This research is survey research purposed to study the factor affected to knowledge management efficiency of personnel in Rajamangala University of Technology Srivijaya, and study the problem of knowledge management affected to knowledge development of personnel in the university. The tool used in this study is structures questioner standardize rating scale in 5 levels. The sample selected by purposive sampling and there are 137 participation calculated in 25% of population. The result found that factor affected to knowledge management efficiency in the university included (1) result from the organization factor found that the university provided project or activity that according to strategy and mission of knowledge management affected to knowledge management efficiency in highest level (x̅ = 4.30) (2) result from personnel factor found that the personnel are eager for knowledge and active to learning to develop themselves and work (Personal Mastery) affected to knowledge management efficiency in high level (x̅ = 3.75) (3) result from technological factor found that the organization brought multimedia learning aid to facilitate learning process affected to knowledge management efficiency in high level (x̅ = 3.70) and (4) the result from learning factor found that the personnel communicated and sharing knowledge and opinion based on acceptance to each other affected to knowledge management efficiency in high level (x̅ = 3.78). The problem of knowledge management in the university included the personnel do not change their work behavior, insufficient of collaboration, lack of acceptance in knowledge and experience to each other, and limited budget. The solutions to solve these problems are the university should be support sufficient budget, the university should follow up and evaluate organization development based on knowledge using, the university should provide the activity emphasize to personnel development and assign the committee to process and report knowledge management procedure.

Keywords: knowledge management, efficiency, personnel, learning process

Procedia PDF Downloads 298
9380 Knowledge Loss Risk Assessment for Departing Employees: An Exploratory Study

Authors: Muhammad Saleem Ullah Khan Sumbal, Eric Tsui, Ricky Cheong, Eric See To

Abstract:

Organizations are posed to a threat of valuable knowledge loss when employees leave either due to retirement, resignation, job change or because of disabilities e.g. death, etc. Due to changing economic conditions, globalization, and aging workforce, organizations are facing challenges regarding retention of valuable knowledge. On the one hand, large number of employees are going to retire in the organizations whereas on the other hand, younger generation does not want to work in a company for a long time and there is an increasing trend of frequent job change among the new generation. Because of these factors, organizations need to make sure that they capture the knowledge of employee before (s)he walks out of the door. The first step in this process is to know what type of knowledge employee possesses and whether this knowledge is important for the organization. Researchers reveal in the literature that despite the serious consequences of knowledge loss in terms of organizational productivity and competitive advantage, there has not been much work done in the area of knowledge loss assessment of departing employees. An important step in the knowledge retention process is to determine the critical ‘at risk’ knowledge. Thus, knowledge loss risk assessment is a process by which organizations can gauge the importance of knowledge of the departing employee. The purpose of this study is to explore this topic of knowledge loss risk assessment by conducting a qualitative study in oil and gas sector. By engaging in dialogues with managers and executives of the organizations through in-depth interviews and adopting a grounded methodology approach, the research will explore; i) Are there any measures adopted by organizations to assess the risk of knowledge loss from departing employees? ii) Which factors are crucial for knowledge loss assessment in the organizations? iii) How can we prioritize the employees for knowledge retention according to their criticality? Grounded theory approach is used when there is not much knowledge available in the area under research and thus new knowledge is generated about the topic through an in-depth exploration of the topic by using methods such as interviews and using a systematic approach to analyze the data. The outcome of the study will generate a model for the risk of knowledge loss through factors such as the likelihood of knowledge loss, the consequence/impact of knowledge loss and quality of the knowledge loss of departing employees. Initial results show that knowledge loss assessment is quite crucial for the organizations and it helps in determining what types of knowledge employees possess e.g. organizations knowledge, subject matter expertise or relationships knowledge. Based on that, it can be assessed which employee is more important for the organizations and how to prioritize the knowledge retention process for departing employees.

Keywords: knowledge loss, risk assessment, departing employees, Hong Kong organizations

Procedia PDF Downloads 406
9379 A Method of Representing Knowledge of Toolkits in a Pervasive Toolroom Maintenance System

Authors: A. Mohamed Mydeen, Pallapa Venkataram

Abstract:

The learning process needs to be so pervasive to impart the quality in acquiring the knowledge about a subject by making use of the advancement in the field of information and communication systems. However, pervasive learning paradigms designed so far are system automation types and they lack in factual pervasive realm. Providing factual pervasive realm requires subtle ways of teaching and learning with system intelligence. Augmentation of intelligence with pervasive learning necessitates the most efficient way of representing knowledge for the system in order to give the right learning material to the learner. This paper presents a method of representing knowledge for Pervasive Toolroom Maintenance System (PTMS) in which a learner acquires sublime knowledge about the various kinds of tools kept in the toolroom and also helps for effective maintenance of the toolroom. First, we explicate the generic model of knowledge representation for PTMS. Second, we expound the knowledge representation for specific cases of toolkits in PTMS. We have also presented the conceptual view of knowledge representation using ontology for both generic and specific cases. Third, we have devised the relations for pervasive knowledge in PTMS. Finally, events are identified in PTMS which are then linked with pervasive data of toolkits based on relation formulated. The experimental environment and case studies show the accuracy and efficient knowledge representation of toolkits in PTMS.

Keywords: knowledge representation, pervasive computing, agent technology, ECA rules

Procedia PDF Downloads 337
9378 Self-Reliant Peer Learning for Nursing Students

Authors: U.-B. Schaer, M. Wehr, R. Hodler

Abstract:

Background: Most nursing students require more training time for necessary nursing skills than defined by nursing schools curriculum to acquire basic nursing skills. Given skills training lessons are too brief to enable effective student learning, meaning in-depth skills practice and repetition various learning steps. This increases stress levels and the pressure to succeed for a nursing student with slower learning capabilities. Another possible consequence is that nursing students are less prepared in the required skills for future clinical practice. Intervention: The Bern College of Higher Education of Nursing, Switzerland, started the independent peer practice learning program in 2012. A concept was developed which defines specific aims and content as well as student’s rights and obligations. Students enlist beforehand and order the required materials. They organize themselves and train in small groups in allocated training location in the area of Learning Training and Transfer (LTT). During the peer practice, skills and knowledge can be repeatedly trained and reflected in the peer groups without the presence of a tutor. All invasive skills are practiced only on teaching dummies. This allows students to use all their potential. The students may access learning materials as literature and their own student notes. This allows nursing students to practice their skills and to deepen their knowledge on corresponding with their own learning rate. Results: Peer group discussions during the independent peer practice learning support the students in gaining certainty and confidence in their knowledge and skills. This may improve patient safety in future daily care practice. Descriptive statics show that the number of students who take advantage of the independent peer practice learning increased continuously (2012-2018). It has to be mentioned that in 2012, solely students of the first semester attended the independent peer practice learning program, while in 2018 over one-third of the participating students were in their fifth semester and final study year. It is clearly visible that the demand for independent peer practice learning is increasing. This has to be considered in the development of future teaching curricula.

Keywords: learning program, nursing students, peer learning, skill training

Procedia PDF Downloads 119
9377 Application of Deep Eutectic Solvent in the Extraction of Ferulic Acid from Palm Pressed Fibre

Authors: Ng Mei Han, Nu'man Abdul Hadi

Abstract:

Extraction of ferulic acid from palm pressed fiber using deep eutectic solvent (DES) of choline chloride-acetic acid (ChCl-AA) and choline chloride-citric acid (ChCl-CA) are reported. Influence of water content in DES on the extraction efficiency was investigated. ChCl-AA and ChCl-CA experienced a drop in viscosity from 9.678 to 1.429 and 22.658 ± 1.655 mm2/s, respectively as the water content in the DES increased from 0 to 50 wt% which contributed to higher extraction efficiency for the ferulic acid. Between 41,155 ± 940 mg/kg ferulic acid was obtained after 6 h reflux when ChCl-AA with 30 wt% water was used for the extraction compared to 30,940 ± 621 mg/kg when neat ChCl-AA was used. Although viscosity of the DES could be improved with the addition of water, there is a threshold where the DES could tolerate the presence of water without changing its solvent behavior. The optimum condition for extraction of ferulic acid from palm pressed fiber was heating for 6 h with DES containing 30 wt% water.

Keywords: deep eutectic solvent, extraction, ferulic acid, palm fibre

Procedia PDF Downloads 81
9376 Knowledge Diffusion via Automated Organizational Cartography (Autocart)

Authors: Mounir Kehal

Abstract:

The post-globalization epoch has placed businesses everywhere in new and different competitive situations where knowledgeable, effective and efficient behavior has come to provide the competitive and comparative edge. Enterprises have turned to explicit - and even conceptualizing on tacit - knowledge management to elaborate a systematic approach to develop and sustain the intellectual capital needed to succeed. To be able to do that, you have to be able to visualize your organization as consisting of nothing but knowledge and knowledge flows, whilst being presented in a graphical and visual framework, referred to as automated organizational cartography. Hence, creating the ability of further actively classifying existing organizational content evolving from and within data feeds, in an algorithmic manner, potentially giving insightful schemes and dynamics by which organizational know-how is visualized. It is discussed and elaborated on most recent and applicable definitions and classifications of knowledge management, representing a wide range of views from mechanistic (systematic, data driven) to a more socially (psychologically, cognitive/metadata driven) orientated. More elaborate continuum models, for knowledge acquisition and reasoning purposes, are being used for effectively representing the domain of information that an end user may contain in their decision making process for utilization of available organizational intellectual resources (i.e. Autocart). In this paper, we present an empirical research study conducted previously to try and explore knowledge diffusion in a specialist knowledge domain.

Keywords: knowledge management, knowledge maps, knowledge diffusion, organizational cartography

Procedia PDF Downloads 304
9375 Partial Knowledge Transfer Between the Source Problem and the Target Problem in Genetic Algorithms

Authors: Terence Soule, Tami Al Ghamdi

Abstract:

To study how the partial knowledge transfer may affect the Genetic Algorithm (GA) performance, we model the Transfer Learning (TL) process using GA as the model solver. The objective of the TL is to transfer the knowledge from one problem to another related problem. This process imitates how humans think in their daily life. In this paper, we proposed to study a case where the knowledge transferred from the S problem has less information than what the T problem needs. We sampled the transferred population using different strategies of TL. The results showed transfer part of the knowledge is helpful and speeds the GA process of finding a solution to the problem.

Keywords: transfer learning, partial transfer, evolutionary computation, genetic algorithm

Procedia PDF Downloads 128
9374 Deep Routing Strategy: Deep Learning based Intelligent Routing in Software Defined Internet of Things.

Authors: Zabeehullah, Fahim Arif, Yawar Abbas

Abstract:

Software Defined Network (SDN) is a next genera-tion networking model which simplifies the traditional network complexities and improve the utilization of constrained resources. Currently, most of the SDN based Internet of Things(IoT) environments use traditional network routing strategies which work on the basis of max or min metric value. However, IoT network heterogeneity, dynamic traffic flow and complexity demands intelligent and self-adaptive routing algorithms because traditional routing algorithms lack the self-adaptions, intelligence and efficient utilization of resources. To some extent, SDN, due its flexibility, and centralized control has managed the IoT complexity and heterogeneity but still Software Defined IoT (SDIoT) lacks intelligence. To address this challenge, we proposed a model called Deep Routing Strategy (DRS) which uses Deep Learning algorithm to perform routing in SDIoT intelligently and efficiently. Our model uses real-time traffic for training and learning. Results demonstrate that proposed model has achieved high accuracy and low packet loss rate during path selection. Proposed model has also outperformed benchmark routing algorithm (OSPF). Moreover, proposed model provided encouraging results during high dynamic traffic flow.

Keywords: SDN, IoT, DL, ML, DRS

Procedia PDF Downloads 109
9373 Wasting Human and Computer Resources

Authors: Mária Csernoch, Piroska Biró

Abstract:

The legends about “user-friendly” and “easy-to-use” birotical tools (computer-related office tools) have been spreading and misleading end-users. This approach has led us to the extremely high number of incorrect documents, causing serious financial losses in the creating, modifying, and retrieving processes. Our research proved that there are at least two sources of this underachievement: (1) The lack of the definition of the correctly edited, formatted documents. Consequently, end-users do not know whether their methods and results are correct or not. They are not aware of their ignorance. They are so ignorant that their ignorance does not allow them to realize their lack of knowledge. (2) The end-users’ problem-solving methods. We have found that in non-traditional programming environments end-users apply, almost exclusively, surface approach metacognitive methods to carry out their computer related activities, which are proved less effective than deep approach methods. Based on these findings we have developed deep approach methods which are based on and adapted from traditional programming languages. In this study, we focus on the most popular type of birotical documents, the text-based documents. We have provided the definition of the correctly edited text, and based on this definition, adapted the debugging method known in programming. According to the method, before the realization of text editing, a thorough debugging of already existing texts and the categorization of errors are carried out. With this method in advance to real text editing users learn the requirements of text-based documents and also of the correctly formatted text. The method has been proved much more effective than the previously applied surface approach methods. The advantages of the method are that the real text handling requires much less human and computer sources than clicking aimlessly in the GUI (Graphical User Interface), and the data retrieval is much more effective than from error-prone documents.

Keywords: deep approach metacognitive methods, error-prone birotical documents, financial losses, human and computer resources

Procedia PDF Downloads 381
9372 Circle Work as a Relational Praxis to Facilitate Collaborative Learning within Higher Education: A Decolonial Pedagogical Framework for Teaching and Learning in the Virtual Classroom

Authors: Jennifer Nutton, Gayle Ployer, Ky Scott, Jenny Morgan

Abstract:

Working in a circle within higher education creates a decolonial space of mutual respect, responsibility, and reciprocity that facilitates collaborative learning and deep connections among learners and instructors. This approach is beyond simply facilitating a group in a circle but opens the door to creating a sacred space connecting each member to the land, to the Indigenous peoples who have taken care of the lands since time immemorial, to one another, and to one’s own positionality. These deep connections not only center human knowledges and relationships but also acknowledges responsibilities to land. Working in a circle as a relational pedagogical praxis also disrupts institutional power dynamics by creating a space of collaborative learning and deep connections in the classroom. Inherent within circle work is to facilitate connections not just academically but emotionally, physically, culturally, and spiritually. Recent literature supports the use of online talking circles, finding that it can offer a more relational and experiential learning environment, which is often absent in the virtual world and has been made more evident and necessary since the pandemic. These deeper experiences of learning and connection, rooted in both knowledge and the land, can then be shared with openness and vulnerability with one another, facilitating growth and change. This process of beginning with the land is critical to ensure we have the grounding to obstruct the ongoing realities of colonialism. The authors, who identify as both Indigenous and non-Indigenous, as both educators and learners, reflect on their teaching and learning experiences in circle. They share a relational pedagogical praxis framework that has been successful in educating future social workers, environmental activists, and leaders in social and human services, health, legal and political fields.

Keywords: circle work, relational pedagogies, decolonization, distance education

Procedia PDF Downloads 75
9371 Role of Strategic Human Resource Practices and Knowledge Management Capacity

Authors: Ploychompoo Kittikunchotiwut

Abstract:

This study examines the relationships between human resource practices, knowledge management capacity, and innovation performance. The data were collected by using a questionnaire from 241 firms in the hotels in Thailand. The hypothesized relationships among variables are examined by using ordinary least square (OLS) regression analysis. The findings show that human resource practices have a positive effect on knowledge management capacity. Besides, knowledge management capacity was found to positively affect innovation performance. Finally, the limitations of the study and directions for future research are discussed.

Keywords: human resource practices, knowledge management capacity, innovation performance

Procedia PDF Downloads 302
9370 A World Map of Seabed Sediment Based on 50 Years of Knowledge

Authors: T. Garlan, I. Gabelotaud, S. Lucas, E. Marchès

Abstract:

Production of a global sedimentological seabed map has been initiated in 1995 to provide the necessary tool for searches of aircraft and boats lost at sea, to give sedimentary information for nautical charts, and to provide input data for acoustic propagation modelling. This original approach had already been initiated one century ago when the French hydrographic service and the University of Nancy had produced maps of the distribution of marine sediments of the French coasts and then sediment maps of the continental shelves of Europe and North America. The current map of the sediment of oceans presented was initiated with a UNESCO's general map of the deep ocean floor. This map was adapted using a unique sediment classification to present all types of sediments: from beaches to the deep seabed and from glacial deposits to tropical sediments. In order to allow good visualization and to be adapted to the different applications, only the granularity of sediments is represented. The published seabed maps are studied, if they present an interest, the nature of the seabed is extracted from them, the sediment classification is transcribed and the resulted map is integrated in the world map. Data come also from interpretations of Multibeam Echo Sounder (MES) imagery of large hydrographic surveys of deep-ocean. These allow a very high-quality mapping of areas that until then were represented as homogeneous. The third and principal source of data comes from the integration of regional maps produced specifically for this project. These regional maps are carried out using all the bathymetric and sedimentary data of a region. This step makes it possible to produce a regional synthesis map, with the realization of generalizations in the case of over-precise data. 86 regional maps of the Atlantic Ocean, the Mediterranean Sea, and the Indian Ocean have been produced and integrated into the world sedimentary map. This work is permanent and permits a digital version every two years, with the integration of some new maps. This article describes the choices made in terms of sediment classification, the scale of source data and the zonation of the variability of the quality. This map is the final step in a system comprising the Shom Sedimentary Database, enriched by more than one million punctual and surface items of data, and four series of coastal seabed maps at 1:10,000, 1:50,000, 1:200,000 and 1:1,000,000. This step by step approach makes it possible to take into account the progresses in knowledge made in the field of seabed characterization during the last decades. Thus, the arrival of new classification systems for seafloor has improved the recent seabed maps, and the compilation of these new maps with those previously published allows a gradual enrichment of the world sedimentary map. But there is still a lot of work to enhance some regions, which are still based on data acquired more than half a century ago.

Keywords: marine sedimentology, seabed map, sediment classification, world ocean

Procedia PDF Downloads 231
9369 Setting Ground for Improvement of Knowledge Managament System in the Educational Organization

Authors: Mladen Djuric, Ivan Janicijevic, Sasa Lazarevic

Abstract:

One of the organizational issues is how to develop and shape decision making and knowledge management systems which will continually avoid traps of both paralyses by analyses“ and extinction by instinct“, the concepts that are a kind of tolerant limits anti-patterns which define what we can call decision making and knowledge management patterns control zone. This paper discusses potentials for development of a core base for recognizing, capturing, and analyzing anti-patterns in the educational organization, thus creating a space for improving decision making and knowledge management processes in education.

Keywords: anti-patterns, decision making, education, knowledge management

Procedia PDF Downloads 630
9368 The Evaluation of Fuel Desulfurization Performance of Choline-Chloride Based Deep Eutectic Solvents with Addition of Graphene Oxide as Catalyst

Authors: Chiau Yuan Lim, Hayyiratul Fatimah Mohd Zaid, Fai Kait Chong

Abstract:

Deep Eutectic Solvent (DES) is used in various applications due to its simplicity in synthesis procedure, biodegradable, inexpensive and easily available chemical ingredients. Graphene Oxide is a popular catalyst that being used in various processes due to its stacking carbon sheets in layer which theoretically rapid up the catalytic processes. In this study, choline chloride based DESs were synthesized and ChCl-PEG(1:4) was found to be the most effective DES in performing desulfurization, which it is able to remove up to 47.4% of the sulfur content in the model oil in just 10 minutes, and up to 95% of sulfur content after repeat the process for six times. ChCl-PEG(1:4) able to perform up to 32.7% desulfurization on real diesel after 6 multiple stages. Thus, future research works should focus on removing the impurities on real diesel before utilising DESs in petroleum field.

Keywords: choline chloride, deep eutectic solvent, fuel desulfurization, graphene oxide

Procedia PDF Downloads 149
9367 An Exploration of Organisational Elements on Social Media Platforms Based Knowledge Sharing: The Case of Higher Education Institutions in Malaysia

Authors: Nor Erlissa Abd Aziz, R. M. U. S. Udagedara, S. Sharifi

Abstract:

Managing and sharing knowledge has been a broadly satisfactory strategy to most of the organisations. Harnessing the power of knowledge supported the organisations to gain a competitive advantage over their competitors. Along with the invention of social media, knowledge sharing process has been more efficient and comfortable. Numerous researches have been conducted to investigate the effect of social media platforms for public and academic use. Furthermore, knowledge sharing, in general, have been subject to considerable n research, but research on sharing knowledge in Higher Education Institutions (HEIs) is rare. Also, it is noted that still there is a gap related to the organisational elements that contribute to the successful knowledge sharing through social media platforms. Thus, this research aims to investigate organisational elements that influence the social media platform based knowledge sharing within the context of Malaysian Higher Education Institutions (HEIs). The research used qualitative research methods to get an in-depth understanding of the subject matter. The conclusions of this study are based on interpreting the results of semi-structured interviews with academic staff from various Malaysian HEIs from the public and private sectors. Documents review will supplement the data from the interviews, and this ensures triangulation of the responses and thus increase the validity of the research. This research contributes to the literature by investigating an in-depth understanding the role of organisational elements about the social media platform based knowledge sharing in nourishing knowledge and spreading it to become better HEIs in utilising their knowledge. The proposed framework which identifies the organisational elements influences of social media platform based knowledge sharing will present as the main contribution of this research.

Keywords: knowledge sharing, social media, knowledge and knowledge management

Procedia PDF Downloads 205
9366 The Impact of Innovation Efficiency on the Production of New Knowledge: A Manufacturing Firm Level Perspective

Authors: Vasilios Kanellopoulos

Abstract:

The present paper examines the effect of innovation efficiency on the production of new knowledge from a firm level perspective. It resorts to the Greek version of community innovation survey (CIS 2012-2014 microdata) and employs 1274 firms of the manufacturing, which constitutes the main sector of examination. It assumes a knowledge production function (KPF) and finds that R&D spillovers related to the expenditures on innovation activities, internal R&D, external R&D, skilled labor, and the expenditures in the acquisition of machinery have a positive and significant effect on the production of new knowledge when OLS techniques are applied. However, innovation efficiency comes from a Banker and Morey (1986) data envelopment analysis (DEA) with categorical variables has a statistically insignificant impact on the production of new knowledge measured by firm’s turnover.

Keywords: firms, innovation efficiency, production of new knowledge, R&D spillovers

Procedia PDF Downloads 133
9365 Hydrogeological Study of Shallow and Deep Aquifers in Balaju-Boratar Area, Kathmandu, Central Nepal

Authors: Hitendra Raj Joshi, Bipin Lamichhane

Abstract:

Groundwater is the main source of water for the industries of Balaju Industrial District (BID) and the denizens of Balaju-Boratar area. The quantity of groundwater is in a fatal condition in the area than earlier days. Water levels in shallow wells have highly lowered and deep wells are not providing an adequate amount of water as before because of higher extraction rate than the recharge rate. The main recharge zone of the shallow aquifer lies at the foot of Nagarjuna mountain, where recent colluvial debris are accumulated. Urbanization in the area is the main reason for decreasing water table. Recharge source for the deep aquifer in the region is aquiclude leakage. Sand layer above the Kalimati clay is the shallow aquifer zone, which is limited only in Balaju and eastern part of the Boratar, while the layer below the Kalimati clay spreading around Gongabu, Machhapohari, and Balaju area is considered as a potential area of deep aquifer. Over extraction of groundwater without considering water balance in the aquifers may dry out the source and can initiate the land subsidence problem. Hence, all the responsible of the industries in BID area and the denizens of Balaju-Boratar area should be encouraged to practice artificial groundwater recharge.

Keywords: aquiclude leakage, Kalimati clay, groundwater recharge

Procedia PDF Downloads 504
9364 Study of Syntactic Errors for Deep Parsing at Machine Translation

Authors: Yukiko Sasaki Alam, Shahid Alam

Abstract:

Syntactic parsing is vital for semantic treatment by many applications related to natural language processing (NLP), because form and content coincide in many cases. However, it has not yet reached the levels of reliable performance. By manually examining and analyzing individual machine translation output errors that involve syntax as well as semantics, this study attempts to discover what is required for improving syntactic and semantic parsing.

Keywords: syntactic parsing, error analysis, machine translation, deep parsing

Procedia PDF Downloads 555