Search results for: crop disease detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7911

Search results for: crop disease detection

7581 Genetic Identification of Crop Cultivars Using Barcode System

Authors: Kesavan Markkandan, Ha Young Park, Seung-Il Yoo, Sin-Gi Park, Junhyung Park

Abstract:

For genetic identification of crop cultivars, insertions/deletions (InDel) markers have been preferred currently because they are easy to use, PCR based, co-dominant and relatively abundant. However, new InDels need to be developed for genetic studies of new varieties due to the difference of allele frequencies in InDels among the population groups. These new varieties are evolved with low levels of genetic diversity in specific genome loci with high recombination rate. In this study, we described soybean barcode system approach based on InDel makers, each of which is specific to a variation block (VB), where the genomes split by all assumed recombination sites. Firstly, VBs in crop cultivars were mined for transferability to VB-specific InDel markers. Secondly, putative InDels in the VB regions were identified for the development of barcode system by analyzing particular cultivar’s whole genome data. Thirdly, common VB-specific InDels from all cultivars were selected by gel electrophoresis, which were converted as 2D barcode types according to comparing amplicon polymorphisms in the five cultivars to the reference cultivar. Finally, the polymorphism of the selected markers was assessed with other cultivars, and the barcode system that allows a clear distinction among those cultivars is described. The same approach can be applicable for other commercial crops. Hence, VB-based genetic identification not only minimize the molecular markers but also useful for assessing cultivars and for marker-assisted breeding in other crop species.

Keywords: variation block, polymorphism, InDel marker, genetic identification

Procedia PDF Downloads 380
7580 Multi-Spectral Deep Learning Models for Forest Fire Detection

Authors: Smitha Haridasan, Zelalem Demissie, Atri Dutta, Ajita Rattani

Abstract:

Aided by the wind, all it takes is one ember and a few minutes to create a wildfire. Wildfires are growing in frequency and size due to climate change. Wildfires and its consequences are one of the major environmental concerns. Every year, millions of hectares of forests are destroyed over the world, causing mass destruction and human casualties. Thus early detection of wildfire becomes a critical component to mitigate this threat. Many computer vision-based techniques have been proposed for the early detection of forest fire using video surveillance. Several computer vision-based methods have been proposed to predict and detect forest fires at various spectrums, namely, RGB, HSV, and YCbCr. The aim of this paper is to propose a multi-spectral deep learning model that combines information from different spectrums at intermediate layers for accurate fire detection. A heterogeneous dataset assembled from publicly available datasets is used for model training and evaluation in this study. The experimental results show that multi-spectral deep learning models could obtain an improvement of about 4.68 % over those based on a single spectrum for fire detection.

Keywords: deep learning, forest fire detection, multi-spectral learning, natural hazard detection

Procedia PDF Downloads 241
7579 Leukocyte Detection Using Image Stitching and Color Overlapping Windows

Authors: Lina, Arlends Chris, Bagus Mulyawan, Agus B. Dharmawan

Abstract:

Blood cell analysis plays a significant role in the diagnosis of human health. As an alternative to the traditional technique conducted by laboratory technicians, this paper presents an automatic white blood cell (leukocyte) detection system using Image Stitching and Color Overlapping Windows. The advantage of this method is to present a detection technique of white blood cells that are robust to imperfect shapes of blood cells with various image qualities. The input for this application is images from a microscope-slide translation video. The preprocessing stage is performed by stitching the input images. First, the overlapping parts of the images are determined, then stitching and blending processes of two input images are performed. Next, the Color Overlapping Windows is performed for white blood cell detection which consists of color filtering, window candidate checking, window marking, finds window overlaps, and window cropping processes. Experimental results show that this method could achieve an average of 82.12% detection accuracy of the leukocyte images.

Keywords: color overlapping windows, image stitching, leukocyte detection, white blood cell detection

Procedia PDF Downloads 310
7578 Seroprevalence and Potential Risk Factors of Bovine Brucellosis under Diverse Production Systems in Central Punjab, Paksitan

Authors: A. Khan, I. Khan, M. Younus, S. E. Haque, U. Waheed, H. Neubauer, A. A. Anjum, S. A. Muhammad, A. Idrees T. Abbas, S. Raza, M. A. Ali, M. Farooq, M. Mahmood, A. Hussain, H. Danish, U. Tayyab, M. Zafar, M. Aslam.

Abstract:

Brucellosis is one of the major problems of milk producing animals in our country which deteriorate the health of livestock. It is a disease of zoonotic significance which is capable of producing disease in humans leading to infertility, orchitis, abortions, and synovitis. In this particular study, milk and serum samples of cattle and buffalo (n=402) were collected from different districts of Punjab including Narowal, Gujranwala and Gujrat. Milk samples were analyzed by Milk Ring Test (MRT), while serum samples were tested through Rose Bengal Plate agglutination Test (RBPT) and Indirect Enzyme Linked Immunosorbant Assay (i-ELISA). The sample tested with MRT were 9.5% positive, including cattle 9.6% and buffalo 9.3%. While using the RBPT test for the detection of serum samples and for screening purpose it was observed that 16.4% animals were seropositive, cattle were 18.8% and buffalo were 13.9% seropositive. The higher prevalence of brucellosis indicates the danger of the disease to human population. The serum samples positive by RBPT were further confirmed by the use of most specific and sensitive serological test known as i-ELISA. 11.4% animals were confirmed as seropositive by i-ELISA including cattle 13.5% seropositive and buffalo 9.3%. The results indicated high seroprevalence of brucellosis in cattle as compared to buffalos. Different risk factors were also studied to know the association between disease and their spread. Advanced age, larger herds, history of abortion and pregnancy of the animals is considered to be the important factors for the prevalence and spread of the hazardous zoonotic disease. It is a core issue of developing countries like Pakistan and has major public health impact.

Keywords: humans, bovines, infertility, orchitis, abortions, seroprevalence, brucellosis

Procedia PDF Downloads 484
7577 The Molecular Analysis of Effect of Phytohormones and Spermidine on Tomato Growth under Biotic Stress

Authors: Rumana Keyani, Haleema Sadia, Asia Nosheen, Rabia Naz, Humaira Yasmin, Sidra Zahoor

Abstract:

Tomato is a significant crop of the world and is one of the staple foods of Pakistan. A vast number of plant pathogens from simple viruses to complex parasites cause diseases in tomatoes but fungal infection in our country is quite high. Sometimes the symptoms are too harsh destroying the crop altogether. Countries like our own with continuously increasing massive population and limited resources cannot afford such an economic loss. There is an array of morphological, genetic, biochemical and molecular processes involved in plant resistance mechanisms to biotic stress. The study of different metabolic pathways like Jasmonic acid (JA) pathways and most importantly signaling molecules like ROS/RNS and their redoxin enzymes i.e. TRX and NRX is crucial to disease management, contributing to healthy plant growth. So, improving tolerance in crop plants against biotic stresses is a dire need of our country and world as whole. In the current study, fungal pathogenic strains Alternaria solani and Rhizoctonia solani were used to inoculate tomatoes to check the defense responses of tomato plant against these pathogens at molecular as well as phenotypic level with jasmonic acid and spermidine pretreatment. All the growth parameters (root and shoot length, dry and weight root, shoot weight measured 7 days post-inoculation, exhibited that infection drastically declined the growth of the plant whereas jasmonic acid and spermidine assisted the plants to cope up with the infection. Thus, JA and Spermidine treatments maintained comparatively better growth factors. Antioxidant assays and expression analysis through real time quantitative PCR following time course experiment at 24, 48 and 72 hours intervals also exhibited that activation of JA defense genes and a polyamine Spermidine helps in mediating tomato responses against fungal infection when used alone but the two treatments combined mask the effect of each other.

Keywords: fungal infection, jasmonic acid defence, tomato, spermidine

Procedia PDF Downloads 128
7576 The Effect of Technology on Skin Development and Progress

Authors: Haidy Weliam Megaly Gouda

Abstract:

Dermatology is often a neglected specialty in low-resource settings despite the high morbidity associated with skin disease. This becomes even more significant when associated with HIV infection, as dermatological conditions are more common and aggressive in HIV-positive patients. African countries have the highest HIV infection rates, and skin conditions are frequently misdiagnosed and mismanaged because of a lack of dermatological training and educational material. The frequent lack of diagnostic tests in the African setting renders basic clinical skills all the more vital. This project aimed to improve the diagnosis and treatment of skin disease in the HIV population in a district hospital in Malawi. A basic dermatological clinical tool was developed and produced in collaboration with local staff and based on available literature and data collected from clinics. The aim was to improve diagnostic accuracy and provide guidance for the treatment of skin disease in HIV-positive patients. A literature search within Embassy, Medline and Google Scholar was performed and supplemented through data obtained from attending 5 Antiretroviral clinics. From the literature, conditions were selected for inclusion in the resource if they were described as specific, more prevalent, or extensive in the HIV population or have more adverse outcomes if they develop in HIV patients. Resource-appropriate treatment options were decided using Malawian Ministry of Health guidelines and textbooks specific to African dermatology. After the collection of data and discussion with local clinical and pharmacy staff, a list of 15 skin conditions was included, and a booklet was created using the simple layout of a picture, a diagnostic description of the disease and treatment options. Clinical photographs were collected from local clinics (with full consent of the patient) or from the book ‘Common Skin Diseases in Africa’ (permission granted if fully acknowledged and used in a not-for-profit capacity). This tool was evaluated by the local staff alongside an educational teaching session on skin disease. This project aimed to reduce uncertainty in diagnosis and provide guidance for appropriate treatment in HIV patients by gathering information into one practical and manageable resource. To further this project, we hope to review the effectiveness of the tool in practice.

Keywords: prevalence and pattern of skin diseases, impact on quality of life, rural Nepal, interventions, quality switched ruby laser, skin color river blindness, clinical signs, circularity index, grey level run length matrix, grey level co-occurrence matrix, local binary pattern, object detection, ring detection, shape identification

Procedia PDF Downloads 62
7575 Electrical Dault Detection of Photovoltaic System: A Short-Circuit Fault Case

Authors: Moustapha H. Ibrahim, Dahir Abdourahman

Abstract:

This document presents a short-circuit fault detection process in a photovoltaic (PV) system. The proposed method is developed in MATLAB/Simulink. It determines whatever the size of the installation number of the short circuit module. The proposed algorithm indicates the presence or absence of an abnormality on the power of the PV system through measures of hourly global irradiation, power output, and ambient temperature. In case a fault is detected, it displays the number of modules in a short circuit. This fault detection method has been successfully tested on two different PV installations.

Keywords: PV system, short-circuit, fault detection, modelling, MATLAB-Simulink

Procedia PDF Downloads 232
7574 Association Analysis of Putative Loci with Coronary Artery Disease

Authors: Asma Naseer Cheema, Attya Bhatti, Jabar Ali, John Peter

Abstract:

Background: High cholesterol levels, endothelial dysfunction, inefficient coagulation cascade and hyper inflammatory response all are the basis of coronary artery disease (CAD). Several studies are carried out to see the genetic influence of these factors on disease outcome. Objective: The objective of our study was to see the association of 10 putative loci with coronary artery disease in our population. Materials & Methods: We screened our population for 10 putative loci of CAD showing significant association (p < 5x10-8) with candidate genes (regulating the cholesterol metabolism, endothelial function, coagulation cascade and inflammatory response of body). Hardy-Weinberg equilibrium and linkage disequilibrium in cases and controls s were estimated separately. Approximately 5-10 ng of dried DNA in 384 well plate format was used to genotype each sample on the Sequenom iPLEX assay at University of Pittsburgh Genomics and Proteomics Core Laboratories. It was built on single-base primer extension with the MALDI-TOF MS detection possessing high sensitivity and specificity. The SNPs were genotyped through Taqman assay. Hardy Weinberg test was applied. The 10 SNPs were selected as genetic markers for this study (rs579459, rs1561198, rs2954029, rs1122608, rs17114036, rs9515203, rs10947789, rs7173743, rs2895811, rs2075650). Results: Mean age of the patient was 52 ± 11 years. Blood pressure and positive family history was found a significant risk factor for CAD. None of the selected SNPs showed significant association with coronary artery disease in our population (p>0.05). Conclusion: rs579459, rs1561198, rs2954029, rs1122608, rs17114036, rs9515203, rs10947789, rs7173743, rs2895811, rs2075650 are not significant genetic markers for CAD in our population.

Keywords: CAD, genetic markers, loci, risk factors

Procedia PDF Downloads 371
7573 Ship Detection Requirements Analysis for Different Sea States: Validation on Real SAR Data

Authors: Jaime Martín-de-Nicolás, David Mata-Moya, Nerea del-Rey-Maestre, Pedro Gómez-del-Hoyo, María-Pilar Jarabo-Amores

Abstract:

Ship detection is nowadays quite an important issue in tasks related to sea traffic control, fishery management and ship search and rescue. Although it has traditionally been carried out by patrol ships or aircrafts, coverage and weather conditions and sea state can become a problem. Synthetic aperture radars can surpass these coverage limitations and work under any climatological condition. A fast CFAR ship detector based on a robust statistical modeling of sea clutter with respect to sea states in SAR images is used. In this paper, the minimum SNR required to obtain a given detection probability with a given false alarm rate for any sea state is determined. A Gaussian target model using real SAR data is considered. Results show that SNR does not depend heavily on the class considered. Provided there is some variation in the backscattering of targets in SAR imagery, the detection probability is limited and a post-processing stage based on morphology would be suitable.

Keywords: SAR, generalized gamma distribution, detection curves, radar detection

Procedia PDF Downloads 453
7572 Neural Network in Fixed Time for Collision Detection between Two Convex Polyhedra

Authors: M. Khouil, N. Saber, M. Mestari

Abstract:

In this paper, a different architecture of a collision detection neural network (DCNN) is developed. This network, which has been particularly reviewed, has enabled us to solve with a new approach the problem of collision detection between two convex polyhedra in a fixed time (O (1) time). We used two types of neurons, linear and threshold logic, which simplified the actual implementation of all the networks proposed. The study of the collision detection is divided into two sections, the collision between a point and a polyhedron and then the collision between two convex polyhedra. The aim of this research is to determine through the AMAXNET network a mini maximum point in a fixed time, which allows us to detect the presence of a potential collision.

Keywords: collision identification, fixed time, convex polyhedra, neural network, AMAXNET

Procedia PDF Downloads 423
7571 Hull Detection from Handwritten Digit Image

Authors: Sriraman Kothuri, Komal Teja Mattupalli

Abstract:

In this paper we proposed a novel algorithm for recognizing hulls in a hand written digits. This is an extension to the work on “Digit Recognition Using Freeman Chain code”. In order to find out the hulls in a user given digit it is necessary to follow three steps. Those are pre-processing, Boundary Extraction and at last apply the Hull Detection system in a way to attain the better results. The detection of Hull Regions is mainly intended to increase the machine learning capability in detection of characters or digits. This can also extend this in order to get the hull regions and their intensities in Black Holes in Space Exploration.

Keywords: chain code, machine learning, hull regions, hull recognition system, SASK algorithm

Procedia PDF Downloads 400
7570 Laboratory Diagnostic Testing of Peste des Petits Ruminants in Georgia

Authors: Nino G. Vepkhvadze, Tea Enukidze

Abstract:

Every year the number of countries around the world face the risk of the spread of infectious diseases that bring significant ecological and social-economic damage. Hence, the importance of food product safety is emphasized that is the issue of interest for many countries. To solve them, it’s necessary to conduct preventive measures against the diseases, have accurate diagnostic results, leadership, and management. The Peste des petits ruminants (PPR) disease is caused by a morbillivirus closely related to the rinderpest virus. PPR is a transboundary disease as it emerges and evolves, considered as one of the top most damaging animal diseases. The disease imposed a serious threat to sheep-breeding when the farms of sheep, goats are significantly growing within the country. In January 2016, PPR was detected in Georgia. Up to present the origin of the virus, the age relationship of affected ruminants and the distribution of PPRV in Georgia remains unclear. Due to the nature of PPR, and breeding practices in the country, reemerging of the disease in Georgia is highly likely. The purpose of the studies is to provide laboratories with efficient tools allowing the early detection of PPR emergence and re-emergences. This study is being accomplished under the Biological Threat Reduction Program project with the support of the Defense Threat Reduction Agency (DTRA). The purpose of the studies is to investigate the samples and identify areas at high risk of the disease. Georgia has a high density of small ruminant herds bred as free-ranging, close to international borders. Kakheti region, Eastern Georgia, will be considered as area of high priority for PPR surveillance. For this reason, in 2019, in Kakheti region investigated n=484 sheep and goat serum and blood samples from the same animals, utilized serology and molecular biology methods. All samples were negative by RT-PCR, and n=6 sheep samples were seropositive by ELISA-Ab. Future efforts will be concentrated in areas where the risk of PPR might be high such as international bordering regions of Georgia. For diagnostics, it is important to integrate the PPRV knowledge with epidemiological data. Based on these diagnostics, the relevant agencies will be able to control the disease surveillance.

Keywords: animal disease, especially dangerous pathogen, laboratory diagnostics, virus

Procedia PDF Downloads 115
7569 Use of Giant Magneto Resistance Sensors to Detect Micron to Submicron Biologic Objects

Authors: Manon Giraud, Francois-Damien Delapierre, Guenaelle Jasmin-Lebras, Cecile Feraudet-Tarisse, Stephanie Simon, Claude Fermon

Abstract:

Early diagnosis or detection of harmful substances at low level is a growing field of high interest. The ideal test should be cheap, easy to use, quick, reliable, specific, and with very low detection limit. Combining the high specificity of antibodies-functionalized magnetic beads used to immune-capture biologic objects and the high sensitivity of a GMR-based sensors, it is possible to even detect these biologic objects one by one, such as a cancerous cell, a bacteria or a disease biomarker. The simplicity of the detection process makes its use possible even for untrained staff. Giant Magneto Resistance (GMR) is a recently discovered effect consisting in the electrical resistance modification of some conductive layers when exposed to a magnetic field. This effect allows the detection of very low variations of magnetic field (typically a few tens of nanoTesla). Magnetic nanobeads coated with antibodies targeting the analytes are mixed with a biological sample (blood, saliva) and incubated for 45 min. Then the mixture is injected in a very simple microfluidic chip and circulates above a GMR sensor that detects changes in the surrounding magnetic field. Magnetic particles do not create a field sufficient to be detected. Therefore, only the biological objects surrounded by several antibodies-functionalized magnetic beads (that have been captured by the complementary antigens) are detected when they move above the sensor. Proof of concept has been carried out on NS1 mouse cancerous cells diluted in PBS which have been bonded to magnetic 200nm particles. Signals were detected in cells-containing samples while none were recorded for negative controls. Binary response was hence assessed for this first biological model. The precise quantification of the analytes and its detection in highly diluted solution is the step now in progress.

Keywords: early diagnosis, giant magnetoresistance, lab-on-a-chip, submicron particle

Procedia PDF Downloads 248
7568 Visual Improvement with Low Vision Aids in Children with Stargardt’s Disease

Authors: Anum Akhter, Sumaira Altaf

Abstract:

Purpose: To study the effect of low vision devices i.e. telescope and magnifying glasses on distance visual acuity and near visual acuity of children with Stargardt’s disease. Setting: Low vision department, Alshifa Trust Eye Hospital, Rawalpindi, Pakistan. Methods: 52 children having Stargardt’s disease were included in the study. All children were diagnosed by pediatrics ophthalmologists. Comprehensive low vision assessment was done by me in Low vision clinic. Visual acuity was measured using ETDRS chart. Refraction and other supplementary tests were performed. Children with Stargardt’s disease were provided with different telescopes and magnifying glasses for improving far vision and near vision. Results: Out of 52 children, 17 children were males and 35 children were females. Distance visual acuity and near visual acuity improved significantly with low vision aid trial. All children showed visual acuity better than 6/19 with a telescope of higher magnification. Improvement in near visual acuity was also significant with magnifying glasses trial. Conclusions: Low vision aids are useful for improvement in visual acuity in children. Children with Stargardt’s disease who are having a problem in education and daily life activities can get help from low vision aids.

Keywords: Stargardt, s disease, low vision aids, telescope, magnifiers

Procedia PDF Downloads 539
7567 A Study of Adaptive Fault Detection Method for GNSS Applications

Authors: Je Young Lee, Hee Sung Kim, Kwang Ho Choi, Joonhoo Lim, Sebum Chun, Hyung Keun Lee

Abstract:

A purpose of this study is to develop efficient detection method for Global Navigation Satellite Systems (GNSS) applications based on adaptive estimation. Due to dependence of radio frequency signals, GNSS measurements are dominated by systematic errors in receiver’s operating environment. Thus, to utilize GNSS for aerospace or ground vehicles requiring high level of safety, unhealthy measurements should be considered seriously. For the reason, this paper proposes adaptive fault detection method to deal with unhealthy measurements in various harsh environments. By the proposed method, the test statistics for fault detection is generated by estimated measurement noise. Pseudorange and carrier-phase measurement noise are obtained at time propagations and measurement updates in process of Carrier-Smoothed Code (CSC) filtering, respectively. Performance of the proposed method was evaluated by field-collected GNSS measurements. To evaluate the fault detection capability, intentional faults were added to measurements. The experimental result shows that the proposed detection method is efficient in detecting unhealthy measurements and improves the accuracy of GNSS positioning under fault occurrence.

Keywords: adaptive estimation, fault detection, GNSS, residual

Procedia PDF Downloads 576
7566 Optical Flow Direction Determination for Railway Crossing Occupancy Monitoring

Authors: Zdenek Silar, Martin Dobrovolny

Abstract:

This article deals with the obstacle detection on a railway crossing (clearance detection). Detection is based on the optical flow estimation and classification of the flow vectors by K-means clustering algorithm. For classification of passing vehicles is used optical flow direction determination. The optical flow estimation is based on a modified Lucas-Kanade method.

Keywords: background estimation, direction of optical flow, K-means clustering, objects detection, railway crossing monitoring, velocity vectors

Procedia PDF Downloads 518
7565 Algorithm Research on Traffic Sign Detection Based on Improved EfficientDet

Authors: Ma Lei-Lei, Zhou You

Abstract:

Aiming at the problems of low detection accuracy of deep learning algorithm in traffic sign detection, this paper proposes improved EfficientDet based traffic sign detection algorithm. Multi-head self-attention is introduced in the minimum resolution layer of the backbone of EfficientDet to achieve effective aggregation of local and global depth information, and this study proposes an improved feature fusion pyramid with increased vertical cross-layer connections, which improves the performance of the model while introducing a small amount of complexity, the Balanced L1 Loss is introduced to replace the original regression loss function Smooth L1 Loss, which solves the problem of balance in the loss function. Experimental results show, the algorithm proposed in this study is suitable for the task of traffic sign detection. Compared with other models, the improved EfficientDet has the best detection accuracy. Although the test speed is not completely dominant, it still meets the real-time requirement.

Keywords: convolutional neural network, transformer, feature pyramid networks, loss function

Procedia PDF Downloads 98
7564 Land Suitability Scaling and Modeling for Assessing Crop Suitability in Some New Reclaimed Areas, Egypt

Authors: W. A. M. Abdel Kawy, Kh. M. Darwish

Abstract:

Adequate land use selection is an essential step towards achieving sustainable development. The main object of this study is to develop a new scale for land suitability system, which can be compatible with the local conditions. Furthermore, it aims to adapt the conventional land suitability systems to match the actual environmental status in term of soil types, climate and other conditions to evaluate land suitability for newly reclaimed areas. The new system suggests calculation of land suitability considering 20 factors affecting crop selection grouping into five categories; crop-agronomic, land management, development, environmental conditions and socio – economic status. Each factor is summed by each other to calculate the total points. The highest rating for each factor indicates the highest preference for the evaluated crop. The highest rated crops for each group are those with the highest points for the actual suitability. This study was conducted to assess the application efficiency of the new land suitability scale in recently reclaimed sites in Egypt. Moreover, 35 representative soil profiles were examined, and soil samples were subjected to some physical and chemical analysis. Actual and potential suitabilities were calculated by using the new land suitability scale. Finally, the obtained results confirmed the applicability of a new land suitability system to recommend the most promising crop rotation that can be applied in the study areas. The outputs of this research revealed that the integration of different aspects for modeling and adapting a proposed model provides an effective and flexible technique, which contribute to improve land suitability assessment for several crops to be more accurate and reliable.

Keywords: analytic hierarchy process, land suitability, multi-criteria analysis, new reclaimed areas, soil parameters

Procedia PDF Downloads 138
7563 Image-Based (RBG) Technique for Estimating Phosphorus Levels of Different Crops

Authors: M. M. Ali, Ahmed Al- Ani, Derek Eamus, Daniel K. Y. Tan

Abstract:

In this glasshouse study, we developed the new image-based non-destructive technique for detecting leaf P status of different crops such as cotton, tomato and lettuce. Plants were allowed to grow on nutrient media containing different P concentrations, i.e. 0%, 50% and 100% of recommended P concentration (P0 = no P, L; P1 = 2.5 mL 10 L-1 of P and P2 = 5 mL 10 L-1 of P as NaH2PO4). After 10 weeks of growth, plants were harvested and data on leaf P contents were collected using the standard destructive laboratory method and at the same time leaf images were collected by a handheld crop image sensor. We calculated leaf area, leaf perimeter and RGB (red, green and blue) values of these images. This data was further used in the linear discriminant analysis (LDA) to estimate leaf P contents, which successfully classified these plants on the basis of leaf P contents. The data indicated that P deficiency in crop plants can be predicted using the image and morphological data. Our proposed non-destructive imaging method is precise in estimating P requirements of different crop species.

Keywords: image-based techniques, leaf area, leaf P contents, linear discriminant analysis

Procedia PDF Downloads 382
7562 Prevention of Road Accidents by Computerized Drowsiness Detection System

Authors: Ujjal Chattaraj, P. C. Dasbebartta, S. Bhuyan

Abstract:

This paper aims to propose a method to detect the action of the driver’s eyes, using the concept of face detection. There are three major key contributing methods which can rapidly process the framework of the facial image and hence produce results which further can program the reactions of the vehicles as pre-programmed for the traffic safety. This paper compares and analyses the methods on the basis of their reaction time and their ability to deal with fluctuating images of the driver. The program used in this study is simple and efficient, built using the AdaBoost learning algorithm. Through this program, the system would be able to discard background regions and focus on the face-like regions. The results are analyzed on a common computer which makes it feasible for the end users. The application domain of this experiment is quite wide, such as detection of drowsiness or influence of alcohols in drivers or detection for the case of identification.

Keywords: AdaBoost learning algorithm, face detection, framework, traffic safety

Procedia PDF Downloads 157
7561 Intelligent Driver Safety System Using Fatigue Detection

Authors: Samra Naz, Aneeqa Ahmed, Qurat-ul-ain Mubarak, Irum Nausheen

Abstract:

Driver safety systems protect driver from accidents by sensing signs of drowsiness. The paper proposes a technique which can detect the signs of drowsiness and make corresponding decisions to make the driver alert. This paper presents a technique in which the driver will be continuously monitored by a camera and his eyes, head and mouth movements will be observed. If the drowsiness signs are detected on the basis of these three movements under the predefined criteria, driver will be declared as sleepy and he will get alert with the help of alarms. Three robust techniques of drowsiness detection are combined together to make a robust system that can prevent form accident.

Keywords: drowsiness, eye closure, fatigue detection, yawn detection

Procedia PDF Downloads 293
7560 Trend of Foot and Mouth Disease and Adopted Control Measures in Limpopo Province during the Period 2014 to 2020

Authors: Temosho Promise Chuene, T. Chitura

Abstract:

Background: Foot and mouth disease is a real challenge in South Africa. The disease is a serious threat to the viability of livestock farming initiatives and affects local and international livestock trade. In Limpopo Province, the Kruger National Park and other game reserves are home to the African buffalo (Syncerus caffer), a notorious reservoir of the picornavirus, which causes foot and mouth disease. Out of the virus’s seven (7) distinct serotypes, Southern African Territories (SAT) 1, 2, and 3 are commonly endemic in South Africa. The broad objective of the study was to establish the trend of foot and mouth disease in Limpopo Province over a seven-year period (2014-2020), as well as the adoption and comprehensive reporting of the measures that are taken to contain disease outbreaks in the study area. Methods: The study used secondary data from the World Organization for Animal Health (WOAH) on reported cases of foot and mouth disease in South Africa. Descriptive analysis (frequencies and percentages) and Analysis of variance (ANOVA) were used to present and analyse the data. Result: The year 2020 had the highest prevalence of foot and mouth disease (3.72%), while 2016 had the lowest prevalence (0.05%). Serotype SAT 2 was the most endemic, followed by SAT 1. Findings from the study demonstrated the seasonal nature of foot and mouth disease in the study area, as most disease cases were reported in the summer seasons. Slaughter of diseased and at-risk animals was the only documented disease control strategy, and information was missing for some of the years. Conclusion: The study identified serious underreporting of the adopted control strategies following disease outbreaks. Adoption of comprehensive disease control strategies coupled with thorough reporting can help to reduce outbreaks of foot and mouth disease and prevent losses to the livestock farming sector of South Africa and Limpopo Province in particular.

Keywords: livestock farming, African buffalo, prevalence, serotype, slaughter

Procedia PDF Downloads 66
7559 Conservation Agriculture and Precision Water Management in Alkaline Soils under Rice-Wheat Cropping System: Effect on Wheat Productivity and Irrigation Water Use-a Case Study from India

Authors: S. K. Kakraliya, H. S. Jat, Manish Kakraliya, P. C. Sharma, M. L. Jat

Abstract:

The biggest challenge in agriculture is to produce more food for the continually increasing world population with in the limited land and water resources. Serious water deficits and reducing natural resources are some of the major threats to the agricultural sustainability in many regions of South Asia. Food and water security may be gained by bringing improvement in the crop water productivity and the amount produced per unit of water consumed. Improvement in the crop water productivity may be achieved by pursuing alternative modern agronomics approaches, which are more friendly and efficient in utilizing natural resources. Therefore, a research trial on conservation agriculture (CA) and precision water management (PWM) was conducted in 2018-19 at Karnal, India to evaluate the effect on crop productivity and irrigation in sodic soils under rice-wheat (RW) systems of Indo-Gangetic Plains (IGP). Eight scenarios were compared varied in the tillage, crop establishment, residue and irrigarion management i.e., {First four scenarios irrigated with flood irrigation method;Sc1-Conventional tillage (CT) without residue, Sc2-CT with residue, Sc3- Zero tillage (ZT) without residue, Sc4-ZT with residue}, and {last four scenarios irrigated with sub-surface drip irrigation method; Sc5-ZT without residue, Sc6- ZT with residue, Sc7-ZT inclusion legume without residue and Sc8- ZT inclusion legume with residue}. Results revealed that CA-flood irrigation (S3, Sc4) and CA-PWM system (Sc5, Sc6, Sc7 and Sc8) recorded about ~5% and ~15% higher wheat yield, respectively compared to Sc1. Similar, CA-PWM saved ~40% irrigation water compared to Sc1. Rice yield was not different under different scenarios in the first year (kharif 2019) but almost half irrigation water saved under CA-PWM system. Therefore, results of our study on modern agronomic practices including CA and precision water management (subsurface drip irrigation) for RW rotation would be addressed the existing and future challenges in the RW system.

Keywords: Sub-surface drip, Crop residue, Crop yield , Zero tillage

Procedia PDF Downloads 120
7558 Enhancement of Primary User Detection in Cognitive Radio by Scattering Transform

Authors: A. Moawad, K. C. Yao, A. Mansour, R. Gautier

Abstract:

The detecting of an occupied frequency band is a major issue in cognitive radio systems. The detection process becomes difficult if the signal occupying the band of interest has faded amplitude due to multipath effects. These effects make it hard for an occupying user to be detected. This work mitigates the missed-detection problem in the context of cognitive radio in frequency-selective fading channel by proposing blind channel estimation method that is based on scattering transform. By initially applying conventional energy detection, the missed-detection probability is evaluated, and if it is greater than or equal to 50%, channel estimation is applied on the received signal followed by channel equalization to reduce the channel effects. In the proposed channel estimator, we modify the Morlet wavelet by using its first derivative for better frequency resolution. A mathematical description of the modified function and its frequency resolution is formulated in this work. The improved frequency resolution is required to follow the spectral variation of the channel. The channel estimation error is evaluated in the mean-square sense for different channel settings, and energy detection is applied to the equalized received signal. The simulation results show improvement in reducing the missed-detection probability as compared to the detection based on principal component analysis. This improvement is achieved at the expense of increased estimator complexity, which depends on the number of wavelet filters as related to the channel taps. Also, the detection performance shows an improvement in detection probability for low signal-to-noise scenarios over principal component analysis- based energy detection.

Keywords: channel estimation, cognitive radio, scattering transform, spectrum sensing

Procedia PDF Downloads 196
7557 Detection of COVID-19 Cases From X-Ray Images Using Capsule-Based Network

Authors: Donya Ashtiani Haghighi, Amirali Baniasadi

Abstract:

Coronavirus (COVID-19) disease has spread abruptly all over the world since the end of 2019. Computed tomography (CT) scans and X-ray images are used to detect this disease. Different Deep Neural Network (DNN)-based diagnosis solutions have been developed, mainly based on Convolutional Neural Networks (CNNs), to accelerate the identification of COVID-19 cases. However, CNNs lose important information in intermediate layers and require large datasets. In this paper, Capsule Network (CapsNet) is used. Capsule Network performs better than CNNs for small datasets. Accuracy of 0.9885, f1-score of 0.9883, precision of 0.9859, recall of 0.9908, and Area Under the Curve (AUC) of 0.9948 are achieved on the Capsule-based framework with hyperparameter tuning. Moreover, different dropout rates are investigated to decrease overfitting. Accordingly, a dropout rate of 0.1 shows the best results. Finally, we remove one convolution layer and decrease the number of trainable parameters to 146,752, which is a promising result.

Keywords: capsule network, dropout, hyperparameter tuning, classification

Procedia PDF Downloads 78
7556 Model-Driven and Data-Driven Approaches for Crop Yield Prediction: Analysis and Comparison

Authors: Xiangtuo Chen, Paul-Henry Cournéde

Abstract:

Crop yield prediction is a paramount issue in agriculture. The main idea of this paper is to find out efficient way to predict the yield of corn based meteorological records. The prediction models used in this paper can be classified into model-driven approaches and data-driven approaches, according to the different modeling methodologies. The model-driven approaches are based on crop mechanistic modeling. They describe crop growth in interaction with their environment as dynamical systems. But the calibration process of the dynamic system comes up with much difficulty, because it turns out to be a multidimensional non-convex optimization problem. An original contribution of this paper is to propose a statistical methodology, Multi-Scenarios Parameters Estimation (MSPE), for the parametrization of potentially complex mechanistic models from a new type of datasets (climatic data, final yield in many situations). It is tested with CORNFLO, a crop model for maize growth. On the other hand, the data-driven approach for yield prediction is free of the complex biophysical process. But it has some strict requirements about the dataset. A second contribution of the paper is the comparison of these model-driven methods with classical data-driven methods. For this purpose, we consider two classes of regression methods, methods derived from linear regression (Ridge and Lasso Regression, Principal Components Regression or Partial Least Squares Regression) and machine learning methods (Random Forest, k-Nearest Neighbor, Artificial Neural Network and SVM regression). The dataset consists of 720 records of corn yield at county scale provided by the United States Department of Agriculture (USDA) and the associated climatic data. A 5-folds cross-validation process and two accuracy metrics: root mean square error of prediction(RMSEP), mean absolute error of prediction(MAEP) were used to evaluate the crop prediction capacity. The results show that among the data-driven approaches, Random Forest is the most robust and generally achieves the best prediction error (MAEP 4.27%). It also outperforms our model-driven approach (MAEP 6.11%). However, the method to calibrate the mechanistic model from dataset easy to access offers several side-perspectives. The mechanistic model can potentially help to underline the stresses suffered by the crop or to identify the biological parameters of interest for breeding purposes. For this reason, an interesting perspective is to combine these two types of approaches.

Keywords: crop yield prediction, crop model, sensitivity analysis, paramater estimation, particle swarm optimization, random forest

Procedia PDF Downloads 231
7555 Finite Element Simulation for Preliminary Study on Microorganism Detection System

Authors: Muhammad Rosli Abdullah, Noor Hasmiza Harun

Abstract:

A microorganism detection system has a potential to be used with the advancement in a biosensor development. The detection system requires an optical sensing system, microfluidic device and biological reagent. Although, the biosensors are available in the market, a label free and a lab-on-chip approach will promote a flexible solution. As a preliminary study of microorganism detection, three mechanisms such as Total Internal Reflection (TIR), Micro Fluidic Channel (MFC) and magnetic-electric field propagation were study and simulated. The objective are to identify the TIR angle, MFC parabolic flow and the wavelength for the microorganism detection. The simulation result indicates that evanescent wave is achieved when TIR angle > 42°, the corner and centre of a parabolic velocity are 0.02 m/s and 0.06 m/s respectively, and a higher energy distribution of a perfect electromagnetic scattering with dipole resonance radiation occurs at 500 nm. This simulation is beneficial to determine the components of the microorganism detection system that does not rely on classical microbiological, immunological and genetic methods which are laborious, time-consuming procedures and confined to specialized laboratories with expensive instrumentation equipment.

Keywords: microorganism, microfluidic, total internal reflection, lab on chip

Procedia PDF Downloads 277
7554 Mutiple Medical Landmark Detection on X-Ray Scan Using Reinforcement Learning

Authors: Vijaya Yuvaram Singh V M, Kameshwar Rao J V

Abstract:

The challenge with development of neural network based methods for medical is the availability of data. Anatomical landmark detection in the medical domain is a process to find points on the x-ray scan report of the patient. Most of the time this task is done manually by trained professionals as it requires precision and domain knowledge. Traditionally object detection based methods are used for landmark detection. Here, we utilize reinforcement learning and query based method to train a single agent capable of detecting multiple landmarks. A deep Q network agent is trained to detect single and multiple landmarks present on hip and shoulder from x-ray scan of a patient. Here a single agent is trained to find multiple landmark making it superior to having individual agents per landmark. For the initial study, five images of different patients are used as the environment and tested the agents performance on two unseen images.

Keywords: reinforcement learning, medical landmark detection, multi target detection, deep neural network

Procedia PDF Downloads 142
7553 Hand Detection and Recognition for Malay Sign Language

Authors: Mohd Noah A. Rahman, Afzaal H. Seyal, Norhafilah Bara

Abstract:

Developing a software application using an interface with computers and peripheral devices using gestures of human body such as hand movements keeps growing in interest. A review on this hand gesture detection and recognition based on computer vision technique remains a very challenging task. This is to provide more natural, innovative and sophisticated way of non-verbal communication, such as sign language, in human computer interaction. Nevertheless, this paper explores hand detection and hand gesture recognition applying a vision based approach. The hand detection and recognition used skin color spaces such as HSV and YCrCb are applied. However, there are limitations that are needed to be considered. Almost all of skin color space models are sensitive to quickly changing or mixed lighting circumstances. There are certain restrictions in order for the hand recognition to give better results such as the distance of user’s hand to the webcam and the posture and size of the hand.

Keywords: hand detection, hand gesture, hand recognition, sign language

Procedia PDF Downloads 307
7552 Evaluating Gallein Dye as a Beryllium Indicator

Authors: Elise M. Shauf

Abstract:

Beryllium can be found naturally in some fruits and vegetables (carrots, garden peas, kidney beans, pears) at very low concentrations, but is typically not clinically significant due to the low-level exposure and limited absorption of beryllium by the stomach and intestines. However, acute or chronic beryllium exposure can result in harmful toxic and carcinogenic biological effects. Beryllium can be both a workplace hazard and an environmental pollutant, therefore determining the presence of beryllium at trace levels can be essential to protect workers as well as the environment. Analysis of gallein, C₂₀H₁₂O₇, to determine if it is usable as a fluorescent dye for beryllium detection. The primary detection method currently in use includes hydroxybenzoquinoline sulfonates (HBQS), for which alternative indicators are desired. Unfortunately, gallein does not have the desired aspects needed as a dye for beryllium detection due to the peak shift properties.

Keywords: beryllium detection, fluorescent, gallein dye, indicator, spectroscopy

Procedia PDF Downloads 142