Search results for: control of speed
12813 Test Bench Development and Functional Analysis of a Reaction Wheel for an Attitude Determination and Control System Prototype
Authors: Pablo Raul Yanyachi, Alfredo Mamani Saico, Jorch Mendoza, Wang Xinsheng
Abstract:
The Attitude Determination and Control System (ADCS) plays a pivotal role in the operation of nanosatellites such as Cubesats, managing orientation and stability during space missions. Within the ADCS, Reaction Wheels (RW) are electromechanical devices responsible for adjusting and maintaining satellite orientation through the application of kinetic moments. This study focuses on the characterization and analysis of a specific Reaction Wheel integrated into an ADCS prototype developed at the National University of San Agust´ın, Arequipa (UNSA). To achieve this, a single-axis Test Bench was constructed, where the reaction wheel consists of a brushless motor and an inertia flywheel driven by an Electronic Speed Controller (ESC). The research encompasses RW characterization, energy consumption evaluation, dynamic modeling, and control. The results have allowed us to ensure the maneuverability of ADCS prototypes while maintaining energy consumption within acceptable limits. The characterization and linearity analysis provides valuable insights for sizing and optimizing future reaction wheel prototypes for nanosatellites. This contributes to the ongoing development of aerospace technology within the scientific community at UNSA.Keywords: test bench, nanosatellite, control, reaction wheel
Procedia PDF Downloads 10112812 Conceptional Design of a Hyperloop Capsule with Linear Induction Propulsion System
Authors: Ahmed E. Hodaib, Samar F. Abdel Fattah
Abstract:
High-speed transportation is a growing concern. To develop high-speed rails and to increase high-speed efficiencies, the idea of Hyperloop was introduced. The challenge is to overcome the difficulties of managing friction and air-resistance which become substantial when vehicles approach high speeds. In this paper, we are presenting the methodologies of the capsule design which got a design concept innovation award at SpaceX competition in January, 2016. MATLAB scripts are written for the levitation and propulsion calculations and iterations. Computational Fluid Dynamics (CFD) is used to simulate the air flow around the capsule considering the effect of the axial-flow air compressor and the levitation cushion on the air flow. The design procedures of a single-sided linear induction motor are analyzed in detail and its geometric and magnetic parameters are determined. A structural design is introduced and Finite Element Method (FEM) is used to analyze the stresses in different parts. The configuration and the arrangement of the components are illustrated. Moreover, comments on manufacturing are made.Keywords: high-speed transportation, hyperloop, railways transportation, single-sided linear induction Motor (SLIM)
Procedia PDF Downloads 27612811 Enhanced Cluster Based Connectivity Maintenance in Vehicular Ad Hoc Network
Authors: Manverpreet Kaur, Amarpreet Singh
Abstract:
The demand of Vehicular ad hoc networks is increasing day by day, due to offering the various applications and marvelous benefits to VANET users. Clustering in VANETs is most important to overcome the connectivity problems of VANETs. In this paper, we proposed a new clustering technique Enhanced cluster based connectivity maintenance in vehicular ad hoc network. Our objective is to form long living clusters. The proposed approach is grouping the vehicles, on the basis of the longest list of neighbors to form clusters. The cluster formation and cluster head selection process done by the RSU that may results it reduces the chances of overhead on to the network. The cluster head selection procedure is the vehicle which has closest speed to average speed will elect as a cluster Head by the RSU and if two vehicles have same speed which is closest to average speed then they will be calculate by one of the new parameter i.e. distance to their respective destination. The vehicle which has largest distance to their destination will be choosing as a cluster Head by the RSU. Our simulation outcomes show that our technique performs better than the existing technique.Keywords: VANETs, clustering, connectivity, cluster head, intelligent transportation system (ITS)
Procedia PDF Downloads 24712810 Discrete PID and Discrete State Feedback Control of a Brushed DC Motor
Authors: I. Valdez, J. Perdomo, M. Colindres, N. Castro
Abstract:
Today, digital servo systems are extensively used in industrial manufacturing processes, robotic applications, vehicles and other areas. In such control systems, control action is provided by digital controllers with different compensation algorithms, which are designed to meet specific requirements for a given application. Due to the constant search for optimization in industrial processes, it is of interest to design digital controllers that offer ease of realization, improved computational efficiency, affordable return rates, and ease of tuning that ultimately improve the performance of the controlled actuators. There is a vast range of options of compensation algorithms that could be used, although in the industry, most controllers used are based on a PID structure. This research article compares different types of digital compensators implemented in a servo system for DC motor position control. PID compensation is evaluated on its two most common architectures: PID position form (1 DOF), and PID speed form (2 DOF). State feedback algorithms are also evaluated, testing two modern control theory techniques: discrete state observer for non-measurable variables tracking, and a linear quadratic method which allows a compromise between the theoretical optimal control and the realization that most closely matches it. The compared control systems’ performance is evaluated through simulations in the Simulink platform, in which it is attempted to model accurately each of the system’s hardware components. The criteria by which the control systems are compared are reference tracking and disturbance rejection. In this investigation, it is considered that the accurate tracking of the reference signal for a position control system is particularly important because of the frequency and the suddenness in which the control signal could change in position control applications, while disturbance rejection is considered essential because the torque applied to the motor shaft due to sudden load changes can be modeled as a disturbance that must be rejected, ensuring reference tracking. Results show that 2 DOF PID controllers exhibit high performance in terms of the benchmarks mentioned, as long as they are properly tuned. As for controllers based on state feedback, due to the nature and the advantage which state space provides for modelling MIMO, it is expected that such controllers evince ease of tuning for disturbance rejection, assuming that the designer of such controllers is experienced. An in-depth multi-dimensional analysis of preliminary research results indicate that state feedback control method is more satisfactory, but PID control method exhibits easier implementation in most control applications.Keywords: control, DC motor, discrete PID, discrete state feedback
Procedia PDF Downloads 26612809 Exergy Analyses of Wind Turbine
Authors: Muhammad Abid
Abstract:
Utilization of renewable energy resources for energy conservation, pollution prevention, resource efficiency and systems integration is very important for sustainable development. In this study, we perform energy and exergy analyses of a wind turbine, located on the roof of Mechanical Engineering Department, King Saud University, and Riyadh, Saudi Arabia. The turbine is part of a hybrid photovoltaic (PV)-wind system with hydrogen storage. The power output from this turbine varies between 1.5 and 5.5 kW with a rated wind speed of 12 m/s and a cut-in wind speed of 2.4 m/s. We utilize a wide range of experimental data in the analysis and assessment. We determine energy and exergy efficiencies. The energy efficiency changes between 0% to 45% while the exergy efficiency varies between 0% and 31.3%. We also determined some of the exergoeconomic parameters that are the ratios of energy and exergy loss rates to the capital cost (R en and R ex), respectively. (R en) changes between 0.96% and 59.03% for different values of velocity while R ex has a maximum value of 53.62% for the highest wind speed.Keywords: exergy, efficiency, performance evaluation, wind energy
Procedia PDF Downloads 36612808 Fuzzy-Sliding Controller Design for Induction Motor Control
Authors: M. Bouferhane, A. Boukhebza, L. Hatab
Abstract:
In this paper, the position control of linear induction motor using fuzzy sliding mode controller design is proposed. First, the indirect field oriented control LIM is derived. Then, a designed sliding mode control system with an integral-operation switching surface is investigated, in which a simple adaptive algorithm is utilized for generalised soft-switching parameter. Finally, a fuzzy sliding mode controller is derived to compensate the uncertainties which occur in the control, in which the fuzzy logic system is used to dynamically control parameter settings of the SMC control law. The effectiveness of the proposed control scheme is verified by numerical simulation. The experimental results of the proposed scheme have presented good performances compared to the conventional sliding mode controller.Keywords: linear induction motor, vector control, backstepping, fuzzy-sliding mode control
Procedia PDF Downloads 48912807 Implementation of Model Reference Adaptive Control in Tuning of Controller Gains for Following-Vehicle System with Fixed Time Headway
Authors: Fatemeh Behbahani, Rubiyah Yusof
Abstract:
To avoid collision between following vehicles and vehicles in front, it is vital to keep appropriate, safe spacing between both vehicles over all speeds. Therefore, the following vehicle needs to have exact information regarding the speed and spacing between vehicles. This project is conducted to simulate the tuning of controller gain for a vehicle-following system through the selected control strategy, spacing control policy and fixed-time headway policy. In addition, the paper simulates and designs an adaptive gain controller for a road-vehicle-following system which uses information on the spacing, velocity and also acceleration of a preceding vehicle in the proposed one-vehicle look-ahead strategy. The mathematical model is implemented using Kirchhoff and Newton’s Laws, and stability simulated. The trial-error method was used to obtain a suitable value of controller gain. However, the adaptive-based controller system was able to optimize the gain value automatically. Model Reference Adaptive Control (MRAC) is designed and utilized and based on firstly the Gradient and secondly the Lyapunov approach. The Lyapunov approach considers stability. The Gradient approach was found to improve the best value of gain in the controller system with fixed-time headway.Keywords: one-vehicle look-ahead, model reference adaptive, stability, tuning gain controller, MRAC
Procedia PDF Downloads 23812806 The Investigation of the Impact of Process and Location Parameters in Warpage Study of Semiconductor Packages
Authors: Wheyming Song, Ssu-Ping Lin
Abstract:
The primary advantage of package-on-package (PoP) packaging is that since it has less volume, it weighs less. But this is also related to its principal drawback, which is warpage. This research investigates how PoP package warpage patterns are affected by assembling process parameters, including substrate temperature, injection speed, injection temperature, and compound forces. We also investigate how warpage patterns are affected by the location of the silicon chip. The methodologies used in this research are design of experiment and warpage simulation via ANSYS. We propose a regression model to predict the warpage value as a function of substrate temperature, injection speed, injection temperature, and compound forces. Our results show that interaction effects exist between substrate temperature and compound forces and between injection speed and injection temperature. Therefore, determining the optimal values for substrate temperature, compound forces, injection speed, and injection temperature cannot be done individually. Also, our results show that the warpage patterns based on the location of silicon chips can be classified into 11 groups, with the largest warpage occurring at the left-most and right-most sides.Keywords: package-on-package, warpage, design of experiment, simulation
Procedia PDF Downloads 30612805 High Speed Rail vs. Other Factors Affecting the Tourism Market in Italy
Authors: F. Pagliara, F. Mauriello
Abstract:
The objective of this paper is to investigate the relationship between the increase of accessibility brought by high speed rail (HSR) systems and the tourism market in Italy. The impacts of HSR projects on tourism can be quantified in different ways. In this manuscript, an empirical analysis has been carried out with the aid of a dataset containing information both on tourism and transport for 99 Italian provinces during the 2006-2016 period. Panel data regression models have been considered, since they allow modelling a wide variety of correlation patterns. Results show that HSR has an impact on the choice of a given destination for Italian tourists while the presence of a second level hub mainly affects foreign tourists. Attraction variables are also significant for both categories and the variables concerning security, such as number of crimes registered in a given destination, have a negative impact on the choice of a destination.Keywords: tourists, overnights, high speed rail, attractions, security
Procedia PDF Downloads 15512804 Modeling and Implementation of a Hierarchical Safety Controller for Human Machine Collaboration
Authors: Damtew Samson Zerihun
Abstract:
This paper primarily describes the concept of a hierarchical safety control (HSC) in discrete manufacturing to up-hold productivity with human intervention and machine failures using a systematic approach, through increasing the system availability and using additional knowledge on machines so as to improve the human machine collaboration (HMC). It also highlights the implemented PLC safety algorithm, in applying this generic concept to a concrete pro-duction line using a lab demonstrator called FATIE (Factory Automation Test and Integration Environment). Furthermore, the paper describes a model and provide a systematic representation of human-machine collabora-tion in discrete manufacturing and to this end, the Hierarchical Safety Control concept is proposed. This offers a ge-neric description of human-machine collaboration based on Finite State Machines (FSM) that can be applied to vari-ous discrete manufacturing lines instead of using ad-hoc solutions for each line. With its reusability, flexibility, and extendibility, the Hierarchical Safety Control scheme allows upholding productivity while maintaining safety with reduced engineering effort compared to existing solutions. The approach to the solution begins with a successful partitioning of different zones around the Integrated Manufacturing System (IMS), which are defined by operator tasks and the risk assessment, used to describe the location of the human operator and thus to identify the related po-tential hazards and trigger the corresponding safety functions to mitigate it. This includes selective reduced speed zones and stop zones, and in addition with the hierarchical safety control scheme and advanced safety functions such as safe standstill and safe reduced speed are used to achieve the main goals in improving the safe Human Ma-chine Collaboration and increasing the productivity. In a sample scenarios, It is shown that an increase of productivity in the order of 2.5% is already possible with a hi-erarchical safety control, which consequently under a given assumptions, a total sum of 213 € could be saved for each intervention, compared to a protective stop reaction. Thereby the loss is reduced by 22.8%, if occasional haz-ard can be refined in a hierarchical way. Furthermore, production downtime due to temporary unavailability of safety devices can be avoided with safety failover that can save millions per year. Moreover, the paper highlights the proof of the development, implementation and application of the concept on the lab demonstrator (FATIE), where it is realized on the new safety PLCs, Drive Units, HMI as well as Safety devices in addition to the main components of the IMS.Keywords: discrete automation, hierarchical safety controller, human machine collaboration, programmable logical controller
Procedia PDF Downloads 36912803 Application of Statistical Linearized Models for Investigations of Digital Dynamic Pulse-Frequency Control Systems
Authors: B. H. Aitchanov, Sh. K. Aitchanova, O. A. Baimuratov
Abstract:
This paper is focused on dynamic pulse-frequency modulation (DPFM) control systems. Currently, the control law based on DPFM control signals is widely used in direct digital control subsystems introduced in the automated control systems of technological processes. Statistical analysis of automatic control systems is reduced to its construction of functional relationships between the statistical characteristics of the errors processes and input processes. Structural and dynamic Volterra models of digital pulse-frequency control systems can be used to develop methods for generating the dependencies, differing accuracy, requiring the amount of information about the statistical characteristics of input processes and computing labor intensity of their use.Keywords: digital dynamic pulse-frequency control systems, dynamic pulse-frequency modulation, control object, discrete filter, impulse device, microcontroller
Procedia PDF Downloads 49512802 Femtocell Stationed Flawless Handover in High Agility Trains
Authors: S. Dhivya, M. Abirami, M. Farjana Parveen, M. Keerthiga
Abstract:
The development of high-speed railway makes people’s lives more and more convenient; meanwhile, handover is the major problem on high-speed railway communication services. In order to overcome that drawback the architecture of Long-Term Evolution (LTE) femtocell networks is used to improve network performance, and the deployment of a femtocell is a key for bandwidth limitation and coverage issues in conventional mobile network system. To increase the handover performance this paper proposed a multiple input multiple output (MIMO) assisted handoff (MAHO) algorithm. It is a technique used in mobile telecom to transfer a mobile phone to a new radio channel with stronger signal strength and improved channel quality.Keywords: flawless handover, high-speed train, home evolved Node B, LTE, mobile femtocell, RSS
Procedia PDF Downloads 47312801 Temperature-Stable High-Speed Vertical-Cavity Surface-Emitting Lasers with Strong Carrier Confinement
Authors: Yun Sun, Meng Xun, Jingtao Zhou, Ming Li, Qiang Kan, Zhi Jin, Xinyu Liu, Dexin Wu
Abstract:
Higher speed short-wavelength vertical-cavity surface-emitting lasers (VCSELs) working at high temperature are required for future optical interconnects. In this work, the high-speed 850 nm VCSELs are designed, fabricated and characterized. The temperature dependent static and dynamic performance of devices are investigated by using current-power-voltage and small signal modulation measurements. Temperature-stable high-speed properties are obtained by employing highly strained multiple quantum wells and short cavity length of half wavelength. The temperature dependent photon lifetimes and carrier radiative times are determined from damping factor and resonance frequency obtained by fitting the intrinsic optical bandwidth with the two-pole transfer function. In addition, an analytical theoretical model including the strain effect is development based on model-solid theory. The calculation results indicate that the better high temperature performance of VCSELs can be attributed to the strong confinement of holes in the quantum wells leading to enhancement of the carrier transit time.Keywords: vertical cavity surface emitting lasers, high speed modulation, optical interconnects, semiconductor lasers
Procedia PDF Downloads 12612800 Reductions of Control Flow Graphs
Authors: Robert Gold
Abstract:
Control flow graphs are a well-known representation of the sequential control flow structure of programs with a multitude of applications. Not only single functions but also sets of functions or complete programs can be modelled by control flow graphs. In this case the size of the graphs can grow considerably and thus makes it difficult for software engineers to analyse the control flow. Graph reductions are helpful in this situation. In this paper we define reductions to subsets of nodes. Since executions of programs are represented by paths through the control flow graphs, paths should be preserved. Furthermore, the composition of reductions makes a stepwise analysis approach possible.Keywords: control flow graph, graph reduction, software engineering, software applications
Procedia PDF Downloads 55212799 Modeling and Simulation of Secondary Breakup and Its Influence on Fuel Spray in High Torque Low Speed Diesel Engine
Authors: Mohsin Raza, Rizwan Latif, Syed Adnan Qasim, Imran Shafi
Abstract:
High torque low-speed diesel engine has a wide range of industrial and commercial applications. In literature, it’s found that lot of work has been done for the high-speed diesel engine and research on High Torque low-speed is rare. The fuel injection plays a key role in the efficiency of engine and reduction in exhaust emission. The fuel breakup plays a critical role in air-fuel mixture and spray combustion. The current study explains numerically an important phenomenon in spray combustion which is deformation and breakup of liquid drops in compression ignition internal combustion engine. The secondary breakup and its influence on spray and characteristics of compressed gas in-cylinder have been calculated by using simulation software in the backdrop of high torque low-speed diesel like conditions. The secondary spray breakup is modeled with KH - RT instabilities. The continuous field is described by turbulence model and dynamics of the dispersed droplet is modeled by Lagrangian tracking scheme. The results by using KH - RT model are compared against other default methods in OpenFOAM and published experimental data from research and implemented in CFD (Computational Fluid Dynamics). These numerical simulation, done in OpenFoam and Matlab, results are analyzed for the complete 720- degree 4 stroke engine cycle at a low engine speed, for favorable agreement to be achieved. Results thus obtained will be analyzed for better evaporation in near nozzle region. The proposed analyses will further help in better engine efficiency, low emission and improved fuel economy.Keywords: diesel fuel, KH-RT, Lagrangian , Open FOAM, secondary breakup
Procedia PDF Downloads 26512798 Approximating Maximum Speed on Road from Curvature Information of Bezier Curve
Authors: M. Yushalify Misro, Ahmad Ramli, Jamaludin M. Ali
Abstract:
Bezier curves have useful properties for path generation problem, for instance, it can generate the reference trajectory for vehicles to satisfy the path constraints. Both algorithms join cubic Bezier curve segment smoothly to generate the path. Some of the useful properties of Bezier are curvature. In mathematics, the curvature is the amount by which a geometric object deviates from being flat, or straight in the case of a line. Another extrinsic example of curvature is a circle, where the curvature is equal to the reciprocal of its radius at any point on the circle. The smaller the radius, the higher the curvature thus the vehicle needs to bend sharply. In this study, we use Bezier curve to fit highway-like curve. We use the different approach to finding the best approximation for the curve so that it will resemble highway-like curve. We compute curvature value by analytical differentiation of the Bezier Curve. We will then compute the maximum speed for driving using the curvature information obtained. Our research works on some assumptions; first the Bezier curve estimates the real shape of the curve which can be verified visually. Even, though, the fitting process of Bezier curve does not interpolate exactly on the curve of interest, we believe that the estimation of speed is acceptable. We verified our result with the manual calculation of the curvature from the map.Keywords: speed estimation, path constraints, reference trajectory, Bezier curve
Procedia PDF Downloads 37512797 Wheeled Robot Stable Braking Process under Asymmetric Traction Coefficients
Authors: Boguslaw Schreyer
Abstract:
During the wheeled robot’s braking process, the extra dynamic vertical forces act on all wheels: left, right, front or rear. Those forces are directed downward on the front wheels while directed upward on the rear wheels. In order to maximize the deceleration, therefore, minimize the braking time and braking distance, we need to calculate a correct torque distribution: the front braking torque should be increased, and rear torque should be decreased. At the same time, we need to provide better transversal stability. In a simple case of all adhesion coefficients being the same under all wheels, the torque distribution may secure the optimal (maximal) control of the robot braking process, securing the minimum braking distance and a minimum braking time. At the same time, the transversal stability is relatively good. At any time, we control the transversal acceleration. In the case of the transversal movement, we stop the braking process and re-apply braking torque after a defined period of time. If we correctly calculate the value of the torques, we may secure the traction coefficient under the front and rear wheels close to its maximum. Also, in order to provide an optimum braking control, we need to calculate the timing of the braking torque application and the timing of its release. The braking torques should be released shortly after the wheels passed a maximum traction coefficient (while a wheels’ slip increases) and applied again after the wheels pass a maximum of traction coefficient (while the slip decreases). The correct braking torque distribution secures the front and rear wheels, passing this maximum at the same time. It guarantees an optimum deceleration control, therefore, minimum braking time. In order to calculate a correct torque distribution, a control unit should receive the input signals of a rear torque value (which changes independently), the robot’s deceleration, and values of the vertical front and rear forces. In order to calculate the timing of torque application and torque release, more signals are needed: speed of the robot: angular speed, and angular deceleration of the wheels. In case of different adhesion coefficients under the left and right wheels, but the same under each pair of wheels- the same under right wheels and the same under left wheels, the Select-Low (SL) and select high (SH) methods are applied. The SL method is suggested if transversal stability is more important than braking efficiency. Often in the case of the robot, more important is braking efficiency; therefore, the SH method is applied with some control of the transversal stability. In the case that all adhesion coefficients are different under all wheels, the front-rear torque distribution is maintained as in all previous cases. However, the timing of the braking torque application and release is controlled by the rear wheels’ lowest adhesion coefficient. The Lagrange equations have been used to describe robot dynamics. Matlab has been used in order to simulate the process of wheeled robot braking, and in conclusion, the braking methods have been selected.Keywords: wheeled robots, braking, traction coefficient, asymmetric
Procedia PDF Downloads 16512796 Fast Terminal Synergetic Converter Control
Authors: Z. Bouchama, N. Essounbouli, A. Hamzaoui, M. N. Harmas
Abstract:
A new robust finite time synergetic controller is presented based on recently developed synergetic control methodology and a terminal attractor technique. A Fast Terminal Synergetic Control (FTSC) is proposed for controlling DC-DC buck converter. Unlike Synergetic Control (SC) and sliding mode control, the proposed control scheme has the characteristics of finite time convergence and chattering free phenomena. Simulation of stabilization and reference tracking for buck converter systems illustrates the approach effectiveness while stability is assured in the Lyapunov sense and converse Lyapunov results involving scalar differential inequalities are given for finite-time stability.Keywords: dc-dc buck converter, synergetic control, finite time convergence, terminal synergetic control, fast terminal synergetic control, Lyapunov
Procedia PDF Downloads 45912795 Study of the Effect of the Contra-Rotating Component on the Performance of the Centrifugal Compressor
Authors: Van Thang Nguyen, Amelie Danlos, Richard Paridaens, Farid Bakir
Abstract:
This article presents a study of the effect of a contra-rotating component on the efficiency of centrifugal compressors. A contra-rotating centrifugal compressor (CRCC) is constructed using two independent rotors, rotating in the opposite direction and replacing the single rotor of a conventional centrifugal compressor (REF). To respect the geometrical parameters of the REF one, two rotors of the CRCC are designed, based on a single rotor geometry, using the hub and shroud length ratio parameter of the meridional contour. Firstly, the first rotor is designed by choosing a value of length ratio. Then, the second rotor is calculated to be adapted to the fluid flow of the first rotor according aerodynamics principles. In this study, four values of length ratios 0.3, 0.4, 0.5, and 0.6 are used to create four configurations CF1, CF2, CF3, and CF4 respectively. For comparison purpose, the circumferential velocity at the outlet of the REF and the CRCC are preserved, which means that the single rotor of the REF and the second rotor of the CRCC rotate with the same speed of 16000rpm. The speed of the first rotor in this case is chosen to be equal to the speed of the second rotor. The CFD simulation is conducted to compare the performance of the CRCC and the REF with the same boundary conditions. The results show that the configuration with a higher length ratio gives higher pressure rise. However, its efficiency is lower. An investigation over the entire operating range shows that the CF1 is the best configuration in this case. In addition, the CRCC can improve the pressure rise as well as the efficiency by changing the speed of each rotor independently. The results of changing the first rotor speed show with a 130% speed increase, the pressure ratio rises of 8.7% while the efficiency remains stable at the flow rate of the design operating point.Keywords: centrifugal compressor, contra-rotating, interaction rotor, vacuum
Procedia PDF Downloads 13412794 Method for Tuning Level Control Loops Based on Internal Model Control and Closed Loop Step Test Data
Authors: Arnaud Nougues
Abstract:
This paper describes a two-stage methodology derived from internal model control (IMC) for tuning a proportional-integral-derivative (PID) controller for levels or other integrating processes in an industrial environment. Focus is the ease of use and implementation speed which are critical for an industrial application. Tuning can be done with minimum effort and without the need for time-consuming open-loop step tests on the plant. The first stage of the method applies to levels only: the vessel residence time is calculated from equipment dimensions and used to derive a set of preliminary proportional-integral (PI) settings with IMC. The second stage, re-tuning in closed-loop, applies to levels as well as other integrating processes: a tuning correction mechanism has been developed based on a series of closed-loop simulations with model errors. The tuning correction is done from a simple closed-loop step test and the application of a generic correlation between observed overshoot and integral time correction. A spin-off of the method is that an estimate of the vessel residence time (levels) or open-loop process gain (other integrating process) is obtained from the closed-loop data.Keywords: closed-loop model identification, IMC-PID tuning method, integrating process control, on-line PID tuning adaptation
Procedia PDF Downloads 22112793 Using ALOHA Code to Evaluate CO2 Concentration for Maanshan Nuclear Power Plant
Authors: W. S. Hsu, S. W. Chen, Y. T. Ku, Y. Chiang, J. R. Wang , J. H. Yang, C. Shih
Abstract:
ALOHA code was used to calculate the concentration under the CO2 storage burst condition for Maanshan nuclear power plant (NPP) in this study. Five main data are input into ALOHA code including location, building, chemical, atmospheric, and source data. The data from Final Safety Analysis Report (FSAR) and some reports were used in this study. The ALOHA results are compared with the failure criteria of R.G. 1.78 to confirm the habitability of control room. The result of comparison presents that the ALOHA result is below the R.G. 1.78 criteria. This implies that the habitability of control room can be maintained in this case. The sensitivity study for atmospheric parameters was performed in this study. The results show that the wind speed has the larger effect in the concentration calculation.Keywords: PWR, ALOHA, habitability, Maanshan
Procedia PDF Downloads 19812792 Simulation and Analysis of Inverted Pendulum Controllers
Authors: Sheren H. Salah
Abstract:
The inverted pendulum is a highly nonlinear and open-loop unstable system. An inverted pendulum (IP) is a pendulum which has its mass above its pivot point. It is often implemented with the pivot point mounted on a cart that can move horizontally and may be called a cart and pole. The characteristics of the inverted pendulum make identification and control more challenging. This paper presents the simulation study of several control strategies for an inverted pendulum system. The goal is to determine which control strategy delivers better performance with respect to pendulum’s angle. The inverted pendulum represents a challenging control problem, which continually moves toward an uncontrolled state. For controlling the inverted pendulum. The simulation study that sliding mode control (SMC) control produced better response compared to Genetic Algorithm Control (GAs) and proportional-integral-derivative(PID) control.Keywords: Inverted Pendulum (IP) Proportional-Integral-Derivative (PID), Genetic Algorithm Control (GAs), Sliding Mode Control (SMC)
Procedia PDF Downloads 55512791 Wind Turbines Optimization: Shield Structure for a High Wind Speed Conditions
Authors: Daniyar Seitenov, Nazim Mir-Nasiri
Abstract:
Optimization of horizontal axis semi-exposed wind turbine has been performed using a shield protection that automatically protects the generator shaft at extreme wind speeds from over speeding, mechanical damage and continues generating electricity during the high wind speed conditions. A semi-exposed to wind generator has been designed and its structure has been described in this paper. The simplified point-force dynamic load model on the blades has been derived for normal and extreme wind conditions with and without shield involvement. Numerical simulation has been conducted at different values of wind speed to study the efficiency of shield application. The obtained results show that the maximum power generated by the wind turbine with shield does not exceed approximately the rated value of the generator, where shield serves as an automatic break for extreme wind speed values of 15 m/sec and above. Meantime the wind turbine without shield produced a power that is much larger than the rated value. The optimized horizontal axis semi-exposed wind turbine with shield protection is suitable for low and medium power generation when installed on the roofs of high rise buildings for harvesting wind energy. Wind shield works automatically with no power consumption. The structure of the generator with the protection, math simulation of kinematics and dynamics of power generation has been described in details in this paper.Keywords: renewable energy, wind turbine, wind turbine optimization, high wind speed
Procedia PDF Downloads 17912790 Impact of School-Based Gymnastic Program on Skill-Related Fitness in Early Adolescent Students
Authors: Dinko Vuleta, Dejan Madić, Goran Sporiš, Nebojša Trajković
Abstract:
The aim of this study was to determine the effects of gymnastics program in school on skill-related fitness in early adolescent students. The study involved 58 adolescent students (12.82±0.54 years; Height 156.81±8.16 cm; 53.46±12.31 kg) from primary school divided into two groups, following the randomization. The gymnastic group was involved in a 12 week of gymnastics classes, while the control group only participated in usual PE classes which consisted of multi-sport activities. The variables were selected within the several fitness batteries, measuring coordination (polygon backwards), upper and lower body strength standing long jump and medicine ball throw), speed (20 m sprint) and agility (4x10 test). Pre-test to post-test values showed significant improvements in all tested variables (p<0.05), except for the 4x10m test, where there were no significant improvements in neither of the groups (p>0.05). Significant interactions of time by group were observed for coordination, sprint speed, standing long jump and medicine ball throw (p<0.05). The results showed significant increase in skill-related fitness of the participants in the gymnastic group compared to the control group. Therefore, participation in gymnastics must be recommended as a positive foundational activity for school-aged children, from early childhood to adulthood. Additionally, the results can provide useful information in optimizing the training loads of pupils involved in gymnastic training throughout PE classes.Keywords: effects, PE classes, physical fitness, training
Procedia PDF Downloads 25812789 A Metaheuristic Approach for the Pollution-Routing Problem
Authors: P. Parthiban, Sonu Rajak, R. Dhanalakshmi
Abstract:
This paper presents an Ant Colony Optimization (ACO) approach, combined with a Speed Optimization Algorithm (SOA) to solve the Vehicle Routing Problem (VRP) with environmental considerations, which is well known as Pollution-Routing Problem (PRP). It consists of routing a number of vehicles to serve a set of customers, and determining fuel consumption, driver wages and their speed on each route segment, while respecting the capacity constraints and time windows. Since VRP is NP-hard problem, so PRP also a NP-hard problem, which requires metaheuristics to solve this type of problems. The proposed solution method consists of two stages. Stage one is to solve a Vehicle Routing Problem with Time Window (VRPTW) using ACO and in the second stage, a SOA is run on the resulting VRPTW solution. Given a vehicle route, the SOA consists of finding the optimal speed on each arc of the route to minimize an objective function comprising fuel consumption costs and driver wages. The proposed algorithm tested on benchmark problem, the preliminary results show that the proposed algorithm can provide good solutions within reasonable computational time.Keywords: ant colony optimization, CO2 emissions, speed optimization, vehicle routing
Procedia PDF Downloads 35912788 Aerodynamic Design Optimization of High-Speed Hatchback Cars for Lucrative Commercial Applications
Authors: A. Aravind, M. Vetrivel, P. Abhimanyu, C. A. Akaash Emmanuel Raj, K. Sundararaj, V. R. S. Kumar
Abstract:
The choice of high-speed, low budget hatchback car with diversified options is increasing for meeting the new generation buyers trend. This paper is aimed to augment the current speed of the hatchback cars through the aerodynamic drag reduction technique. The inverted airfoils are facilitated at the bottom of the car for generating the downward force for negating the lift while increasing the current speed range for achieving a better road performance. The numerical simulations have been carried out using a 2D steady pressure-based k-ɛ realizable model with enhanced wall treatment. In our numerical studies, Reynolds-averaged Navier-Stokes model and its code of solution are used. The code is calibrated and validated using the exact solution of the 2D boundary layer displacement thickness at the Sanal flow choking condition for adiabatic flows. We observed through the parametric analytical studies that the inverted airfoil integrated with the bottom surface at various predesigned locations of Hatchback cars can improve its overall aerodynamic efficiency through drag reduction, which obviously decreases the fuel consumption significantly and ensure an optimum road performance lucratively with maximum permissible speed within the framework of the manufactures constraints.Keywords: aerodynamics of commercial cars, downward force, hatchback car, inverted airfoil
Procedia PDF Downloads 27512787 Active Disturbance Rejection Control for Wind System Based on a DFIG
Authors: R. Chakib, A. Essadki, M. Cherkaoui
Abstract:
This paper proposes the study of a robust control of the doubly fed induction generator (DFIG) used in a wind energy production. The proposed control is based on the linear active disturbance rejection control (ADRC) and it is applied to the control currents rotor of the DFIG, the DC bus voltage and active and reactive power exchanged between the DFIG and the network. The system under study and the proposed control are simulated using MATLAB/SIMULINK.Keywords: doubly fed induction generator (DFIG), active disturbance rejection control (ADRC), vector control, MPPT, extended state observer, back-to-back converter, wind turbine
Procedia PDF Downloads 48612786 A Visual Inspection System for Automotive Sheet Metal Chasis Parts Produced with Cold-Forming Method
Authors: İmren Öztürk Yılmaz, Abdullah Yasin Bilici, Yasin Atalay Candemir
Abstract:
The system consists of 4 main elements: motion system, image acquisition system, image processing software, and control interface. The parts coming out of the production line to enter the image processing system with the conveyor belt at the end of the line. The 3D scanning of the produced part is performed with the laser scanning system integrated into the system entry side. With the 3D scanning method, it is determined at what position and angle the parts enter the system, and according to the data obtained, parameters such as part origin and conveyor speed are calculated with the designed software, and the robot is informed about the position where it will take part. The robot, which receives the information, takes the produced part on the belt conveyor and shows it to high-resolution cameras for quality control. Measurement processes are carried out with a maximum error of 20 microns determined by the experiments.Keywords: quality control, industry 4.0, image processing, automated fault detection, digital visual inspection
Procedia PDF Downloads 11312785 Model Predictive Control (MPC) and Proportional-Integral-Derivative (PID) Control of Quadcopters: A Comparative Analysis
Authors: Anel Hasić, Naser Prljača
Abstract:
In the domain of autonomous or piloted flights, the accurate control of quadrotor trajectories is of paramount significance for large numbers of tasks. These adaptable aerial platforms find applications that span from high-precision aerial photography and surveillance to demanding search and rescue missions. Among the fundamental challenges confronting quadrotor operation is the demand for accurate following of desired flight paths. To address this control challenge, among others, two celebrated well-established control strategies have emerged as noteworthy contenders: Model Predictive Control (MPC) and Proportional-Integral-Derivative (PID) control. In this work, we focus on the extensive examination of MPC and PID control techniques by using comprehensive simulation studies in MATLAB/Simulink. Intensive simulation results demonstrate the performance of the studied control algorithms.Keywords: MATLAB, MPC, PID, quadcopter, simulink
Procedia PDF Downloads 6812784 Interface Analysis of Annealed Al/Cu Cladded Sheet
Authors: Joon Ho Kim, Tae Kwon Ha
Abstract:
Effect of aging treatment on microstructural aspects of interfacial layers of the Cu/Al clad sheet produced by Differential Speed Rolling (DSR) process were studied by Electron Back Scattered Diffraction (EBSD). Clad sheet of Al/Cu has been fabricated by using DSR, which caused severe shear deformation between Al and Cu plate to easily bond to each other. Rolling was carried out at 100°C with speed ratio of 2, in which the total thickness reduction was 45%. Interface layers of clad sheet were analyzed by EBSD after subsequent annealing at 400°C for 30 to 120 min. With increasing annealing time, thickness of interface layer and fraction of high angle grain boundary were increased and average grain size was decreased.Keywords: aluminium/copper clad sheet, differential speed rolling, interface layer, microstructure, annealing, electron back scattered diffraction
Procedia PDF Downloads 366