Search results for: client identification
2961 Comparing Russian and American Students’ Metaphorical Competence
Authors: Svetlana L. Mishlanova, Evgeniia V. Ermakova, Mariia E. Timirkina
Abstract:
The paper is concerned with the study of metaphor production in essays written by Russian and English native speakers in the framework of cognitive metaphor theory. It considers metaphorical competence as individual’s ability to recognize, understand and use metaphors in speech. The work analyzes the influence of visual metaphor on production and density of conventional and novel verbal metaphors. The main methods of research include experiment connected with image interpretation, metaphor identification procedure (MIPVU) and visual conventional metaphors identification procedure proposed by VisMet group. The research findings will be used in the project aimed at comparing metaphorical competence of native and non-native English speakers.Keywords: metaphor, metaphorical competence, conventional, novel
Procedia PDF Downloads 2862960 Security Architecture for Cloud Networking: A Survey
Authors: Vishnu Pratap Singh Kirar
Abstract:
In the cloud computing hierarchy IaaS is the lowest layer, all other layers are built over it. Thus it is the most important layer of cloud and requisite more importance. Along with advantages IaaS faces some serious security related issue. Mainly Security focuses on Integrity, confidentiality and availability. Cloud computing facilitate to share the resources inside as well as outside of the cloud. On the other hand, cloud still not in the state to provide surety to 100% data security. Cloud provider must ensure that end user/client get a Quality of Service. In this report we describe possible aspects of cloud related security.Keywords: cloud computing, cloud networking, IaaS, PaaS, SaaS, cloud security
Procedia PDF Downloads 5302959 Implementation of Quality Function Development to Incorporate Customer’s Value in the Conceptual Design Stage of a Construction Projects
Authors: Ayedh Alqahtani
Abstract:
Many construction firms in Saudi Arabia dedicated to building projects agree that the most important factor in the real estate market is the value that they can give to their customer. These firms understand the value of their client in different ways. Value can be defined as the size of the building project in relationship to the cost or the design quality of the materials utilized in finish work or any other features of building rooms such as the bathroom. Value can also be understood as something suitable for the money the client is investing for the new property. A quality tool is required to support companies to achieve a solution for the building project and to understand and manage the customer’s needs. Quality Function Development (QFD) method will be able to play this role since the main difference between QFD and other conventional quality management tools is QFD a valuable and very flexible tool for design and taking into the account the VOC. Currently, organizations and agencies are seeking suitable models able to deal better with uncertainty, and that is flexible and easy to use. The primary aim of this research project is to incorporate customer’s requirements in the conceptual design of construction projects. Towards this goal, QFD is selected due to its capability to integrate the design requirements to meet the customer’s needs. To develop QFD, this research focused upon the contribution of the different (significantly weighted) input factors that represent the main variables influencing QFD and subsequent analysis of the techniques used to measure them. First of all, this research will review the literature to determine the current practice of QFD in construction projects. Then, the researcher will review the literature to define the current customers of residential projects and gather information on customers’ requirements for the design of the residential building. After that, qualitative survey research will be conducted to rank customer’s needs and provide the views of stakeholder practitioners about how these needs can affect their satisfy. Moreover, a qualitative focus group with the members of the design team will be conducted to determine the improvements level and technical details for the design of residential buildings. Finally, the QFD will be developed to establish the degree of significance of the design’s solution.Keywords: quality function development, construction projects, Saudi Arabia, quality tools
Procedia PDF Downloads 1242958 The Marker Active Compound Identification of Calotropis gigantea Roots Extract as an Anticancer
Authors: Roihatul Mutiah, Sukardiman, Aty Widyawaruyanti
Abstract:
Calotropis gigantiea (L.) R. Br (Apocynaceae) commonly called as “Biduri” or “giant milk weed” is a well-known weed to many cultures for treating various disorders. Several studies reported that C.gigantea roots has anticancer activity. The main aim of this research was to isolate and identify an active marker compound of C.gigantea roots for quality control purpose of its extract in the development as anticancer natural product. The isolation methods was bioactivity guided column chromatography, TLC, and HPLC. Evaluated anticancer activity of there substances using MTT assay methods. Identification structure active compound by UV, 1HNMR, 13CNMR, HMBC, HMQC spectral and other references. The result showed that the marker active compound was identical as Calotropin.Keywords: calotropin, Calotropis gigantea, anticancer, marker active
Procedia PDF Downloads 3342957 Fault Location Identification in High Voltage Transmission Lines
Authors: Khaled M. El Naggar
Abstract:
This paper introduces a digital method for fault section identification in transmission lines. The method uses digital set of the measured short circuit current to locate faults in electrical power systems. The digitized current is used to construct a set of overdetermined system of equations. The problem is then constructed and solved using the proposed digital optimization technique to find the fault distance. The proposed optimization methodology is an application of simulated annealing optimization technique. The method is tested using practical case study to evaluate the proposed method. The accurate results obtained show that the algorithm can be used as a powerful tool in the area of power system protection.Keywords: optimization, estimation, faults, measurement, high voltage, simulated annealing
Procedia PDF Downloads 3922956 Predictors of Lost to Follow-Up among HIV Patients Attending Anti-Retroviral Therapy Treatment Centers in Nigeria
Authors: Oluwasina Folajinmi, Kate Ssamulla, Penninah Lutung, Daniel Reijer
Abstract:
Background: Despite of well-verified benefits of anti-retroviral therapy (ART) in prolonging life expectancy being lost to follow-up (LTFU) presents a challenge to the success of ART programs in resource limited countries like Nigeria. In several studies of ART programs in developing countries, researchers have reported that there has been a high rate of LTFU among patients receiving care and treatment at ART treatment centers. This study seeks to determine the cause of LTFU among HIV clients. Method: A descriptive cross sectional study focused on a population of 9,280 persons living with HIV/AIDS who were enrolled in nine treatment centers in Nigeria (both pre-ART and ART patients were included). Out of the total population, 1752 (18.9%) were found to be LTFU. Of this group we randomly selected 1200 clients (68.5%) their d patients’ information was generated through a database. Data on demographics and CD4 counts, causes of LTFU were analyzed and summarized. Results: Out of 1200 LTFU clients selected, 462 (38.5%) were on ART; 341 clients (73.8%) had CD4 level < 500cell/µL and 738 (61.5%) on pre-ART had CD4 level >500/µL. In our records we found telephone number for 675 (56.1%) of these clients. 675 (56.1%) were owners of a phone. The majority of the client’s 731 (60.9%) were living at not more than 25km away from the ART center. A majority were females (926 or 77.2%) while 274 (22.8%) were male. 675 (56.1%) clients were reported traced via telephone and home address. 326 (27.2%) of clients phone numbers were not reachable; 173 (14.4%) of telephone numbers were incomplete. 71 (5.9%) had relocated due to communal crises and expert client trackers reported that some patient could not afford transportation to ART centers. Conclusion: This study shows that, low health education levels, poverty, relocations and lack of reliable phone contact were major predictors of LTFU. Periodic updates of home addresses, telephone contacts including at least two next of kin, phone text messages and home visits may improve follow up. Early and consistent tracking of missed appointments is crucial. Creation of more ART decentralized centres are needed to avoid long distances.Keywords: anti-retroviral therapy, HIV/AIDS, predictors, lost to follow up
Procedia PDF Downloads 3042955 Risk Factors Affecting Construction Project Cost in Oman
Authors: Omar Amoudi, Latifa Al Brashdi
Abstract:
Construction projects are always subject to risks and uncertainties due to its unique and dynamic nature, outdoor work environment, the wide range of skills employed, various parties involved in addition to situation of construction business environment at large. Altogether, these risks and uncertainties affect projects objectives and lead to cost overruns, delay, and poor quality. Construction projects in Oman often experience cost overruns and delay. Managing these risks and reducing their impacts on construction cost requires firstly identifying these risks, and then analyzing their severity on project cost to obtain deep understanding about these risks. This in turn will assist construction managers in managing and tacking these risks. This paper aims to investigate the main risk factors that affect construction projects cost in the Sultanate of Oman. In order to achieve the main aim, literature review was carried out to identify the main risk factors affecting construction cost. Thirty-three risk factors were identified from the literature. Then, a questionnaire survey was designed and distributed among construction professionals (i.e., client, contractor and consultant) to obtain their opinion toward the probability of occurrence for each risk factor and its possible impact on construction project cost. The collected data was analyzed based on qualitative aspects and in several ways. The severity of each risk factor was obtained by multiplying the probability occurrence of a risk factor with its impact. The findings of this study reveal that the most significant risk factors that have high severity impact on construction project cost are: Change of Oil Price, Delay of Materials and Equipment Delivery, Changes in Laws and Regulations, Improper Budgeting, and Contingencies, Lack of Skilled Workforce and Personnel, Delays Caused by Contractor, Delays of Owner Payments, Delays Caused by Client, and Funding Risk. The results can be used as a basis for construction managers to make informed decisions and produce risk response procedures and strategies to tackle these risks and reduce their negative impacts on construction project cost.Keywords: construction cost, construction projects, Oman, risk factors, risk management
Procedia PDF Downloads 3452954 Identification of Wiener Model Using Iterative Schemes
Authors: Vikram Saini, Lillie Dewan
Abstract:
This paper presents the iterative schemes based on Least square, Hierarchical Least Square and Stochastic Approximation Gradient method for the Identification of Wiener model with parametric structure. A gradient method is presented for the parameter estimation of wiener model with noise conditions based on the stochastic approximation. Simulation results are presented for the Wiener model structure with different static non-linear elements in the presence of colored noise to show the comparative analysis of the iterative methods. The stochastic gradient method shows improvement in the estimation performance and provides fast convergence of the parameters estimates.Keywords: hard non-linearity, least square, parameter estimation, stochastic approximation gradient, Wiener model
Procedia PDF Downloads 4052953 Rapid Sexual and Reproductive Health Pathways for Women Accessing Drug and Alcohol Treatment
Authors: Molly Parker
Abstract:
Unintended pregnancy rates in Australia are amongst the highest in the developed world. Women with Substance Use Disorder often have riskier sexual behavior with nil contraceptive use and face disproportionately higher unintended pregnancies and Sexually Transmitted Infections, alongside Substance Use in Pregnancy (SUP) climbing at an alarming rate. In an inner-city Drug and Alcohol (D&A) service, significant barriers to sexual and reproductive health services have been identified, aligning with research. Rapid pathways were created for women seeking D&A treatment to be referred to Sexual and Reproductive Health services for the administration of Long-acting reversible contraception (LARC) and sexual health screening. For clients attending a D&A service, this is an opportunistic time to offer sexual and reproductive health services. Collaboration and multidisciplinary team input between D&A and sexual health and reproductive services are paramount, with rapid referral pathways being identified as the main strategy to improve access to sexual and reproductive health support for this population. With this evidence, a rapid referral pathway was created for women using the D&A service to access LARC, particularly in view of fertility often returning once stable on D&A treatment. A closed-ended survey was used for D&A staff to identify gaps in reproductive health knowledge and views of referral accessibility. Results demonstrated a lack of knowledge of contraception and appropriate referral processes. A closed-ended survey for clients was created to establish the need and access to services and to quantify data. A follow-up data collection will be reviewed to access uptake and satisfaction of the intervention from clients. Sexual health screening access was also identified as a deficit, particularly concerning due to the higher rates of STIs in this cohort. A rapid referral pathway will be undergoing implementation, reducing risks of untreated STIS both pre and post-conception. Similarly, pre and post-intervention structured surveys will be used to identify client satisfaction from the pathway. Although currently in progress, the research and pathway aim to be completed by December 2023. This research and implementation of sexual and reproductive health pathways from the D&A service have significant health and well-being benefits to clients and the wider community, including possible fetal/infancy outcomes. Women now have rapid access to sexual and reproductive health services, with the aim of reducing unplanned pregnancies, poor outcomes associated with SUP, client/staff trauma from termination of pregnancy, and client/staff trauma following the assumption of care of the child due to substance use, the financial cost for out of home care as required, the poor outcomes of untreated STIs to the fetus in pregnancy and the spread of STIs in the wider community. As evidence suggests, the implementation of a streamlined referral process is required between D&A and sexual and reproductive health services and has positive feedback from both clinicians and clients in improving care.Keywords: substance use in pregnancy, drug and alcohol, substance use disorder, sexual health, reproductive health, contraception, long-acting reversible contraception, neonatal abstinence syndrome, FASD, sexually transmitted infections, sexually transmitted infections pregnancy
Procedia PDF Downloads 642952 A Convolutional Neural Network Based Vehicle Theft Detection, Location, and Reporting System
Authors: Michael Moeti, Khuliso Sigama, Thapelo Samuel Matlala
Abstract:
One of the principal challenges that the world is confronted with is insecurity. The crime rate is increasing exponentially, and protecting our physical assets especially in the motorist industry, is becoming impossible when applying our own strength. The need to develop technological solutions that detect and report theft without any human interference is inevitable. This is critical, especially for vehicle owners, to ensure theft detection and speedy identification towards recovery efforts in cases where a vehicle is missing or attempted theft is taking place. The vehicle theft detection system uses Convolutional Neural Network (CNN) to recognize the driver's face captured using an installed mobile phone device. The location identification function uses a Global Positioning System (GPS) to determine the real-time location of the vehicle. Upon identification of the location, Global System for Mobile Communications (GSM) technology is used to report or notify the vehicle owner about the whereabouts of the vehicle. The installed mobile app was implemented by making use of python as it is undoubtedly the best choice in machine learning. It allows easy access to machine learning algorithms through its widely developed library ecosystem. The graphical user interface was developed by making use of JAVA as it is better suited for mobile development. Google's online database (Firebase) was used as a means of storage for the application. The system integration test was performed using a simple percentage analysis. Sixty (60) vehicle owners participated in this study as a sample, and questionnaires were used in order to establish the acceptability of the system developed. The result indicates the efficiency of the proposed system, and consequently, the paper proposes the use of the system can effectively monitor the vehicle at any given place, even if it is driven outside its normal jurisdiction. More so, the system can be used as a database to detect, locate and report missing vehicles to different security agencies.Keywords: CNN, location identification, tracking, GPS, GSM
Procedia PDF Downloads 1662951 Measuring Multi-Class Linear Classifier for Image Classification
Authors: Fatma Susilawati Mohamad, Azizah Abdul Manaf, Fadhillah Ahmad, Zarina Mohamad, Wan Suryani Wan Awang
Abstract:
A simple and robust multi-class linear classifier is proposed and implemented. For a pair of classes of the linear boundary, a collection of segments of hyper planes created as perpendicular bisectors of line segments linking centroids of the classes or part of classes. Nearest Neighbor and Linear Discriminant Analysis are compared in the experiments to see the performances of each classifier in discriminating ripeness of oil palm. This paper proposes a multi-class linear classifier using Linear Discriminant Analysis (LDA) for image identification. Result proves that LDA is well capable in separating multi-class features for ripeness identification.Keywords: multi-class, linear classifier, nearest neighbor, linear discriminant analysis
Procedia PDF Downloads 5382950 Using Structural Equation Modeling to Analyze the Impact of Remote Work on Job Satisfaction
Authors: Florian Pfeffel, Valentin Nickolai, Christian Louis Kühner
Abstract:
Digitalization has disrupted the traditional workplace environment by allowing many employees to work from anywhere at any time. This trend of working from home was further accelerated due to the COVID-19 crisis, which forced companies to rethink their workplace models. While in many companies, this shift happened out of pure necessity; many employees were left more satisfied with their job due to the opportunity to work from home. This study focuses on employees’ job satisfaction in the service sector in dependence on the different work models, which are defined as a “work from home” model, the traditional “work in office” model, and a hybrid model. Using structural equation modeling (SEM), these three work models have been analyzed based on 13 influencing factors on job satisfaction that have been further summarized in the three groups “classic influencing factors”, “influencing factors changed by remote working”, and “new remote working influencing factors”. Based on the influencing factors on job satisfaction, a survey has been conducted with n = 684 employees in the service sector. Cronbach’s alpha of the individual constructs was shown to be suitable. Furthermore, the construct validity of the constructs was confirmed by face validity, content validity, convergent validity (AVE > 0.5: CR > 0.7), and discriminant validity. Additionally, confirmatory factor analysis (CFA) confirmed the model fit for the investigated sample (CMIN/DF: 2.567; CFI: 0.927; RMSEA: 0.048). The SEM-analysis has shown that the most significant influencing factor on job satisfaction is “identification with the work” with β = 0.540, followed by “Appreciation” (β = 0.151), “Compensation” (β = 0.124), “Work-Life-Balance” (β = 0.116), and “Communication and Exchange of Information” (β = 0.105). While the significance of each factor can vary depending on the work model, the SEM-analysis shows that the identification with the work is the most significant factor in all three work models and, in the case of the traditional office work model, it is the only significant influencing factor. The study shows that employees who work entirely remotely or have a hybrid work model are significantly more satisfied with their job, with a job satisfaction score of 5.0 respectively on a scale from 1 (very dissatisfied) to 7 (very satisfied), than employees do not have the option to work from home with a score of 4.6. This comes as a result of the lower identification with the work in the model without any remote working. Furthermore, the responses indicate that it is important to consider the individual preferences of each employee when it comes to the work model to achieve overall higher job satisfaction. Thus, it can be argued that companies can profit off of more motivation and higher productivity by considering the individual work model preferences, therefore, increasing the identification with the respective work.Keywords: home-office, identification with work, job satisfaction, new work, remote work, structural equation modeling
Procedia PDF Downloads 822949 The Impact of the Number of Neurons in the Hidden Layer on the Performance of MLP Neural Network: Application to the Fast Identification of Toxics Gases
Authors: Slimane Ouhmad, Abdellah Halimi
Abstract:
In this work, we have applied neural networks method MLP type to a database from an array of six sensors for the detection of three toxic gases. As the choice of the number of hidden layers and the weight values has a great influence on the convergence of the learning algorithm, we proposed, in this article, a mathematical formulation to determine the optimal number of hidden layers and good weight values based on the method of back propagation of errors. The results of this modeling have improved discrimination of these gases on the one hand, and optimize the computation time on the other hand, the comparison to other results achieved in this case.Keywords: MLP Neural Network, back-propagation, number of neurons in the hidden layer, identification, computing time
Procedia PDF Downloads 3472948 Development of Partial Discharge Defect Recognition and Status Diagnosis System with Adaptive Deep Learning
Authors: Chien-kuo Chang, Bo-wei Wu, Yi-yun Tang, Min-chiu Wu
Abstract:
This paper proposes a power equipment diagnosis system based on partial discharge (PD), which is characterized by increasing the readability of experimental data and the convenience of operation. This system integrates a variety of analysis programs of different data formats and different programming languages and then establishes a set of interfaces that can follow and expand the structure, which is also helpful for subsequent maintenance and innovation. This study shows a case of using the developed Convolutional Neural Networks (CNN) to integrate with this system, using the designed model architecture to simplify the complex training process. It is expected that the simplified training process can be used to establish an adaptive deep learning experimental structure. By selecting different test data for repeated training, the accuracy of the identification system can be enhanced. On this platform, the measurement status and partial discharge pattern of each equipment can be checked in real time, and the function of real-time identification can be set, and various training models can be used to carry out real-time partial discharge insulation defect identification and insulation state diagnosis. When the electric power equipment entering the dangerous period, replace equipment early to avoid unexpected electrical accidents.Keywords: partial discharge, convolutional neural network, partial discharge analysis platform, adaptive deep learning
Procedia PDF Downloads 782947 Multimodal Employee Attendance Management System
Authors: Khaled Mohammed
Abstract:
This paper presents novel face recognition and identification approaches for the real-time attendance management problem in large companies/factories and government institutions. The proposed uses the Minimum Ratio (MR) approach for employee identification. Capturing the authentic face variability from a sequence of video frames has been considered for the recognition of faces and resulted in system robustness against the variability of facial features. Experimental results indicated an improvement in the performance of the proposed system compared to the Previous approaches at a rate between 2% to 5%. In addition, it decreased the time two times if compared with the Previous techniques, such as Extreme Learning Machine (ELM) & Multi-Scale Structural Similarity index (MS-SSIM). Finally, it achieved an accuracy of 99%.Keywords: attendance management system, face detection and recognition, live face recognition, minimum ratio
Procedia PDF Downloads 1552946 Characteristic Matrix Faults for Flight Control System
Authors: Thanh Nga Thai
Abstract:
A major issue in air transportation is in flight safety. Recent developments in control engineering have an attractive potential for resolving new issues related to guidance, navigation, and control of flying vehicles. Many future atmospheric missions will require increased on board autonomy including fault diagnosis and the subsequent control and guidance recovery actions. To improve designing system diagnostic, an efficient FDI- fault detection and identification- methodology is necessary to achieve. Contribute to characteristic of different faults in sensor and actuator in the view of mathematics brings a lot of profit in some condition changes in the system. This research finds some profit to reduce a trade-off to achieve between fault detection and performance of the closed loop system and cost and calculated in simulation.Keywords: fault detection and identification, sensor faults, actuator faults, flight control system
Procedia PDF Downloads 4222945 Re-identification Risk and Mitigation in Federated Learning: Human Activity Recognition Use Case
Authors: Besma Khalfoun
Abstract:
In many current Human Activity Recognition (HAR) applications, users' data is frequently shared and centrally stored by third parties, posing a significant privacy risk. This practice makes these entities attractive targets for extracting sensitive information about users, including their identity, health status, and location, thereby directly violating users' privacy. To tackle the issue of centralized data storage, a relatively recent paradigm known as federated learning has emerged. In this approach, users' raw data remains on their smartphones, where they train the HAR model locally. However, users still share updates of their local models originating from raw data. These updates are vulnerable to several attacks designed to extract sensitive information, such as determining whether a data sample is used in the training process, recovering the training data with inversion attacks, or inferring a specific attribute or property from the training data. In this paper, we first introduce PUR-Attack, a parameter-based user re-identification attack developed for HAR applications within a federated learning setting. It involves associating anonymous model updates (i.e., local models' weights or parameters) with the originating user's identity using background knowledge. PUR-Attack relies on a simple yet effective machine learning classifier and produces promising results. Specifically, we have found that by considering the weights of a given layer in a HAR model, we can uniquely re-identify users with an attack success rate of almost 100%. This result holds when considering a small attack training set and various data splitting strategies in the HAR model training. Thus, it is crucial to investigate protection methods to mitigate this privacy threat. Along this path, we propose SAFER, a privacy-preserving mechanism based on adaptive local differential privacy. Before sharing the model updates with the FL server, SAFER adds the optimal noise based on the re-identification risk assessment. Our approach can achieve a promising tradeoff between privacy, in terms of reducing re-identification risk, and utility, in terms of maintaining acceptable accuracy for the HAR model.Keywords: federated learning, privacy risk assessment, re-identification risk, privacy preserving mechanisms, local differential privacy, human activity recognition
Procedia PDF Downloads 112944 Stress Corrosion Crack Identification with Direct Assessment Method in Pipeline Downstream from a Compressor Station
Authors: H. Gholami, M. Jalali Azizpour
Abstract:
Stress Corrosion Crack (SCC) in pipeline is a type of environmentally assisted cracking (EAC), since its discovery in 1965 as a possible cause of failure in pipeline, SCC has caused, on average, one of two failures per year in the U.S, According to the NACE SCC DA a pipe line segment is considered susceptible to SCC if all of the following factors are met: The operating stress exceeds 60% of specified minimum yield strength (SMYS), the operating temperature exceeds 38°C, the segment is less than 32 km downstream from a compressor station, the age of the pipeline is greater than 10 years and the coating type is other than Fusion Bonded Epoxy(FBE). In this paper as a practical experience in NISOC, Direct Assessment (DA) Method is used for identification SCC defect in unpiggable pipeline located downstream of compressor station.Keywords: stress corrosion crack, direct assessment, disbondment, transgranular SCC, compressor station
Procedia PDF Downloads 3862943 Eclectic Therapy in Approach to Clients’ Problems and Application of Multiple Intelligence Theory
Authors: Mohamed Sharof Mostafa, Atefeh Ahmadi
Abstract:
Most of traditional single modality psychotherapy and counselling approaches to clients’ problems are based on the application of one therapy in all sessions. Modern developments in these sciences focus on eclectic and integrative interventions to consider all dimensions of an issue and all characteristics of the clients. This paper presents and overview eclectic therapy and its pros and cons. In addition, multiple intelligence theory and its application in eclectic therapy approaches are mentioned.Keywords: eclectic therapy, client, multiple intelligence theory, dimensions
Procedia PDF Downloads 7112942 The Impact of a Model's Skin Tone and Ethnic Identification on Consumer Decision Making
Authors: Shanika Y. Koreshi
Abstract:
Sri Lanka housed the lingerie product development and manufacturing subsidiary to renowned brands such as La Senza, Marks & Spencer, H&M, Etam, Lane Bryant, and George. Over the last few years, they have produced local brands such as Amante to cater to the local and regional customers. Past research has identified factors such as quality, price, and design to be vital when marketing lingerie to consumers. However, there has been minimum research that looks into the ethnically targeted market and skin colour within the Asian population. Therefore, the main aim of the research was to identify whether consumer preference for lingerie is influenced by the skin tone of the model wearing it. Moreover, the secondary aim was to investigate if the consumer preference for lingerie is influenced by the consumer’s ethnic identification with the skin tone of the model. An experimental design was used to explore the above aims. The participants constituted of 66 females residing in the western province of Sri Lanka and were gathered via convenience sampling. Six computerized images of a real model were used in the study, and her skin tone was digitally manipulated to express three different skin tones (light, tan and dark). Consumer preferences were measured through a ranking order scale that was constructed via a focus group discussion and ethnic identity was measured by the Multigroup Ethnic Identity Measure-Revised. Wilcoxon signed-rank test, Friedman test, and chi square test of independence were carried out using SPSS version 20. The results indicated that majority of the consumers ethnically identified and preferred the tan skin over the light and dark skin tones. The findings support the existing literature that states there is a preference among consumers when models have a medium skin tone over a lighter skin tone. The preference for a tan skin tone in a model is consistent with the ethnic identification of the Sri Lankan sample. The study implies that lingerie brands should consider the model's skin tones when marketing the brand to different ethnic backgrounds.Keywords: consumer preference, ethnic identification, lingerie, skin tone
Procedia PDF Downloads 2592941 Analytical and Statistical Study of the Parameters of Expansive Soil
Authors: A. Medjnoun, R. Bahar
Abstract:
The disorders caused by the shrinking-swelling phenomenon are prevalent in arid and semi-arid in the presence of swelling clay. This soil has the characteristic of changing state under the effect of water solicitation (wetting and drying). A set of geotechnical parameters is necessary for the characterization of this soil type, such as state parameters, physical and chemical parameters and mechanical parameters. Some of these tests are very long and some are very expensive, hence the use or methods of predictions. The complexity of this phenomenon and the difficulty of its characterization have prompted researchers to use several identification parameters in the prediction of swelling potential. This document is an analytical and statistical study of geotechnical parameters affecting the potential of swelling clays. This work is performing on a database obtained from investigations swelling Algerian soil. The obtained observations have helped us to understand the soil swelling structure and its behavior.Keywords: analysis, estimated model, parameter identification, swelling of clay
Procedia PDF Downloads 4172940 Modern State of the Universal Modeling for Centrifugal Compressors
Authors: Y. Galerkin, K. Soldatova, A. Drozdov
Abstract:
The 6th version of Universal modeling method for centrifugal compressor stage calculation is described. Identification of the new mathematical model was made. As a result of identification the uniform set of empirical coefficients is received. The efficiency definition error is 0,86 % at a design point. The efficiency definition error at five flow rate points (except a point of the maximum flow rate) is 1,22 %. Several variants of the stage with 3D impellers designed by 6th version program and quasi three-dimensional calculation programs were compared by their gas dynamic performances CFD (NUMECA FINE TURBO). Performance comparison demonstrated general principles of design validity and leads to some design recommendations.Keywords: compressor design, loss model, performance prediction, test data, model stages, flow rate coefficient, work coefficient
Procedia PDF Downloads 4122939 Modeling and System Identification of a Variable Excited Linear Direct Drive
Authors: Heiko Weiß, Andreas Meister, Christoph Ament, Nils Dreifke
Abstract:
Linear actuators are deployed in a wide range of applications. This paper presents the modeling and system identification of a variable excited linear direct drive (LDD). The LDD is designed based on linear hybrid stepper technology exhibiting the characteristic tooth structure of mover and stator. A three-phase topology provides the thrust force caused by alternating strengthening and weakening of the flux of the legs. To achieve best possible synchronous operation, the phases are commutated sinusoidal. Despite the fact that these LDDs provide high dynamics and drive forces, noise emission limits their operation in calm workspaces. To overcome this drawback an additional excitation of the magnetic circuit is introduced to LDD using additional enabling coils instead of permanent magnets. The new degree of freedom can be used to reduce force variations and related noise by varying the excitation flux that is usually generated by permanent magnets. Hence, an identified simulation model is necessary to analyze the effects of this modification. Especially the force variations must be modeled well in order to reduce them sufficiently. The model can be divided into three parts: the current dynamics, the mechanics and the force functions. These subsystems are described with differential equations or nonlinear analytic functions, respectively. Ordinary nonlinear differential equations are derived and transformed into state space representation. Experiments have been carried out on a test rig to identify the system parameters of the complete model. Static and dynamic simulation based optimizations are utilized for identification. The results are verified in time and frequency domain. Finally, the identified model provides a basis for later design of control strategies to reduce existing force variations.Keywords: force variations, linear direct drive, modeling and system identification, variable excitation flux
Procedia PDF Downloads 3702938 Disaster Victim Identification: A Social Science Perspective
Authors: Victor Toom
Abstract:
Albeit it is never possible to anticipate the full range of difficulties after a catastrophe, efforts to identify victims of mass casualty events have become institutionalized and standardized with the aim of effectively and efficiently addressing the many challenges and contingencies. Such ‘disaster victim identification’ (DVI) practices are dependent on the forensic sciences, are subject of national legislation, and are reliant on technical and organizational protocols to mitigate the many complexities in the wake of catastrophe. Apart from such technological, legal and bureaucratic elements constituting a DVI operation, victims’ families and their emotions are also part and parcel of any effort to identify casualties of mass human fatality incidents. Take for example the fact that forensic experts require (antemortem) information from the group of relatives to make identification possible. An identified body or body part is also repatriated to kin. Relatives are thus main stakeholders in DVI operations. Much has been achieved in years past regarding facilitating victims’ families’ issues and their emotions. Yet, how families are dealt with by experts and authorities is still considered a difficult topic. Due to sensitivities and required emphatic interaction with families on the one hand, and the rationalized DVI efforts, on the other hand, there is still scope for improving communication, providing information and meaningful inclusion of relatives in the DVI effort. This paper aims to bridge the standardized world of DVI efforts and families’ experienced realities and makes suggestions to further improve DVI efforts through inclusion of victims’ families. Based on qualitative interviews, the paper narrates involvement and experiences of inter alia DVI practitioners, victims’ families, advocates and clergy in the wake of the 1995 Srebrenica genocide which killed approximately 8,000 men, and the 9/11 in New York City with 2,750 victims. The paper shows that there are several models of including victims’ families into a DVI operation, and it argues for a model of where victims’ families become a partner in DVI operations.Keywords: disaster victim identification (DVI), victims’ families, social science (qualitative), 9/11 attacks, Srebrenica genocide
Procedia PDF Downloads 2322937 Speaker Recognition Using LIRA Neural Networks
Authors: Nestor A. Garcia Fragoso, Tetyana Baydyk, Ernst Kussul
Abstract:
This article contains information from our investigation in the field of voice recognition. For this purpose, we created a voice database that contains different phrases in two languages, English and Spanish, for men and women. As a classifier, the LIRA (Limited Receptive Area) grayscale neural classifier was selected. The LIRA grayscale neural classifier was developed for image recognition tasks and demonstrated good results. Therefore, we decided to develop a recognition system using this classifier for voice recognition. From a specific set of speakers, we can recognize the speaker’s voice. For this purpose, the system uses spectrograms of the voice signals as input to the system, extracts the characteristics and identifies the speaker. The results are described and analyzed in this article. The classifier can be used for speaker identification in security system or smart buildings for different types of intelligent devices.Keywords: extreme learning, LIRA neural classifier, speaker identification, voice recognition
Procedia PDF Downloads 1772936 Selection the Most Suitable Method for DNA Extraction from Muscle of Iran's Canned Tuna by Comparison of Different DNA Extraction Methods
Authors: Marjan Heidarzadeh
Abstract:
High quality and purity of DNA isolated from canned tuna is essential for species identification. In this study, the efficiency of five different methods for DNA extraction was compared. Method of national standard in Iran, the CTAB precipitation method, Wizard DNA Clean Up system, Nucleospin and GenomicPrep were employed. DNA was extracted from two different canned tuna in brine and oil of the same tuna species. Three samples of each type of product were analyzed with the different methods. The quantity and quality of DNA extracted was evaluated using the 260 nm absorbance and ratio A260/A280 by spectrophotometer picodrop. Results showed that the DNA extraction from canned tuna preserved in different liquid media could be optimized by employing a specific DNA extraction method in each case. Best results were obtained with CTAB method for canned tuna in oil and with Wizard method for canned tuna in brine.Keywords: canned tuna PCR, DNA, DNA extraction methods, species identification
Procedia PDF Downloads 6572935 Molecular Identification and Genotyping of Human Brucella Strains Isolated in Kuwait
Authors: Abu Salim Mustafa
Abstract:
Brucellosis is a zoonotic disease endemic in Kuwait. Human brucellosis can be caused by several Brucella species with Brucella melitensis causing the most severe and Brucella abortus the least severe disease. Furthermore, relapses are common after successful chemotherapy of patients. The classical biochemical methods of culture and serology for identification of Brucellae provide information about the species and serotypes only. However, to differentiate between relapse and reinfection/epidemiological investigations, the identification of genotypes using molecular methods is essential. In this study, four molecular methods [16S rRNA gene sequencing, real-time PCR, enterobacterial repetitive intergenic consensus (ERIC)-PCR and multilocus variable-number tandem-repeat analysis (MLVA)-16] were evaluated for the identification and typing of 75 strains of Brucella isolated in Kuwait. The 16S rRNA gene sequencing suggested that all the strains were B. melitensis and real-time PCR confirmed their species identity as B. melitensis. The ERIC-PCR band profiles produced a dendrogram of 75 branches suggesting each strain to be of a unique type. The cluster classification, based on ~ 80% similarity, divided all the ERIC genotypes into two clusters, A and B. Cluster A consisted of 9 ERIC genotypes (A1-A9) corresponding to 9 individual strains. Cluster B comprised of 13 ERIC genotypes (B1-B13) with B5 forming the largest cluster of 51 strains. MLVA-16 identified all isolates as B. melitensis and divided them into 71 MLVA-types. The cluster analysis of MLVA-16-types suggested that most of the strains in Kuwait originated from the East Mediterranean Region, a few from the African group and one new genotype closely matched with the West Mediterranean region. In conclusion, this work demonstrates that B. melitensis, the most pathogenic species of Brucella, is prevalent in Kuwait. Furthermore, MLVA-16 is the best molecular method, which can identify the Brucella species and genotypes as well as determine their origin in the global context. Supported by Kuwait University Research Sector grants MI04/15 and SRUL02/13.Keywords: Brucella, ERIC-PCR, MLVA-16, RT-PCR, 16S rRNA gene sequencing
Procedia PDF Downloads 3912934 Monitoring of Spectrum Usage and Signal Identification Using Cognitive Radio
Authors: O. S. Omorogiuwa, E. J. Omozusi
Abstract:
The monitoring of spectrum usage and signal identification, using cognitive radio, is done to identify frequencies that are vacant for reuse. It has been established that ‘internet of things’ device uses secondary frequency which is free, thereby facing the challenge of interference from other users, where some primary frequencies are not being utilised. The design was done by analysing a specific frequency spectrum, checking if all the frequency stations that range from 87.5-108 MHz are presently being used in Benin City, Edo State, Nigeria. From the results, it was noticed that by using Software Defined Radio/Simulink, we were able to identify vacant frequencies in the range of frequency under consideration. Also, we were able to use the significance of energy detection threshold to reuse this vacant frequency spectrum, when the cognitive radio displays a zero output (that is decision H0), meaning that the channel is unoccupied. Hence, the analysis was able to find the spectrum hole and identify how it can be reused.Keywords: spectrum, interference, telecommunication, cognitive radio, frequency
Procedia PDF Downloads 2242933 Object-Oriented Program Comprehension by Identification of Software Components and Their Connexions
Authors: Abdelhak-Djamel Seriai, Selim Kebir, Allaoua Chaoui
Abstract:
During the last decades, object oriented program- ming has been massively used to build large-scale systems. However, evolution and maintenance of such systems become a laborious task because of the lack of object oriented programming to offer a precise view of the functional building blocks of the system. This lack is caused by the fine granularity of classes and objects. In this paper, we use a post object-oriented technology namely software components, to propose an approach based on the identification of the functional building blocks of an object oriented system by analyzing its source code. These functional blocks are specified as software components and the result is a multi-layer component based software architecture.Keywords: software comprehension, software component, object oriented, software architecture, reverse engineering
Procedia PDF Downloads 4122932 Heart-Rate Resistance Electrocardiogram Identification Based on Slope-Oriented Neural Networks
Authors: Tsu-Wang Shen, Shan-Chun Chang, Chih-Hsien Wang, Te-Chao Fang
Abstract:
For electrocardiogram (ECG) biometrics system, it is a tedious process to pre-install user’s high-intensity heart rate (HR) templates in ECG biometric systems. Based on only resting enrollment templates, it is a challenge to identify human by using ECG with the high-intensity HR caused from exercises and stress. This research provides a heartbeat segment method with slope-oriented neural networks against the ECG morphology changes due to high intensity HRs. The method has overall system accuracy at 97.73% which includes six levels of HR intensities. A cumulative match characteristic curve is also used to compare with other traditional ECG biometric methods.Keywords: high-intensity heart rate, heart rate resistant, ECG human identification, decision based artificial neural network
Procedia PDF Downloads 435