Search results for: auto tuning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 654

Search results for: auto tuning

324 External Sector and Its Impact on Economic Growth of Pakistan (1990-2010)

Authors: Rizwan Fazal

Abstract:

This study investigates the behavior of external sector of Pakistan economy and its impact on economic growth, using quarterly data for the period 1990:01-2010:04. External sector indices used in this study are financial integration, net foreign assets and trade integration. Augmented Ducky fuller confirms that all variables of external sector are non-stationary at level, but at first difference it becomes stationary. The co-integration test suggests one co-integrating variables in the study. The analysis is based on Vector Auto Regression model followed by Vector Error Correction Model. The empirical findings show that financial integration play important role in increasing economic growth in Pakistan economy while trade integration has negative effect on economic growth of Pakistan in the long run. However, the short run confirms that output lag accounts for error correction. The estimated CUSUM and CUSUMQ stability test provide information that the period of the study equation remains stable.

Keywords: financial integration, trade integration, net foreign assets, gross domestic product

Procedia PDF Downloads 272
323 Structural, Magnetic, Dielectric, and Electrical Properties of ZnFe2O4 Nanoparticles

Authors: Raghvendra Singh Yadav, Ivo Kuřitka, Jarmila Vilcakova, Pavel Urbanek, Michal Machovsky, Milan Masař, Martin Holek

Abstract:

ZnFe2O4 spinel ferrite nanoparticles were synthesized by sol-gel auto-combustion method. The synthesized spinel ferrite nanoparticles were annealed at different higher temperature to achieve different size nanoparticles. The as synthesized and annealed samples were characterized by powder X-ray Diffraction Spectroscopy, Raman Spectroscopy, Fourier Transform Infrared Spectroscopy, UV-Vis absorption Spectroscopy and Scanning Electron Microscopy. The magnetic properties were studied by vibrating sample magnetometer. The variation in magnetic parameters was noticed with variation in grain size. The dielectric constant and dielectric loss with variation of frequency shows normal behaviour of spinel ferrite. The variation in conductivity with variation in grain size is noticed. Modulus and Impedance Spectroscopy shows the role of grain and grain boundary on the electrical resistance and capacitance of different grain sized spinel ferrite nanoparticles. Acknowledgment: This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic – Program NPU I (LO1504).

Keywords: spinel ferrite, nanoparticles, magnetic properties, dielectric properties

Procedia PDF Downloads 428
322 Super Mario Guide: An Updated Roadmap on Research with Travel Subjective Well-Being

Authors: Wu Hu

Abstract:

There is an increasing amount of research bridging the gap between transportation and subjective well-being (SWB). However, travel SWB research in this area is still sporadic. Therefore, we are in need of a more systematic body of work that examines travel SWB considering various work occupations, working conditions, commuting variabilities, and other related variables, and develops updated qualitative and quantitative methods to inform the transportation design. In this Super Mario Guide, the author reflects on the related elements involved with travel SWB under four categories (having Super Mario as the protagonist): 1. the starting point including variables like living conditions; 2. the commuter including the commuter’s age, gender, occupation, and others; 3. the commuting including commuting environment, vehicles, commuting time, commuting vehicles flexibility and variability and others; 4. destination including the workplace conditions, the corporate culture on working flexibility, the employer supportiveness and others. In addition, with the rise of new vehicles such as auto-driving, this research can play a significant role to better understand travel SWB and to guide the design of more efficient travelling systems so as to improve worker performance and general SWB. The author also shares thoughts on promising areas for future research.

Keywords: transportation, subjective well-being (SWB), commuting, happiness

Procedia PDF Downloads 142
321 Bioproduction of Indirubin from Fermentation and Renewable Sugars Through Genomic and Metabolomic Engineering of a Bacterial Strain

Authors: Vijay H. Ingole, Efthimia Lioliou

Abstract:

Indirubin, a key bioactive component of traditional Chinese medicine, has gained increasing recognition for its potential in modern biomedical applications, particularly in pharmacology and therapeutics. The present work aimed to harness the potential by engineering an Escherichia coli strain capable of high-yield indirubin production. Through meticulous genetic engineering, we optimized the metabolic pathways in E. coli to enhance indirubin synthesis. Further, to explored the optimization of culture media and indirubin yield via batch and fed-batch fermentation techniques. By fine-tuning upstream process (USP) parameters, including nutrient composition, pH, temperature, and aeration, we established conditions that maximized both cell growth and indirubin production. Additionally, significant efforts were dedicated to refining downstream process (DSP) conditions for the extraction, purification, and quantification of indirubin. Utilizing advanced biochemical methods and analytical techniques such as UHPLC, we ensured the production of high purity indirubin. This approach not only improved the economic viability of indirubin bioproduction but also aligned with the principles of green production and sustainability.

Keywords: indirubin, bacterial strain, fermentation, HPLC

Procedia PDF Downloads 27
320 Technical Determinants of the Success of the Quality Management Systems Implementation in Automotive Industry

Authors: Agnieszka Misztal

Abstract:

The popularity of the quality management system models continues to grow despite the transitional crisis in 2008. Their development is associated with the demands of the new requirements for entrepreneurs, such as risk analysis projects and more emphasis on supervision of outsourced processes. In parallel appropriate to focus attention on the selection of companies aspiring to quality management system. This is particularly important in the automotive supplier industry, where requirements transferred to the levels in the supply chain should be clear, transparent and fairly satisfied. The author has carried out series of researches aimed at finding the factors that allow for the effective implementation of the quality management system in automotive companies. The research was focused on four groups of companies: 1) manufacturing (parts and assemblies for the purpose of sale or for vehicle manufacturers), 2) service (repair and maintenance of the car), 3) services for the transport of goods or people, 4) commercial (auto parts and vehicles). Identified determinants were divided in two types of criteria into: internal and external, as well as: hard and soft. The article presents hard - technical factors that automotive company must meet in order to achieve the goal of the quality management system implementation.

Keywords: automotive industry, quality management system, automotive technology, automotive company

Procedia PDF Downloads 401
319 Subjective Quality Assessment for Impaired Videos with Varying Spatial and Temporal Information

Authors: Muhammad Rehan Usman, Muhammad Arslan Usman, Soo Young Shin

Abstract:

The new era of digital communication has brought up many challenges that network operators need to overcome. The high demand of mobile data rates require improved networks, which is a challenge for the operators in terms of maintaining the quality of experience (QoE) for their consumers. In live video transmission, there is a sheer need for live surveillance of the videos in order to maintain the quality of the network. For this purpose objective algorithms are employed to monitor the quality of the videos that are transmitted over a network. In order to test these objective algorithms, subjective quality assessment of the streamed videos is required, as the human eye is the best source of perceptual assessment. In this paper we have conducted subjective evaluation of videos with varying spatial and temporal impairments. These videos were impaired with frame freezing distortions so that the impact of frame freezing on the quality of experience could be studied. We present subjective Mean Opinion Score (MOS) for these videos that can be used for fine tuning the objective algorithms for video quality assessment.

Keywords: frame freezing, mean opinion score, objective assessment, subjective evaluation

Procedia PDF Downloads 494
318 A Tunable Long-Cavity Passive Mode-Locked Fiber Laser Based on Nonlinear Amplifier Loop Mirror

Authors: Pinghe Wang

Abstract:

In this paper, we demonstrate a tunable long-cavity passive mode-locked fiber laser. The mode locker is a nonlinear amplifying loop mirror (NALM). The cavity frequency of the laser is 465 kHz because that 404m SMF is inserted in the cavity. A tunable bandpass filter with ~1nm 3dB bandwidth is inserted into the cavity to realize tunable mode locking. The passive mode-locked laser at a fixed wavelength is investigated in detail. The experimental results indicate that the laser operates in dissipative soliton resonance (DSR) region. When the pump power is 400mW, the laser generates the rectangular pulses with 10.58 ns pulse duration, 70.28nJ single-pulse energy. When the pump power is 400mW, the laser keeps stable mode locking status in the range from 1523.4nm to 1575nm. During the whole tuning range, the SNR, the pulse duration, the output power and single pulse energy have a little fluctuation because that the gain of the EDF changes with the wavelength.

Keywords: fiber laser, dissipative soliton resonance, mode locking, tunable

Procedia PDF Downloads 237
317 Design of Enhanced Adaptive Filter for Integrated Navigation System of FOG-SINS and Star Tracker

Authors: Nassim Bessaad, Qilian Bao, Zhao Jiangkang

Abstract:

The fiber optics gyroscope in the strap-down inertial navigation system (FOG-SINS) suffers from precision degradation due to the influence of random errors. In this work, an enhanced Allan variance (AV) stochastic modeling method combined with discrete wavelet transform (DWT) for signal denoising is implemented to estimate the random process in the FOG signal. Furthermore, we devise a measurement-based iterative adaptive Sage-Husa nonlinear filter with augmented states to integrate a star tracker sensor with SINS. The proposed filter adapts the measurement noise covariance matrix based on the available data. Moreover, the enhanced stochastic modeling scheme is invested in tuning the process noise covariance matrix and the augmented state Gauss-Markov process parameters. Finally, the effectiveness of the proposed filter is investigated by employing the collected data in laboratory conditions. The result shows the filter's improved accuracy in comparison with the conventional Kalman filter (CKF).

Keywords: inertial navigation, adaptive filtering, star tracker, FOG

Procedia PDF Downloads 80
316 Optimizing the Efficiency of Measuring Instruments in Ouagadougou-Burkina Faso

Authors: Moses Emetere, Marvel Akinyemi, S. E. Sanni

Abstract:

At the moment, AERONET or AMMA database shows a large volume of data loss. With only about 47% data set available to the scientist, it is evident that accurate nowcast or forecast cannot be guaranteed. The calibration constants of most radiosonde or weather stations are not compatible with the atmospheric conditions of the West African climate. A dispersion model was developed to incorporate salient mathematical representations like a Unified number. The Unified number was derived to describe the turbulence of the aerosols transport in the frictional layer of the lower atmosphere. Fourteen years data set from Multi-angle Imaging SpectroRadiometer (MISR) was tested using the dispersion model. A yearly estimation of the atmospheric constants over Ouagadougou using the model was obtained with about 87.5% accuracy. It further revealed that the average atmospheric constant for Ouagadougou-Niger is a_1 = 0.626, a_2 = 0.7999 and the tuning constants is n_1 = 0.09835 and n_2 = 0.266. Also, the yearly atmospheric constants affirmed the lower atmosphere of Ouagadougou is very dynamic. Hence, it is recommended that radiosonde and weather station manufacturers should constantly review the atmospheric constant over a geographical location to enable about eighty percent data retrieval.

Keywords: aerosols retention, aerosols loading, statistics, analytical technique

Procedia PDF Downloads 315
315 Exploring Art Teacher Voice: Canadian Education - Local and International Perspectives

Authors: Amy Atkinson

Abstract:

Teacher burnout and dissatisfaction is a concerning challenge for visual art (VA) programs within the western (Canadian) educational context, however VA programs who offer the International Baccalaureate (IB) curriculum within international schools are thriving. The purpose of this research was to investigate the experiences of Canadian-educated seasoned VA teachers within a range of curriculums, administrative systems and locations focusing on issues related to the VA teaching experience such as viability of the artist-teacher relationship, teaching satisfaction and teacher burnout. Research was conducted using an auto-ethnography approach coupled with a comparative case study method using in-depth interviews. Insights were uncovered into VA teacher’s lived experience, values and decisions, occupational ideology, cultural knowledge, and perspectives. Research for creation methods were explored to develop a creative narrative to amplify teacher voice; endeavouring to make the obscure vivid, empathy possible, direct attention to individuality and locate the universal. Case study results sustain ethnographic observations revealing that VA teachers are experiencing more efficacy, satisfaction and success, with less burn out within the international school/IB context.

Keywords: international baccalaureate, autoethnography, teacher voice, visual arts

Procedia PDF Downloads 184
314 The Classification of Parkinson Tremor and Essential Tremor Based on Frequency Alteration of Different Activities

Authors: Chusak Thanawattano, Roongroj Bhidayasiri

Abstract:

This paper proposes a novel feature set utilized for classifying the Parkinson tremor and essential tremor. Ten ET and ten PD subjects are asked to perform kinetic, postural and resting tests. The empirical mode decomposition (EMD) is used to decompose collected tremor signal to a set of intrinsic mode functions (IMF). The IMFs are used for reconstructing representative signals. The feature set is composed of peak frequencies of IMFs and reconstructed signals. Hypothesize that the dominant frequency components of subjects with PD and ET change in different directions for different tests, difference of peak frequencies of IMFs and reconstructed signals of pairwise based tests (kinetic-resting, kinetic-postural and postural-resting) are considered as potential features. Sets of features are used to train and test by classifier including the quadratic discriminant classifier (QLC) and the support vector machine (SVM). The best accuracy, the best sensitivity and the best specificity are 90%, 87.5%, and 92.86%, respectively.

Keywords: tremor, Parkinson, essential tremor, empirical mode decomposition, quadratic discriminant, support vector machine, peak frequency, auto-regressive, spectrum estimation

Procedia PDF Downloads 443
313 Model of a Context-Aware Middleware for Mobile Workers

Authors: Esraa Moustafa, Gaetan Rey, Stephane Lavirotte, Jean-Yves Tigli

Abstract:

With the development of Internet of Things and Web of Things, computing becomes more pervasive, invisible and present everywhere. In fact, in our environment, we are surrounded by multiple devices that deliver (web) services that meet the needs of the users. However, the mobility of these devices as the users has important repercussions that challenge software design of these applications because the variability of the environment cannot be anticipated at the design time. Thus, it will be interesting to dynamically discover the environment and adapt the application during its execution to the new contextual conditions. We, therefore, propose a model of a context-aware middleware that can address this issue through a monitoring service that is capable of reasoning and observation channels capable of calculating the context during the runtime. The monitoring service evaluates the pre-defined X-Query predicates in the context manager and uses Prolog to deduce the services needed to respond back. An independent Observation Channel for each different predicate is then dynamically generated by the monitoring service depending on the current state of the environment. Each channel sends its result directly to the context manager which consequently calculates the context based on all the predicates’ results while preserving the reactivity of the self-adaptive system.

Keywords: auto-adaptation, context-awareness, middleware, reasoning engine

Procedia PDF Downloads 251
312 Examining K-12 In-Service Teachers’ Comfort Level with the Social Model of Disability and Its Impact on Inclusive Measures in the Classroom

Authors: Frederic Fovet

Abstract:

Inclusive provisions have been statutorily mandated in North America for now over two decades. Despite a growing body of literature around inclusive practices, many in-service teachers continue to express difficulties when it comes to tangible implementation of inclusion in the everyday classroom. While there is debate around the various forms inclusion can take (UDL, differentiation, personalization, etc.), there appears to be a more significant hurdle in getting in-service teachers to fully embrace inclusion both as a goal and a practice. This paper investigates teachers’ degree of awareness around the Social Model of Disability. It argues that teachers often lack basic awareness of disability studies, more particularly of the Social Model of Disability, and that this has a direct impact on their capacity to conceptualize and embrace inclusion. The paper draws from the researcher’s experience as a graduate instructor with in-service teachers, as well as from his experience as a consultant working with schools and school boards. The methodology chosen here is phenomenology, and it draws on tools such as auto-ethnography. The paper opens a discussion around the reform and transformation of pre-service teacher training. It argues that disability studies should be integrated into teacher training as it plays a key role in having teachers develop a theoretical understanding of disability as a social construct.

Keywords: disability, K-12, inclusion, social model, in-service teachers

Procedia PDF Downloads 189
311 One-Step Time Series Predictions with Recurrent Neural Networks

Authors: Vaidehi Iyer, Konstantin Borozdin

Abstract:

Time series prediction problems have many important practical applications, but are notoriously difficult for statistical modeling. Recently, machine learning methods have been attracted significant interest as a practical tool applied to a variety of problems, even though developments in this field tend to be semi-empirical. This paper explores application of Long Short Term Memory based Recurrent Neural Networks to the one-step prediction of time series for both trend and stochastic components. Two types of data are analyzed - daily stock prices, that are often considered to be a typical example of a random walk, - and weather patterns dominated by seasonal variations. Results from both analyses are compared, and reinforced learning framework is used to select more efficient between Recurrent Neural Networks and more traditional auto regression methods. It is shown that both methods are able to follow long-term trends and seasonal variations closely, but have difficulties with reproducing day-to-day variability. Future research directions and potential real world applications are briefly discussed.

Keywords: long short term memory, prediction methods, recurrent neural networks, reinforcement learning

Procedia PDF Downloads 229
310 A Study of the Trade-off Energy Consumption-Performance-Schedulability for DVFS Multicore Systems

Authors: Jalil Boudjadar

Abstract:

Dynamic Voltage and Frequency Scaling (DVFS) multicore platforms are promising execution platforms that enable high computational performance, less energy consumption and flexibility in scheduling the system processes. However, the resulting interleaving and memory interference together with per-core frequency tuning make real-time guarantees hard to be delivered. Besides, energy consumption represents a strong constraint for the deployment of such systems on energy-limited settings. Identifying the system configurations that would achieve a high performance and consume less energy while guaranteeing the system schedulability is a complex task in the design of modern embedded systems. This work studies the trade-off between energy consumption, cores utilization and memory bottleneck and their impact on the schedulability of DVFS multicore time-critical systems with a hierarchy of shared memories. We build a model-based framework using Parametrized Timed Automata of UPPAAL to analyze the mutual impact of performance, energy consumption and schedulability of DVFS multicore systems, and demonstrate the trade-off on an actual case study.

Keywords: time-critical systems, multicore systems, schedulability analysis, energy consumption, performance analysis

Procedia PDF Downloads 107
309 Crystal Nucleation in 3D Printed Polymer Scaffolds in Tissue Engineering

Authors: Amani Alotaibi

Abstract:

3D printing has emerged as a pivotal technique for scaffold development, particularly in the field of bone tissue regeneration, due to its ability to customize scaffolds to fit complex geometries of bone defects. Among the various methods available, fused deposition modeling (FDM) is particularly promising as it avoids the use of solvents or toxic chemicals during fabrication. This study investigates the effects of three key parameters, extrusion temperature, screw rotational speed, and deposition speed, on the crystallization and mechanical properties of polycaprolactone (PCL) scaffolds. Three extrusion temperatures (70°C, 80°C, and 90°C), three screw speeds (10 RPM, 15 RPM, and 20 RPM), and three deposition speeds (8 mm/s, 10 mm/s, and 12 mm/s) were evaluated. The scaffolds were characterized using X-ray diffraction (XRD), differential scanning calorimetry (DSC), and tensile testing to assess changes in crystallinity and mechanical properties. Additionally, the scaffolds were analyzed for crystal size and biocompatibility. The results demonstrated that increasing the extrusion temperature to 80°C, combined with a screw speed of 15 RPM and a deposition speed of 10 mm/s, significantly improved the crystallinity, compressive modulus, and thermal resistance of the PCL scaffolds. These findings suggest that by fine-tuning basic 3D printing parameters, it is possible to modulate the structural and mechanical properties of the scaffold, thereby enhancing its suitability for bone tissue regeneration.

Keywords: 3D printing, polymer, scaffolds, tissue engineering, crystallization

Procedia PDF Downloads 5
308 Optimizing Machine Learning Algorithms for Defect Characterization and Elimination in Liquids Manufacturing

Authors: Tolulope Aremu

Abstract:

The key process steps to produce liquid detergent products will introduce potential defects, such as formulation, mixing, filling, and packaging, which might compromise product quality, consumer safety, and operational efficiency. Real-time identification and characterization of such defects are of prime importance for maintaining high standards and reducing waste and costs. Usually, defect detection is performed by human inspection or rule-based systems, which is very time-consuming, inconsistent, and error-prone. The present study overcomes these limitations in dealing with optimization in defect characterization within the process for making liquid detergents using Machine Learning algorithms. Performance testing of various machine learning models was carried out: Support Vector Machine, Decision Trees, Random Forest, and Convolutional Neural Network on defect detection and classification of those defects like wrong viscosity, color deviations, improper filling of a bottle, packaging anomalies. These algorithms have significantly benefited from a variety of optimization techniques, including hyperparameter tuning and ensemble learning, in order to greatly improve detection accuracy while minimizing false positives. Equipped with a rich dataset of defect types and production parameters consisting of more than 100,000 samples, our study further includes information from real-time sensor data, imaging technologies, and historic production records. The results are that optimized machine learning models significantly improve defect detection compared to traditional methods. Take, for instance, the CNNs, which run at 98% and 96% accuracy in detecting packaging anomaly detection and bottle filling inconsistency, respectively, by fine-tuning the model with real-time imaging data, through which there was a reduction in false positives of about 30%. The optimized SVM model on detecting formulation defects gave 94% in viscosity variation detection and color variation. These values of performance metrics correspond to a giant leap in defect detection accuracy compared to the usual 80% level achieved up to now by rule-based systems. Moreover, this optimization with models can hasten defect characterization, allowing for detection time to be below 15 seconds from an average of 3 minutes using manual inspections with real-time processing of data. With this, the reduction in time will be combined with a 25% reduction in production downtime because of proactive defect identification, which can save millions annually in recall and rework costs. Integrating real-time machine learning-driven monitoring drives predictive maintenance and corrective measures for a 20% improvement in overall production efficiency. Therefore, the optimization of machine learning algorithms in defect characterization optimum scalability and efficiency for liquid detergent companies gives improved operational performance to higher levels of product quality. In general, this method could be conducted in several industries within the Fast moving consumer Goods industry, which would lead to an improved quality control process.

Keywords: liquid detergent manufacturing, defect detection, machine learning, support vector machines, convolutional neural networks, defect characterization, predictive maintenance, quality control, fast-moving consumer goods

Procedia PDF Downloads 18
307 Lightweight Cryptographically Generated Address for IPv6 Neighbor Discovery

Authors: Amjed Sid Ahmed, Rosilah Hassan, Nor Effendy Othman

Abstract:

Limited functioning of the Internet Protocol version 4 (IPv4) has necessitated the development of the Internetworking Protocol next generation (IPng) to curb the challenges. Indeed, the IPng is also referred to as the Internet Protocol version 6 (IPv6) and includes the Neighbor Discovery Protocol (NDP). The latter performs the role of Address Auto-configuration, Router Discovery (RD), and Neighbor Discovery (ND). Furthermore, the role of the NDP entails redirecting the service, detecting the duplicate address, and detecting the unreachable services. Despite the fact that there is an NDP’s assumption regarding the existence of trust the links’ nodes, several crucial attacks may affect the Protocol. Internet Engineering Task Force (IETF) therefore has recommended implementation of Secure Neighbor Discovery Protocol (SEND) to tackle safety issues in NDP. The SEND protocol is mainly used for validation of address rights, malicious response inhibiting techniques and finally router certification procedures. For routine running of these tasks, SEND utilizes on the following options, Cryptographically Generated Address (CGA), RSA Signature, Nonce and Timestamp option. CGA is produced at extra high costs making it the most notable disadvantage of SEND. In this paper a clear description of the constituents of CGA, its operation and also recommendations for improvements in its generation are given.

Keywords: CGA, IPv6, NDP, SEND

Procedia PDF Downloads 385
306 Study on Construction of 3D Topography by UAV-Based Images

Authors: Yun-Yao Chi, Chieh-Kai Tsai, Dai-Ling Li

Abstract:

In this paper, a method of fast 3D topography modeling using the high-resolution camera images is studied based on the characteristics of Unmanned Aerial Vehicle (UAV) system for low altitude aerial photogrammetry and the need of three dimensional (3D) urban landscape modeling. Firstly, the existing high-resolution digital camera with special design of overlap images is designed by reconstructing and analyzing the auto-flying paths of UAVs, which improves the self-calibration function to achieve the high precision imaging by software, and further increased the resolution of the imaging system. Secondly, several-angle images including vertical images and oblique images gotten by the UAV system are used for the detail measure of urban land surfaces and the texture extraction. Finally, the aerial photography and 3D topography construction are both developed in campus of Chang-Jung University and in Guerin district area in Tainan, Taiwan, provide authentication model for construction of 3D topography based on combined UAV-based camera images from system. The results demonstrated that the UAV system for low altitude aerial photogrammetry can be used in the construction of 3D topography production, and the technology solution in this paper offers a new, fast, and technical plan for the 3D expression of the city landscape, fine modeling and visualization.

Keywords: 3D, topography, UAV, images

Procedia PDF Downloads 303
305 Reexamining Contrarian Trades as a Proxy of Informed Trades: Evidence from China's Stock Market

Authors: Dongqi Sun, Juan Tao, Yingying Wu

Abstract:

This paper reexamines the appropriateness of contrarian trades as a proxy of informed trades, using high frequency Chinese stock data. Employing this measure for 5 minute intervals, a U-shaped intraday pattern of probability of informed trades (PIN) is found for the CSI300 stocks, which is consistent with previous findings for other markets. However, while dividing the trades into different sizes, a reversed U-shaped PIN from large-sized trades, opposed to the U-shaped pattern for small- and medium-sized trades, is observed. Drawing from the mixed evidence with different trade sizes, the price impact of trades is further investigated. By examining the relationship between trade imbalances and unexpected returns, larges-sized trades are found to have significant price impact. This implies that in those intervals with large trades, it is non-contrarian trades that are more likely to be informed trades. Taking account of the price impact of large-sized trades, non-contrarian trades are used to proxy for informed trading in those intervals with large trades, and contrarian trades are still used to measure informed trading in other intervals. A stronger U-shaped PIN is demonstrated from this modification. Auto-correlation and information advantage tests for robustness also support the modified informed trading measure.

Keywords: contrarian trades, informed trading, price impact, trade imbalance

Procedia PDF Downloads 165
304 Competition, Stability, and Economic Growth: A Causality Approach

Authors: Mahvish Anwaar

Abstract:

Research Question: In this paper, we explore the causal relationship between banking competition, banking stability, and economic growth. Research Findings: The unbalanced panel data starting from 2000 to 2018 is collected to analyze the causality among banking competition, banking stability, and economic growth. The main focus of the study is to check the direction of causality among selected variables. The results of the study support the demand following, supply leading, feedback, and neutrality hypothesis conditional to different measures of banking competition, banking stability, and economic growth. Theoretical Implication: Jayakumar, Pradhan, Dash, Maradana, and Gaurav (2018) proposed a theoretical model of the causal relationship between banking competition, banking stability, and economic growth by using different indicators. So, we empirically test the proposed indicators in our study. This study makes a contribution to the literature by showing the defined relationship between developing and developed countries. Policy Implications: The study covers various policy implications regarding investors to analyze how to properly manage their finances, and government agencies will take help from the present study to find the best and most suitable policies by examining how the economy can grow concerning its finances.

Keywords: competition, stability, economic growth, vector auto-regression, granger causality

Procedia PDF Downloads 63
303 Constructing a Bayesian Network for Solar Energy in Egypt Using Life Cycle Analysis and Machine Learning Algorithms

Authors: Rawaa H. El-Bidweihy, Hisham M. Abdelsalam, Ihab A. El-Khodary

Abstract:

In an era where machines run and shape our world, the need for a stable, non-ending source of energy emerges. In this study, the focus was on the solar energy in Egypt as a renewable source, the most important factors that could affect the solar energy’s market share throughout its life cycle production were analyzed and filtered, the relationships between them were derived before structuring a Bayesian network. Also, forecasted models were built for multiple factors to predict the states in Egypt by 2035, based on historical data and patterns, to be used as the nodes’ states in the network. 37 factors were found to might have an impact on the use of solar energy and then were deducted to 12 factors that were chosen to be the most effective to the solar energy’s life cycle in Egypt, based on surveying experts and data analysis, some of the factors were found to be recurring in multiple stages. The presented Bayesian network could be used later for scenario and decision analysis of using solar energy in Egypt, as a stable renewable source for generating any type of energy needed.

Keywords: ARIMA, auto correlation, Bayesian network, forecasting models, life cycle, partial correlation, renewable energy, SARIMA, solar energy

Procedia PDF Downloads 155
302 Fast Adjustable Threshold for Uniform Neural Network Quantization

Authors: Alexander Goncharenko, Andrey Denisov, Sergey Alyamkin, Evgeny Terentev

Abstract:

The neural network quantization is highly desired procedure to perform before running neural networks on mobile devices. Quantization without fine-tuning leads to accuracy drop of the model, whereas commonly used training with quantization is done on the full set of the labeled data and therefore is both time- and resource-consuming. Real life applications require simplification and acceleration of quantization procedure that will maintain accuracy of full-precision neural network, especially for modern mobile neural network architectures like Mobilenet-v1, MobileNet-v2 and MNAS. Here we present a method to significantly optimize training with quantization procedure by introducing the trained scale factors for discretization thresholds that are separate for each filter. Using the proposed technique, we quantize the modern mobile architectures of neural networks with the set of train data of only ∼ 10% of the total ImageNet 2012 sample. Such reduction of train dataset size and small number of trainable parameters allow to fine-tune the network for several hours while maintaining the high accuracy of quantized model (accuracy drop was less than 0.5%). Ready-for-use models and code are available in the GitHub repository.

Keywords: distillation, machine learning, neural networks, quantization

Procedia PDF Downloads 325
301 Blind Channel Estimation for Frequency Hopping System Using Subspace Based Method

Authors: M. M. Qasaymeh, M. A. Khodeir

Abstract:

Subspace channel estimation methods have been studied widely. It depends on subspace decomposition of the covariance matrix to separate signal subspace from noise subspace. The decomposition normally is done by either Eigenvalue Decomposition (EVD) or Singular Value Decomposition (SVD) of the Auto-Correlation matrix (ACM). However, the subspace decomposition process is computationally expensive. In this paper, the multipath channel estimation problem for a Slow Frequency Hopping (SFH) system using noise space based method is considered. An efficient method to estimate multipath the time delays basically is proposed, by applying MUltiple Signal Classification (MUSIC) algorithm which used the null space extracted by the Rank Revealing LU factorization (RRLU). The RRLU provides accurate information about the rank and the numerical null space which make it a valuable tool in numerical linear algebra. The proposed novel method decreases the computational complexity approximately to the half compared with RRQR methods keeping the same performance. Computer simulations are also included to demonstrate the effectiveness of the proposed scheme.

Keywords: frequency hopping, channel model, time delay estimation, RRLU, RRQR, MUSIC, LS-ESPRIT

Procedia PDF Downloads 410
300 Comparison of Applicability of Time Series Forecasting Models VAR, ARCH and ARMA in Management Science: Study Based on Empirical Analysis of Time Series Techniques

Authors: Muhammad Tariq, Hammad Tahir, Fawwad Mahmood Butt

Abstract:

Purpose: This study attempts to examine the best forecasting methodologies in the time series. The time series forecasting models such as VAR, ARCH and the ARMA are considered for the analysis. Methodology: The Bench Marks or the parameters such as Adjusted R square, F-stats, Durban Watson, and Direction of the roots have been critically and empirically analyzed. The empirical analysis consists of time series data of Consumer Price Index and Closing Stock Price. Findings: The results show that the VAR model performed better in comparison to other models. Both the reliability and significance of VAR model is highly appreciable. In contrary to it, the ARCH model showed very poor results for forecasting. However, the results of ARMA model appeared double standards i.e. the AR roots showed that model is stationary and that of MA roots showed that the model is invertible. Therefore, the forecasting would remain doubtful if it made on the bases of ARMA model. It has been concluded that VAR model provides best forecasting results. Practical Implications: This paper provides empirical evidences for the application of time series forecasting model. This paper therefore provides the base for the application of best time series forecasting model.

Keywords: forecasting, time series, auto regression, ARCH, ARMA

Procedia PDF Downloads 348
299 Design of IMC-PID Controller Cascaded Filter for Simplified Decoupling Control System

Authors: Le Linh, Truong Nguyen Luan Vu, Le Hieu Giang

Abstract:

In this work, the IMC-PID controller cascaded filter based on Internal Model Control (IMC) scheme is systematically proposed for the simplified decoupling control system. The simplified decoupling is firstly introduced for multivariable processes by using coefficient matching to obtain a stable, proper, and causal simplified decoupler. Accordingly, transfer functions of decoupled apparent processes can be expressed as a set of n equivalent independent processes and then derived as a ratio of the original open-loop transfer function to the diagonal element of the dynamic relative gain array. The IMC-PID controller in series with filter is then directly employed to enhance the overall performance of the decoupling control system while avoiding difficulties arising from properties inherent to simplified decoupling. Some simulation studies are considered to demonstrate the simplicity and effectiveness of the proposed method. Simulations were conducted by tuning various controllers of the multivariate processes with multiple time delays. The results indicate that the proposed method consistently performs well with fast and well-balanced closed-loop time responses.

Keywords: coefficient matching method, internal model control (IMC) scheme, PID controller cascaded filter, simplified decoupler

Procedia PDF Downloads 442
298 An Accurate Brain Tumor Segmentation for High Graded Glioma Using Deep Learning

Authors: Sajeeha Ansar, Asad Ali Safi, Sheikh Ziauddin, Ahmad R. Shahid, Faraz Ahsan

Abstract:

Gliomas are most challenging and aggressive type of tumors which appear in different sizes, locations, and scattered boundaries. CNN is most efficient deep learning approach with outstanding capability of solving image analysis problems. A fully automatic deep learning based 2D-CNN model for brain tumor segmentation is presented in this paper. We used small convolution filters (3 x 3) to make architecture deeper. We increased convolutional layers for efficient learning of complex features from large dataset. We achieved better results by pushing convolutional layers up to 16 layers for HGG model. We achieved reliable and accurate results through fine-tuning among dataset and hyper-parameters. Pre-processing of this model includes generation of brain pipeline, intensity normalization, bias correction and data augmentation. We used the BRATS-2015, and Dice Similarity Coefficient (DSC) is used as performance measure for the evaluation of the proposed method. Our method achieved DSC score of 0.81 for complete, 0.79 for core, 0.80 for enhanced tumor regions. However, these results are comparable with methods already implemented 2D CNN architecture.

Keywords: brain tumor segmentation, convolutional neural networks, deep learning, HGG

Procedia PDF Downloads 256
297 Effect of Wettability Alteration in Low Salt Water Injection Modeling

Authors: H. Vahdani

Abstract:

By the adsorption of polar compounds and/or the deposition of organic material, the wettability of originally water-wet reservoir rock can be altered. The degree of alteration is determined by the interaction of the oil constituents, the mineral surface, and the brine chemistry. Recently improving oil recovery by tuning wettability alteration is believed as a new recovery method. Various researchers have demonstrated that low salt water injection has a significant impact on oil recovery. It has been shown, for instance, that additional oil can be produced from reservoir rock by managing the injection water. Large wettability sensitivity has been observed, indicating that the oil/water capillary pressure profiles play a major role during low saline water injection simulation. Although the exact physics on how this alteration occurs is still a research topic; however, it has been reported that some of its effect can be captured by a relative permeability shift from an oil-wet system to a water-wet system. Modeling of low salt water injection mainly is based on the theory of wettability alteration and is hence strongly dependent on the wettability of the reservoir. In this article, combination of different wettabilities has been simulated and it is observed that the highest recoveries were from the cases were the reservoir initially was water-wet, and the lowest recoveries was from the cases were the reservoir initially was considered oil-wet. However for the cases where the reservoir initially was oil-wet, the effect of low-salinity waterflooding was the largest.

Keywords: low salt water injection, wettability alteration, modelling, relative permeability

Procedia PDF Downloads 495
296 Examines the Proportionality between the Needs of Industry and Technical and Vocational Training of Male and Female Vocational Schools

Authors: Khalil Aryanfar, Pariya Gholipor, Elmira Hafez

Abstract:

This study examines the proportionality between the needs of industry and technical and vocational training of male and female vocational schools. The research method was descriptive that was conducted in two parts: documentary analysis and needs assessment and Delphi method was used in the need assessment. The statistical population of the study included 312 individuals from the industry sector employers and 52 of them were selected through stratified random sampling. Methods of data collection in this study, upstream documents include: document of the development of technical and vocational training, Statistical Yearbook 1393 in Tehran, the available documents in Isfahan Planning Department, the findings indicate that there is an almost proportionality between the needs of industry and Vocational training of male and female vocational schools in fields of welding, industrial electronics, electro technique, industrial drawing, auto mechanics, design, packaging, machine tool, metalworking, construction, accounting, computer graphics and the Administrative Affairs. The findings indicate that there is no proportionality between the needs of industry and Vocational training of male and female vocational schools in fields of Thermal - cooling systems, building electricity, building drawing, interior architecture, car electricity and motor repair.

Keywords: needs assessment, technical and vocational training, industry

Procedia PDF Downloads 454
295 Tuning for a Small Engine with a Supercharger

Authors: Shinji Kajiwara, Tadamasa Fukuoka

Abstract:

The formula project of Kinki University has been involved in the student Formula SAE of Japan (JSAE) since the second year the competition was held. The vehicle developed in the project uses a ZX-6R engine, which has been manufactured by Kawasaki Heavy Industries for the JSAE competition for the eighth time. The limited performance of the concept vehicle was improved through the development of a power train. The supercharger loading, engine dry sump, and engine cooling management of the vehicle were also enhanced. The supercharger loading enabled the vehicle to achieve a maximum output of 59.6 kW (80.6 PS)/9000 rpm and a maximum torque of 70.6 Nm (7.2 kgf m)/8000 rpm. We successfully achieved 90% of the engine’s torque band (4000–10000 rpm) with 50% of the revolutions in regular engine use (2000–12000 rpm). Using a dry sump system, we periodically managed hydraulic pressure during engine operation. A system that controls engine stoppage when hydraulic pressure falls was also constructed. Using the dry sump system at 80 mm reduced the required engine load and the vehicle’s center of gravity. Even when engine motion was suspended by the electromotive force exerted by the water pump, the circulation of cooling water was still possible. These findings enabled us to create a cooling system in accordance with the requirements of the competition.

Keywords: engine, combustion, cooling system, numerical simulation, power, torque, mechanical super charger

Procedia PDF Downloads 300