Search results for: Voronoi Random Field Tessellation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10237

Search results for: Voronoi Random Field Tessellation

9907 The Relationship between Demographic, Social and Economic Characteristics and the Level of Implementation of Rural Women’s Practices to Preserve the Environment in the Governorates of Sharkia and Beni Suef

Authors: Asmaa Ahmed Nasr El-Din

Abstract:

The Egyptian countryside faces many environmental problems in the field of environmental pollution in a wide range due to the current bad behavior patterns towards the environment, where the rural people continued to follow unconscious environmental practices in addition to the lack of environmental awareness among the rural people in terms of legislation, and the damages resulting from those practices. Rural women play an important and vital role that cannot be neglected in the field of reducing environmental pollution and rationalizing environmental resources, and it is their responsibility to maintain the safety of environmental elements such as water, air, food, and soil from pollution, either through limiting their personal practice that leads to the pollution of these elements or from During the upbringing of her children on the right behaviors towards these elements to protect them from pollution and thus avoid the infection of family members with diseases arising from environmental pollution that may affect their health and production capacity. Therefore, the research aimed to identify the level of rural women’s implementation of environmental practices (land, water, air, public health, and food waste), as well as determining the nature of the relationship between the studied independent variables (demographic, social and economic characteristics) and the level of rural women’s implementation of their role in preserving the environment and identifying some women’s information sources rural environment to preserve the environment. The research was conducted in the villages of Tarout and Qam al-Arous in the governorates of Sharkia and BeniSuef, respectively, and a random sample of 333 rural women was selected using the Yamani equation. Statistical ratio analysis, arithmetic mean, Pearson simple correlation coefficient value, and T-test.

Keywords: environment, rural women, EL-sharkia, banuef

Procedia PDF Downloads 110
9906 Foliation and the First Law of Thermodynamics for the Kerr Newman Black Hole

Authors: Syed M. Jawwad Riaz

Abstract:

There has been a lot of interest in exploring the thermodynamic properties at the horizon of a black hole geometry. Earlier, it has been shown, for different spacetimes, that the Einstein field equations at the horizon can be expressed as a first law of black hole thermodynamics. In this paper, considering r = constant slices, for the Kerr-Newman black hole, shown that the Einstein field equations for the induced 3-metric of the hypersurface is expressed in thermodynamic quantities under the virtual displacements of the hypersurfaces. As expected, it is found that the field equations of the induced metric corresponding to the horizon can only be written as a first law of black hole thermodynamics. It is to be mentioned here that the procedure adopted is much easier, to obtain such results, as here one has to essentially deal with (n - 1)-dimensional induced metric for an n-dimensional spacetime.

Keywords: black hole space-times, Einstein's field equation, foliation, hyper-surfaces

Procedia PDF Downloads 346
9905 Evaluation of Access to Finance for Local Oil Fields Companies in Ghana

Authors: Gordon Newlove Asamoah, Wendy Ama Oti

Abstract:

This study focused on evaluating access to finance for local oil field companies in Ghana. The study adopted a census survey design in evaluating access to finance for local oil field companies in Ghana. The respondents of this study were 30 management members of three oil field companies in Ghana. The data collected was analysed using Statistical Package for Social Scientists (SPSS) to generate tables and graphs for interpretation. The results show that most companies use equity financing in combination with other forms of financing to finance their business activities. This research has shown the various challenges bordering on the financing of local oil and gas projects, with emphasis on the challenges of raising funds by indigenous oil companies. Financing of the projects by indigenous oil field companies in Ghana is preferably achieved through equity finance mainly because it is the easiest to get compared to all the other forms of financing available. Other sources of financing available are debt financing, joint venture, and retained earnings from the profits generated from their operations. The study made recommendations to local oil field companies as to how they can make good use of the capital market to raise financing.

Keywords: access, financing, oil fields, Ghana

Procedia PDF Downloads 107
9904 Indenyl and Allyl Palladates: Synthesis, Bonding, and Anticancer Activity

Authors: T. Scattolin, E. Cavarzerani, F. Visentin, F. Rizzolio

Abstract:

Organopalladium compounds have recently attracted attention for their high stability even under physiological conditions and, above all, for their remarkable in vitro cytotoxicity towards cisplatin-resistant cell lines. Among the organopalladium derivatives, those bearing at least one N-heterocyclic carbene ligand (NHC) and the Pd(II)-η³-allyl fragment have exhibited IC₅₀ values in the micro and sub-micromolar range towards several cancer cell lines in vitro and in some cases selectivity towards cancerous vs. non-tumorigenic cells. Herein, a selection of allyl and indenyl palladates were synthesized using a solvent-free method consisting of grinding the corresponding palladium precursors with different saturated and unsaturated azolium salts. All compounds have been fully characterized by NMR, XRD and elemental analyses. The intramolecular H, Cl interaction has been elucidated and quantified using the Voronoi Deformation Density scheme. Most of the complexes showed excellent cytotoxicity towards ovarian cancer cell lines, with I₅₀ values comparable to or even lower than cisplatin. Interestingly, the potent anticancer activity was also confirmed in a high-serous ovarian cancer (HGSOC) patient-derived tumoroid, with a clear superiority of this class of compounds over classical platinum-based agents. Finally, preliminary enzyme inhibition studies of the synthesized palladate complexes against the model TrxR show that the compounds have high activity comparable to or even higher than auranofin and classical Au(I) NHC complexes. Based on such promising data, further in vitro and in vivo experiments and in-depth mechanistic studies are ongoing in our laboratories.

Keywords: anticancer activity, palladium complexes, organoids, indenyl and allyl ligands

Procedia PDF Downloads 94
9903 Structural Reliability Analysis Using Extreme Learning Machine

Authors: Mehul Srivastava, Sharma Tushar Ravikant, Mridul Krishn Mishra

Abstract:

In structural design, the evaluation of safety and probability failure of structure is of significant importance, mainly when the variables are random. On real structures, structural reliability can be evaluated obtaining an implicit limit state function. The structural reliability limit state function is obtained depending upon the statistically independent variables. In the analysis of reliability, we considered the statistically independent random variables to be the load intensity applied and the depth or height of the beam member considered. There are many approaches for structural reliability problems. In this paper Extreme Learning Machine technique and First Order Second Moment Method is used to determine the reliability indices for the same set of variables. The reliability index obtained using ELM is compared with the reliability index obtained using FOSM. Higher the reliability index, more feasible is the method to determine the reliability.

Keywords: reliability, reliability index, statistically independent, extreme learning machine

Procedia PDF Downloads 682
9902 Simulation of Complex-Shaped Particle Breakage with a Bonded Particle Model Using the Discrete Element Method

Authors: Felix Platzer, Eric Fimbinger

Abstract:

In Discrete Element Method (DEM) simulations, the breakage behavior of particles can be simulated based on different principles. In the case of large, complex-shaped particles that show various breakage patterns depending on the scenario leading to the failure and often only break locally instead of fracturing completely, some of these principles do not lead to realistic results. The reason for this is that in said cases, the methods in question, such as the Particle Replacement Method (PRM) or Voronoi Fracture, replace the initial particle (that is intended to break) into several sub-particles when certain breakage criteria are reached, such as exceeding the fracture energy. That is why those methods are commonly used for the simulation of materials that fracture completely instead of breaking locally. That being the case, when simulating local failure, it is advisable to pre-build the initial particle from sub-particles that are bonded together. The dimensions of these sub-particles consequently define the minimum size of the fracture results. This structure of bonded sub-particles enables the initial particle to break at the location of the highest local loads – due to the failure of the bonds in those areas – with several sub-particle clusters being the result of the fracture, which can again also break locally. In this project, different methods for the generation and calibration of complex-shaped particle conglomerates using bonded particle modeling (BPM) to enable the ability to depict more realistic fracture behavior were evaluated based on the example of filter cake. The method that proved suitable for this purpose and which furthermore allows efficient and realistic simulation of breakage behavior of complex-shaped particles applicable to industrial-sized simulations is presented in this paper.

Keywords: bonded particle model, DEM, filter cake, particle breakage

Procedia PDF Downloads 210
9901 Tetrad field and torsion vectors in Schwarzschild solution

Authors: M.A.Bakry1, *, Aryn T. Shafeek1, +

Abstract:

In this article, absolute Parallelism geometry is used to study the torsional gravitational field. And discovered the tetrad fields, torsion vector, and torsion scalar of Schwarzschild space. The new solution of the torsional gravitational field is a generalization of Schwarzschild in the context of general relativity. The results are applied to the planetary orbits.

Keywords: absolute parallelism geometry, tetrad fields, torsion vectors, torsion scalar

Procedia PDF Downloads 142
9900 Enhanced Field Emission from Plasma Treated Graphene and 2D Layered Hybrids

Authors: R. Khare, R. V. Gelamo, M. A. More, D. J. Late, Chandra Sekhar Rout

Abstract:

Graphene emerges out as a promising material for various applications ranging from complementary integrated circuits to optically transparent electrode for displays and sensors. The excellent conductivity and atomic sharp edges of unique two-dimensional structure makes graphene a propitious field emitter. Graphene analogues of other 2D layered materials have emerged in material science and nanotechnology due to the enriched physics and novel enhanced properties they present. There are several advantages of using 2D nanomaterials in field emission based devices, including a thickness of only a few atomic layers, high aspect ratio (the ratio of lateral size to sheet thickness), excellent electrical properties, extraordinary mechanical strength and ease of synthesis. Furthermore, the presence of edges can enhance the tunneling probability for the electrons in layered nanomaterials similar to that seen in nanotubes. Here we report electron emission properties of multilayer graphene and effect of plasma (CO2, O2, Ar and N2) treatment. The plasma treated multilayer graphene shows an enhanced field emission behavior with a low turn on field of 0.18 V/μm and high emission current density of 1.89 mA/cm2 at an applied field of 0.35 V/μm. Further, we report the field emission studies of layered WS2/RGO and SnS2/RGO composites. The turn on field required to draw a field emission current density of 1μA/cm2 is found to be 3.5, 2.3 and 2 V/μm for WS2, RGO and the WS2/RGO composite respectively. The enhanced field emission behavior observed for the WS2/RGO nanocomposite is attributed to a high field enhancement factor of 2978, which is associated with the surface protrusions of the single-to-few layer thick sheets of the nanocomposite. The highest current density of ~800 µA/cm2 is drawn at an applied field of 4.1 V/μm from a few layers of the WS2/RGO nanocomposite. Furthermore, first-principles density functional calculations suggest that the enhanced field emission may also be due to an overlap of the electronic structures of WS2 and RGO, where graphene-like states are dumped in the region of the WS2 fundamental gap. Similarly, the turn on field required to draw an emission current density of 1µA/cm2 is significantly low (almost half the value) for the SnS2/RGO nanocomposite (2.65 V/µm) compared to pristine SnS2 (4.8 V/µm) nanosheets. The field enhancement factor β (~3200 for SnS2 and ~3700 for SnS2/RGO composite) was calculated from Fowler-Nordheim (FN) plots and indicates emission from the nanometric geometry of the emitter. The field emission current versus time plot shows overall good emission stability for the SnS2/RGO emitter. The DFT calculations reveal that the enhanced field emission properties of SnS2/RGO composites are because of a substantial lowering of work function of SnS2 when supported by graphene, which is in response to p-type doping of the graphene substrate. Graphene and 2D analogue materials emerge as a potential candidate for future field emission applications.

Keywords: graphene, layered material, field emission, plasma, doping

Procedia PDF Downloads 361
9899 Breast Cancer Detection Using Machine Learning Algorithms

Authors: Jiwan Kumar, Pooja, Sandeep Negi, Anjum Rouf, Amit Kumar, Naveen Lakra

Abstract:

In modern times where, health issues are increasing day by day, breast cancer is also one of them, which is very crucial and really important to find in the early stages. Doctors can use this model in order to tell their patients whether a cancer is not harmful (benign) or harmful (malignant). We have used the knowledge of machine learning in order to produce the model. we have used algorithms like Logistic Regression, Random forest, support Vector Classifier, Bayesian Network and Radial Basis Function. We tried to use the data of crucial parts and show them the results in pictures in order to make it easier for doctors. By doing this, we're making ML better at finding breast cancer, which can lead to saving more lives and better health care.

Keywords: Bayesian network, radial basis function, ensemble learning, understandable, data making better, random forest, logistic regression, breast cancer

Procedia PDF Downloads 52
9898 The Combined Effect of the Magnetic Field and Ammonium Chlorides on Deposits Zn-Ni Obtained in Different Conditions

Authors: N.Benachour, S. Chouchane, J. P. Chopart

Abstract:

The zinc-nickel deposition on stainless steel substrate was obtained in a chloride bath composed of ZnCl2 (1.8M), NiCl2.6H2O (1.1M), boric acid H3BO3 (1M) and NH4Cl (4M). One configuration was studied the amplitude or field B (0.5 et1T) is parallel to the surface of the working electrodes .the other share the study of various layer was carried out by XRD. The study of the effect of ammonium chloride in combination with the magnetohydrodynamic effect gave several deposits supposedly good physical properties.

Keywords: ammonium chloride, magnetic field, nickel-zinc alloys, co-deposition

Procedia PDF Downloads 273
9897 Crack Growth Life Prediction of a Fighter Aircraft Wing Splice Joint Under Spectrum Loading Using Random Forest Regression and Artificial Neural Networks with Hyperparameter Optimization

Authors: Zafer Yüce, Paşa Yayla, Alev Taşkın

Abstract:

There are heaps of analytical methods to estimate the crack growth life of a component. Soft computing methods have an increasing trend in predicting fatigue life. Their ability to build complex relationships and capability to handle huge amounts of data are motivating researchers and industry professionals to employ them for challenging problems. This study focuses on soft computing methods, especially random forest regressors and artificial neural networks with hyperparameter optimization algorithms such as grid search and random grid search, to estimate the crack growth life of an aircraft wing splice joint under variable amplitude loading. TensorFlow and Scikit-learn libraries of Python are used to build the machine learning models for this study. The material considered in this work is 7050-T7451 aluminum, which is commonly preferred as a structural element in the aerospace industry, and regarding the crack type; corner crack is used. A finite element model is built for the joint to calculate fastener loads and stresses on the structure. Since finite element model results are validated with analytical calculations, findings of the finite element model are fed to AFGROW software to calculate analytical crack growth lives. Based on Fighter Aircraft Loading Standard for Fatigue (FALSTAFF), 90 unique fatigue loading spectra are developed for various load levels, and then, these spectrums are utilized as inputs to the artificial neural network and random forest regression models for predicting crack growth life. Finally, the crack growth life predictions of the machine learning models are compared with analytical calculations. According to the findings, a good correlation is observed between analytical and predicted crack growth lives.

Keywords: aircraft, fatigue, joint, life, optimization, prediction.

Procedia PDF Downloads 175
9896 The Impact of Space Charges on the Electromechanical Constraints in HVDC Power Cable Containing Defects

Authors: H. Medoukali, B. Zegnini

Abstract:

Insulation techniques in high-voltage cables rely heavily on chemically synapsed polyethylene. The latter may contain manufacturing defects such as small cavities, for example. The presence of the cavity affects the distribution of the electric field at the level of the insulating layer; this change in the electric field is affected by the presence of different space charge densities within the insulating material. This study is carried out by performing simulations to determine the distribution of the electric field inside the insulator. The simulations are based on the creation of a two-dimensional model of a high-voltage cable of 154 kV using the COMSOL Multiphysics software. Each time we study the effect of changing the space charge density of on the electromechanical Constraints.

Keywords: COMSOL multiphysics, electric field, HVDC, microcavities, space charges, XLPE

Procedia PDF Downloads 133
9895 A Dual-Polarized Wideband Probe for Near-Field Antenna Measurement

Authors: K. S. Sruthi

Abstract:

Antennas are one of the most important parts of a communication chain. They are used for both communication and calibration purposes. New developments in probe technologies have enabled near-field probes with much larger bandwidth. The objective of this paper is to design, simulate and fabricate a dual polarized wide band inverted quad ridged shape horn antenna which can be used as measurement probe for near field measurements. The inverted quad-ridged horn antenna probe not only provides measurement in the much wider range but also provides dual-polarization measurement thus enabling antenna developers to measure UWB, UHF, VHF antennas more precisely and at lower cost. The antenna is designed to meet the characteristics such as high gain, light weight, linearly polarized with suppressed side lobes for near-field measurement applications. The proposed antenna is simulated with commercially available packages such as Ansoft HFSS. The antenna gives a moderate gain over operating range while delivering a wide bandwidth.

Keywords: near-field antenna measurement, inverted quad-ridge horn antenna, wideband Antennas, dual polarized antennas, ansoft HFSS

Procedia PDF Downloads 425
9894 Constructing a Co-Working Innovation Model for Multiple Art Integration: A Case Study of Children's Musical

Authors: Nai-Chia Chao, Meng-Chi Shih

Abstract:

Under today’s fast technology and massive data era, the working method start to change. In this study, based under literature meaning of “Co-working” we had implemented the new “Co-working innovation model”. Research concluded that co-working innovation model shall not be limited in co-working space but use under different field when applying multiple art integration stragies. Research show co-working should not be limited in special field or group, should be use or adapt whenever different though or ideas where found, it should be use under different field and plans.

Keywords: arts integration, co-working, children's musical

Procedia PDF Downloads 299
9893 Examination of Forged Signatures Printed by Means of Fabrication in Terms of Their Relation to the Perpetrator

Authors: Salim Yaren, Nergis Canturk

Abstract:

Signatures are signs that are handwritten by person in order to confirm values such as information, amount, meaning, time and undertaking that bear on a document. It is understood that the signature of a document and the accuracy of the information on the signature is accepted and approved. Forged signatures are formed by forger without knowing and seeing original signature of person that forger will imitate and as a result of his/her effort for hiding typical characteristics of his/her own signatures. Forged signatures are often signed by starting with the initials of the first and last name or persons of the persons whose fake signature will be signed. The similarities in the signatures are completely random. Within the scope of the study, forged signatures are collected from 100 people both their original signatures and forged signatures signed referring to 5 imaginary people. These signatures are compared for 14 signature analyzing criteria by 2 signature analyzing experts except the researcher. 1 numbered analyzing expert who is 9 year experience in his/her field evaluated signatures of 39 (39%) people right and of 25 (25%) people wrong and he /she made any evaluations for signatures of 36 (36%) people. 2 numbered analyzing expert who is 16 year experienced in his/her field evaluated signatures of 49 (49%) people right and 28 (28%) people wrong and he /she made any evaluations for signatures of 23 (23%) people. Forged signatures that are signed by 24 (24%) people are matched by two analyzing experts properly, forged signatures that are signed by 8 (8%) people are matched wrongfully and made up signatures that are signed by 12 (12%) people couldn't be decided by both analyzing experts. Signatures analyzing is a subjective topic so that analyzing and comparisons take form according to education, knowledge and experience of the expert. Consequently, due to the fact that 39% success is achieved by analyzing expert who has 9 year professional experience and 49% success is achieved by analyzing expert who has 16 year professional experience, it is seen that success rate is directly proportionate to knowledge and experience of the expert.

Keywords: forensic signature, forensic signature analysis, signature analysis criteria, forged signature

Procedia PDF Downloads 124
9892 Performance and Emission Prediction in a Biodiesel Engine Fuelled with Honge Methyl Ester Using RBF Neural Networks

Authors: Shiva Kumar, G. S. Vijay, Srinivas Pai P., Shrinivasa Rao B. R.

Abstract:

In the present study RBF neural networks were used for predicting the performance and emission parameters of a biodiesel engine. Engine experiments were carried out in a 4 stroke diesel engine using blends of diesel and Honge methyl ester as the fuel. Performance parameters like BTE, BSEC, Tech and emissions from the engine were measured. These experimental results were used for ANN modeling. RBF center initialization was done by random selection and by using Clustered techniques. Network was trained by using fixed and varying widths for the RBF units. It was observed that RBF results were having a good agreement with the experimental results. Networks trained by using clustering technique gave better results than using random selection of centers in terms of reduced MRE and increased prediction accuracy. The average MRE for the performance parameters was 3.25% with the prediction accuracy of 98% and for emissions it was 10.4% with a prediction accuracy of 80%.

Keywords: radial basis function networks, emissions, performance parameters, fuzzy c means

Procedia PDF Downloads 558
9891 Evaluation of the Effect of IMS on the Social Responsibility in the Oil and Gas Production Companies of National Iranian South Oil Fields Company (NISOC)

Authors: Kamran Taghizadeh

Abstract:

This study was aimed at evaluating the effect of IMS including occupational health system, environmental management system, and safety and health system on the social responsibility (case study of NISOC`s oil and gas production companies). This study`s objectives include evaluating the IMS situation and its effect on social responsibility in addition of providing appropriate solutions based on the study`s hypotheses as a basis for future. Data collection was carried out by library and field studies as well as a questionnaire. The stratified random method was the sampling method and a sample of 285 employees in addition to the collected data (from the questionnaire) were analyzed by inferential statistics methods using SPSS software. Finally, results of regression and fitted model at a significance level of 5% confirmed all hypotheses meaning that IMS and its items have a significant effect on social responsibility.

Keywords: social responsibility, integrated management, oil and gas production companies, regression

Procedia PDF Downloads 256
9890 Productivity and Profitability of Field Pea as Influenced by Different Levels of Fertility and Bio-Fertilizers under Irrigated Condition

Authors: Akhilesh Mishra, Geeta Rai, Arvind Srivastava, Nalini Tiwari

Abstract:

A field experiment was conducted during two consecutive Rabi seasons of 2007 and 2008 to study the economics of different bio-fertilizer’s inoculations in fieldpea (cv. Jai) at Chandra Shekhar Azad University of Agriculture and Technology, Kanpur (India). Results indicated that the seed inoculation with Rhizobium + PSB + PGPR improved all the growth; yield attributes and yields of field pea. Fresh and dry weight plant-1, nodules number and dry weight plant-1 were found significantly maximum. Number of grains pod-1, number and weight of pods plant-1 at maturity attributed significantly in increasing the grain yield as well as net return. On pooled basis, maximum net income (Rs.22169 ha-1) was obtained with the use of Rhizobium + PSB + PGPR which was improved by a margin of Rs.1502 (6.77%), 2972 (13.40%), 2672 (12.05%), 5212 (23.51%), 6176 (27.85%), 4666 (21.04%) and 8842/ha (39.88%) over the inoculation of PSB + PGPR, Rhizobium + PGPR, Rhizobium + PSB, PGPR, PSB, Rhizobium and control, respectively. Thus, it can be recommended that to earn the maximum net profit from dwarf field pea, seed should be inoculated with Rhizobium + PSB + PGPR.

Keywords: rhizobium, phosphorus solubilizing bacteria, plant growth promoting rhizobacteria, field pea

Procedia PDF Downloads 409
9889 Bi-Criteria Objective Network Design Model for Multi Period Multi Product Green Supply Chain

Authors: Shahul Hamid Khan, S. Santhosh, Abhinav Kumar Sharma

Abstract:

Environmental performance along with social performance is becoming vital factors for industries to achieve global standards. With a good environmental policy global industries are differentiating them from their competitors. This paper concentrates on multi stage, multi product and multi period manufacturing network. Bi-objective mathematical models for total cost and total emission for the entire forward supply chain are considered. Here five different problems are considered by varying the number of suppliers, manufacturers, and environmental levels, for illustrating the taken mathematical model. GA, and Random search are used for finding the optimal solution. The input parameters of the optimal solution are used to find the tradeoff between the initial investment by the industry and the long term benefit of the environment.

Keywords: closed loop supply chain, genetic algorithm, random search, green supply chain

Procedia PDF Downloads 549
9888 Audit of TPS photon beam dataset for small field output factors using OSLDs against RPC standard dataset

Authors: Asad Yousuf

Abstract:

Purpose: The aim of the present study was to audit treatment planning system beam dataset for small field output factors against standard dataset produced by radiological physics center (RPC) from a multicenter study. Such data are crucial for validity of special techniques, i.e., IMRT or stereotactic radiosurgery. Materials/Method: In this study, multiple small field size output factor datasets were measured and calculated for 6 to 18 MV x-ray beams using the RPC recommend methods. These beam datasets were measured at 10 cm depth for 10 × 10 cm2 to 2 × 2 cm2 field sizes, defined by collimator jaws at 100 cm. The measurements were made with a Landauer’s nanoDot OSLDs whose volume is small enough to gather a full ionization reading even for the 1×1 cm2 field size. At our institute the beam data including output factors have been commissioned at 5 cm depth with an SAD setup. For comparison with the RPC data, the output factors were converted to an SSD setup using tissue phantom ratios. SSD setup also enables coverage of the ion chamber in 2×2 cm2 field size. The measured output factors were also compared with those calculated by Eclipse™ treatment planning software. Result: The measured and calculated output factors are in agreement with RPC dataset within 1% and 4% respectively. The large discrepancies in TPS reflect the increased challenge in converting measured data into a commissioned beam model for very small fields. Conclusion: OSLDs are simple, durable, and accurate tool to verify doses that delivered using small photon beam fields down to a 1x1 cm2 field sizes. The study emphasizes that the treatment planning system should always be evaluated for small field out factors for the accurate dose delivery in clinical setting.

Keywords: small field dosimetry, optically stimulated luminescence, audit treatment, radiological physics center

Procedia PDF Downloads 327
9887 Heart Ailment Prediction Using Machine Learning Methods

Authors: Abhigyan Hedau, Priya Shelke, Riddhi Mirajkar, Shreyash Chaple, Mrunali Gadekar, Himanshu Akula

Abstract:

The heart is the coordinating centre of the major endocrine glandular structure of the body, which produces hormones that profoundly affect the operations of the body, and diagnosing cardiovascular disease is a difficult but critical task. By extracting knowledge and information about the disease from patient data, data mining is a more practical technique to help doctors detect disorders. We use a variety of machine learning methods here, including logistic regression and support vector classifiers (SVC), K-nearest neighbours Classifiers (KNN), Decision Tree Classifiers, Random Forest classifiers and Gradient Boosting classifiers. These algorithms are applied to patient data containing 13 different factors to build a system that predicts heart disease in less time with more accuracy.

Keywords: logistic regression, support vector classifier, k-nearest neighbour, decision tree, random forest and gradient boosting

Procedia PDF Downloads 50
9886 Comparison of Different Machine Learning Algorithms for Solubility Prediction

Authors: Muhammet Baldan, Emel Timuçin

Abstract:

Molecular solubility prediction plays a crucial role in various fields, such as drug discovery, environmental science, and material science. In this study, we compare the performance of five machine learning algorithms—linear regression, support vector machines (SVM), random forests, gradient boosting machines (GBM), and neural networks—for predicting molecular solubility using the AqSolDB dataset. The dataset consists of 9981 data points with their corresponding solubility values. MACCS keys (166 bits), RDKit properties (20 properties), and structural properties(3) features are extracted for every smile representation in the dataset. A total of 189 features were used for training and testing for every molecule. Each algorithm is trained on a subset of the dataset and evaluated using metrics accuracy scores. Additionally, computational time for training and testing is recorded to assess the efficiency of each algorithm. Our results demonstrate that random forest model outperformed other algorithms in terms of predictive accuracy, achieving an 0.93 accuracy score. Gradient boosting machines and neural networks also exhibit strong performance, closely followed by support vector machines. Linear regression, while simpler in nature, demonstrates competitive performance but with slightly higher errors compared to ensemble methods. Overall, this study provides valuable insights into the performance of machine learning algorithms for molecular solubility prediction, highlighting the importance of algorithm selection in achieving accurate and efficient predictions in practical applications.

Keywords: random forest, machine learning, comparison, feature extraction

Procedia PDF Downloads 40
9885 Kinetic Study of Municipal Plastic Waste

Authors: Laura Salvia Diaz Silvarrey, Anh Phan

Abstract:

Municipal Plastic Waste (MPW) comprises a mixture of thermoplastics such as high and low density polyethylene (HDPE and LDPE), polypropylene (PP), polystyrene (PS) and polyethylene terephthalate (PET). Recycling rate of these plastics is low, e.g. only 27% in 2013. The remains were incinerated or disposed in landfills. As MPW generation increases approximately 5% per annum, MPW management technologies have to be developed to comply with legislation . Pyrolysis, thermochemical decomposition, provides an excellent alternative to convert MPW into valuable resources like fuels and chemicals. Most studies on waste plastic kinetics only focused on HDPE and LDPE with a simple assumption of first order decomposition, which is not the real reaction mechanism. The aim of this study was to develop a kinetic study for each of the polymers in the MPW mixture using thermogravimetric analysis (TGA) over a range of heating rates (5, 10, 20 and 40°C/min) in N2 atmosphere and sample size of 1 – 4mm. A model-free kinetic method was applied to quantify the activation energy at each level of conversion. Kissinger–Akahira–Sunose (KAS) and Flynn–Wall–Ozawa (FWO) equations jointly with Master Plots confirmed that the activation energy was not constant along all the reaction for all the five plastic studied, showing that MPW decomposed through a complex mechanism and not by first-order kinetics. Master plots confirmed that MPW decomposed following a random scission mechanism at conversions above 40%. According to the random scission mechanism, different radicals are formed along the backbone producing the cleavage of bonds by chain scission into molecules of different lengths. The cleavage of bonds during random scission follows first-order kinetics and it is related with the conversion. When a bond is broken one part of the initial molecule becomes an unsaturated one and the other a terminal free radical. The latter can react with hydrogen from and adjacent carbon releasing another free radical and a saturated molecule or reacting with another free radical and forming an alkane. Not every time a bonds is broken a molecule is evaporated. At early stages of the reaction (conversion and temperature below 40% and 300°C), most products are not short enough to evaporate. Only at higher degrees of conversion most of cleavage of bonds releases molecules small enough to evaporate.

Keywords: kinetic, municipal plastic waste, pyrolysis, random scission

Procedia PDF Downloads 354
9884 Flow Field Analysis of a Liquid Ejector Pump Using Embedded Large Eddy Simulation Methodology

Authors: Qasim Zaheer, Jehanzeb Masud

Abstract:

The understanding of entrainment and mixing phenomenon in the ejector pump is of pivotal importance for designing and performance estimation. In this paper, the existence of turbulent vortical structures due to Kelvin-Helmholtz instability at the free surface between the motive and the entrained fluids streams are simulated using Embedded LES methodology. The efficacy of Embedded LES for simulation of complex flow field of ejector pump is evaluated using ANSYS Fluent®. The enhanced mixing and entrainment process due to breaking down of larger eddies into smaller ones as a consequence of Vortex Stretching phenomenon is captured in this study. Moreover, the flow field characteristics of ejector pump like pressure velocity fields and mass flow rates are analyzed and validated against the experimental results.

Keywords: Kelvin Helmholtz instability, embedded LES, complex flow field, ejector pump

Procedia PDF Downloads 297
9883 Assessment of Yield and Water Use Efficiency of Soybean under Deficit Irrigation

Authors: Meysam Abedinpour

Abstract:

Water limitation is the main challenge for crop production in a semi-arid environment. Deficit irrigation is a strategy that allows a crop to sustain some degree of water deficit in order to reduce costs and potentially increase income. For this goal, a field experimental carried out at Asrieh fields of Gorgan city in the north of Iran, during summer season 2011. The treatments imposed were different irrigation water regimes (i.e. W1:70, W2:80, W3:90, and W4:100) percent of field capacity (FC). The results showed that there was Significant difference between the yield and (WUE) under different levels of irrigation, excepting of soil moisture content at field capacity (W4) and 90% of field capacity (W3) on yield and water use efficiency (WUE). The seasonal irrigation water applied were (i.e. 375, 338, 300, and 263 mm ha-1) under different irrigation water treatments (100, 90, 80, 80 and 70%) of FC, respectively. Grain yield productions under treatments were 4180, 3955, 3640, and 3355 (kg ha-1) respectively. Furthermore, the results showed that water use efficiency (WUE) at different treatments were 7.67, 7.79, 7.74, and 7.75 Kg mm ha-1 for (100, 90, 80, and 70) per cent of field capacity, therefore the 90 % of FC treatment (W3) is recommended for Soybean irrigation for water saving. Furthermore, the result showed that the treatment of 90 % of filed capacity (W3) seemed to be better adapted to product a high crop yield with acceptable yield coupling with water use efficiency in Golestan province.

Keywords: deficit irrigation, water use efficiency, yield, soybean

Procedia PDF Downloads 469
9882 Nonlinear Finite Element Modeling of Deep Beam Resting on Linear and Nonlinear Random Soil

Authors: M. Seguini, D. Nedjar

Abstract:

An accuracy nonlinear analysis of a deep beam resting on elastic perfectly plastic soil is carried out in this study. In fact, a nonlinear finite element modeling for large deflection and moderate rotation of Euler-Bernoulli beam resting on linear and nonlinear random soil is investigated. The geometric nonlinear analysis of the beam is based on the theory of von Kàrmàn, where the Newton-Raphson incremental iteration method is implemented in a Matlab code to solve the nonlinear equation of the soil-beam interaction system. However, two analyses (deterministic and probabilistic) are proposed to verify the accuracy and the efficiency of the proposed model where the theory of the local average based on the Monte Carlo approach is used to analyze the effect of the spatial variability of the soil properties on the nonlinear beam response. The effect of six main parameters are investigated: the external load, the length of a beam, the coefficient of subgrade reaction of the soil, the Young’s modulus of the beam, the coefficient of variation and the correlation length of the soil’s coefficient of subgrade reaction. A comparison between the beam resting on linear and nonlinear soil models is presented for different beam’s length and external load. Numerical results have been obtained for the combination of the geometric nonlinearity of beam and material nonlinearity of random soil. This comparison highlighted the need of including the material nonlinearity and spatial variability of the soil in the geometric nonlinear analysis, when the beam undergoes large deflections.

Keywords: finite element method, geometric nonlinearity, material nonlinearity, soil-structure interaction, spatial variability

Procedia PDF Downloads 414
9881 On Four Models of a Three Server Queue with Optional Server Vacations

Authors: Kailash C. Madan

Abstract:

We study four models of a three server queueing system with Bernoulli schedule optional server vacations. Customers arriving at the system one by one in a Poisson process are provided identical exponential service by three parallel servers according to a first-come, first served queue discipline. In model A, all three servers may be allowed a vacation at one time, in Model B at the most two of the three servers may be allowed a vacation at one time, in model C at the most one server is allowed a vacation, and in model D no server is allowed a vacation. We study steady the state behavior of the four models and obtain steady state probability generating functions for the queue size at a random point of time for all states of the system. In model D, a known result for a three server queueing system without server vacations is derived.

Keywords: a three server queue, Bernoulli schedule server vacations, queue size distribution at a random epoch, steady state

Procedia PDF Downloads 296
9880 Research of the Rotation Magnetic Field Current Driven Effect on Pulsed Plasmoid Acceleration of Electric Propulsion

Authors: X. F. Sun, X. D. Wen, L. J. Liu, C. C. Wu, Y. H. Jia

Abstract:

The field reversed closed magnetic field configuration plasmoid has a potential for large thrust and high power propulsion missions such as deep space exploration due to its high plasma density and larger azimuthal current, which will be a most competitive program for the next generation electric propulsion technology. Moreover, without the electrodes, it also has a long lifetime. Thus, the research on this electric propulsion technology is quite necessary. The plasmoid will be formatted and accelerated by applying a rotation magnetic field (RMF) method. And, the essence of this technology lies on the generation of the azimuthal electron currents driven by RMF. Therefore, the effect of RMF current on the plasmoid acceleration efficiency is a concerned problem. In the paper, the influences of the penetration process of RMF in plasma, the relations of frequency and amplitude of input RF power with current strength and the RMF antenna configuration on the plasmoid acceleration efficiency will be given by a two-fluid numerical simulation method. The results show that the radio-frequency and input power have remarkable influence on the formation and acceleration of plasmoid. These results will provide useful advice for the development, and optimized designing of field reversed configuration plasmoid thruster.

Keywords: rotation magnetic field, current driven, plasma penetration, electric propulsion

Procedia PDF Downloads 116
9879 Current Characteristic of Water Electrolysis to Produce Hydrogen, Alkaline, and Acid Water

Authors: Ekki Kurniawan, Yusuf Nur Jayanto, Erna Sugesti, Efri Suhartono, Agus Ganda Permana, Jaspar Hasudungan, Jangkung Raharjo, Rintis Manfaati

Abstract:

The purpose of this research is to study the current characteristic of the electrolysis of mineral water to produce hydrogen, alkaline water, and acid water. Alkaline and hydrogen water are believed to have health benefits. Alkaline water containing hydrogen can be an anti-oxidant that captures free radicals, which will increase the immune system. In Indonesia, there are two existing types of alkaline water producing equipment, but the installation is complicated, and the price is relatively expensive. The electrolysis process is slow (6-8 hours) since they are locally made using 311 VDC full bridge rectifier power supply. This paper intends to discuss how to make hydrogen and alkaline water by a simple portable mineral water ionizer. This is an electrolysis device that is easy to carry and able to separate ions of mineral water into acidic and alkaline water. With an electric field, positive ions will be attracted to the cathode, while negative ions will be attracted to the anode. The circuit equivalent can be depicted as RLC transient ciruit. The diode component ensures that the electrolytic current is direct current. Switch S divides the switching times t1, t2, and t3. In the first stage up to t1, the electrolytic current increases exponentially, as does the inductor charging current (L). The molecules in drinking water experience magnetic properties. The direction of the dipole ions, which are random in origin, will regularly flare with the direction of the electric field. In the second stage up to t2, the electrolytic current decreases exponentially, just like the charging current of a capacitor (C). In the 3rd stage, start t3 until it tends to be constant, as is the case with the current flowing through the resistor (R).

Keywords: current electrolysis, mineral water, ions, alkaline and acid waters, inductor, capacitor, resistor

Procedia PDF Downloads 112
9878 Stochastic Pi Calculus in Financial Markets: An Alternate Approach to High Frequency Trading

Authors: Jerome Joshi

Abstract:

The paper presents the modelling of financial markets using the Stochastic Pi Calculus model. The Stochastic Pi Calculus model is mainly used for biological applications; however, the feature of this model promotes its use in financial markets, more prominently in high frequency trading. The trading system can be broadly classified into exchange, market makers or intermediary traders and fundamental traders. The exchange is where the action of the trade is executed, and the two types of traders act as market participants in the exchange. High frequency trading, with its complex networks and numerous market participants (intermediary and fundamental traders) poses a difficulty while modelling. It involves the participants to seek the advantage of complex trading algorithms and high execution speeds to carry out large volumes of trades. To earn profits from each trade, the trader must be at the top of the order book quite frequently by executing or processing multiple trades simultaneously. This would require highly automated systems as well as the right sentiment to outperform other traders. However, always being at the top of the book is also not best for the trader, since it was the reason for the outbreak of the ‘Hot – Potato Effect,’ which in turn demands for a better and more efficient model. The characteristics of the model should be such that it should be flexible and have diverse applications. Therefore, a model which has its application in a similar field characterized by such difficulty should be chosen. It should also be flexible in its simulation so that it can be further extended and adapted for future research as well as be equipped with certain tools so that it can be perfectly used in the field of finance. In this case, the Stochastic Pi Calculus model seems to be an ideal fit for financial applications, owing to its expertise in the field of biology. It is an extension of the original Pi Calculus model and acts as a solution and an alternative to the previously flawed algorithm, provided the application of this model is further extended. This model would focus on solving the problem which led to the ‘Flash Crash’ which is the ‘Hot –Potato Effect.’ The model consists of small sub-systems, which can be integrated to form a large system. It is designed in way such that the behavior of ‘noise traders’ is considered as a random process or noise in the system. While modelling, to get a better understanding of the problem, a broader picture is taken into consideration with the trader, the system, and the market participants. The paper goes on to explain trading in exchanges, types of traders, high frequency trading, ‘Flash Crash,’ ‘Hot-Potato Effect,’ evaluation of orders and time delay in further detail. For the future, there is a need to focus on the calibration of the module so that they would interact perfectly with other modules. This model, with its application extended, would provide a basis for researchers for further research in the field of finance and computing.

Keywords: concurrent computing, high frequency trading, financial markets, stochastic pi calculus

Procedia PDF Downloads 77