Search results for: Gaussian pulses
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 477

Search results for: Gaussian pulses

147 Efficiency Improvement for Conventional Rectangular Horn Antenna by Using EBG Technique

Authors: S. Kampeephat, P. Krachodnok, R. Wongsan

Abstract:

The conventional rectangular horn has been used for microwave antenna a long time. Its gain can be increased by enlarging the construction of horn to flare exponentially. This paper presents a study of the shaped woodpile Electromagnetic Band Gap (EBG) to improve its gain for conventional horn without construction enlargement. The gain enhancement synthesis method for shaped woodpile EBG that has to transfer the electromagnetic fields from aperture of a horn antenna through woodpile EBG is presented by using the variety of shaped woodpile EBGs such as planar, triangular, quadratic, circular, gaussian, cosine, and squared cosine structures. The proposed technique has the advantages of low profile, low cost for fabrication and light weight. The antenna characteristics such as reflection coefficient (S11), radiation patterns and gain are simulated by utilized A Computer Simulation Technology (CST) software. With the proposed concept, an antenna prototype was fabricated and experimented. The S11 and radiation patterns obtained from measurements show a good impedance matching and a gain enhancement of the proposed antenna. The gain at dominant frequency of 10 GHz is 25.6 dB, application for X- and Ku-Band Radar, that higher than the gain of the basic rectangular horn antenna around 8 dB with adding only one appropriated EBG structures.

Keywords: conventional rectangular horn antenna, electromagnetic band gap, gain enhancement, X- and Ku-band radar

Procedia PDF Downloads 278
146 A New 3D Shape Descriptor Based on Multi-Resolution and Multi-Block CS-LBP

Authors: Nihad Karim Chowdhury, Mohammad Sanaullah Chowdhury, Muhammed Jamshed Alam Patwary, Rubel Biswas

Abstract:

In content-based 3D shape retrieval system, achieving high search performance has become an important research problem. A challenging aspect of this problem is to find an effective shape descriptor which can discriminate similar shapes adequately. To address this problem, we propose a new shape descriptor for 3D shape models by combining multi-resolution with multi-block center-symmetric local binary pattern operator. Given an arbitrary 3D shape, we first apply pose normalization, and generate a set of multi-viewed 2D rendered images. Second, we apply Gaussian multi-resolution filter to generate several levels of images from each of 2D rendered image. Then, overlapped sub-images are computed for each image level of a multi-resolution image. Our unique multi-block CS-LBP comes next. It allows the center to be composed of m-by-n rectangular pixels, instead of a single pixel. This process is repeated for all the 2D rendered images, derived from both ‘depth-buffer’ and ‘silhouette’ rendering. Finally, we concatenate all the features vectors into one dimensional histogram as our proposed 3D shape descriptor. Through several experiments, we demonstrate that our proposed 3D shape descriptor outperform the previous methods by using a benchmark dataset.

Keywords: 3D shape retrieval, 3D shape descriptor, CS-LBP, overlapped sub-images

Procedia PDF Downloads 443
145 Preparation of Nano-Scaled linbo3 by Polyol Method

Authors: Gabriella Dravecz, László Péter, Zsolt Kis

Abstract:

Abstract— The growth of optical LiNbO3 single crystal and its physical and chemical properties are well known on the macroscopic scale. Nowadays the rare-earth doped single crystals became important for coherent quantum optical experiments: electromagnetically induced transparency, slow down of light pulses, coherent quantum memory. The expansion of applications is increasingly requiring the production of nano scaled LiNbO3 particles. For example, rare-earth doped nanoscaled particles of lithium niobate can be act like single photon source which can be the bases of a coding system of the quantum computer providing complete inaccessibility to strangers. The polyol method is a chemical synthesis where oxide formation occurs instead of hydroxide because of the high temperature. Moreover the polyol medium limits the growth and agglomeration of the grains producing particles with the diameter of 30-200 nm. In this work nano scaled LiNbO3 was prepared by the polyol method. The starting materials (niobium oxalate and LiOH) were diluted in H2O2. Then it was suspended in ethylene glycol and heated up to about the boiling point of the mixture with intensive stirring. After the thermal equilibrium was reached, the mixture was kept in this temperature for 4 hours. The suspension was cooled overnight. The mixture was centrifuged and the particles were filtered. Dynamic Light Scattering (DLS) measurement was carried out and the size of the particles were found to be 80-100 nms. This was confirmed by Scanning Electron Microscope (SEM) investigations. The element analysis of SEM showed large amount of Nb in the sample. The production of LiNbO3 nano particles were succesful by the polyol method. The agglomeration of the particles were avoided and the size of 80-100nm could be reached.

Keywords: lithium-niobate, nanoparticles, polyol, SEM

Procedia PDF Downloads 134
144 A Simple Adaptive Atomic Decomposition Voice Activity Detector Implemented by Matching Pursuit

Authors: Thomas Bryan, Veton Kepuska, Ivica Kostanic

Abstract:

A simple adaptive voice activity detector (VAD) is implemented using Gabor and gammatone atomic decomposition of speech for high Gaussian noise environments. Matching pursuit is used for atomic decomposition, and is shown to achieve optimal speech detection capability at high data compression rates for low signal to noise ratios. The most active dictionary elements found by matching pursuit are used for the signal reconstruction so that the algorithm adapts to the individual speakers dominant time-frequency characteristics. Speech has a high peak to average ratio enabling matching pursuit greedy heuristic of highest inner products to isolate high energy speech components in high noise environments. Gabor and gammatone atoms are both investigated with identical logarithmically spaced center frequencies, and similar bandwidths. The algorithm performs equally well for both Gabor and gammatone atoms with no significant statistical differences. The algorithm achieves 70% accuracy at a 0 dB SNR, 90% accuracy at a 5 dB SNR and 98% accuracy at a 20dB SNR using 30dB SNR as a reference for voice activity.

Keywords: atomic decomposition, gabor, gammatone, matching pursuit, voice activity detection

Procedia PDF Downloads 290
143 Ground Short Circuit Contributions of a MV Distribution Line Equipped with PWMSC

Authors: Mohamed Zellagui, Heba Ahmed Hassan

Abstract:

This paper proposes a new approach for the calculation of short-circuit parameters in the presence of Pulse Width Modulated based Series Compensator (PWMSC). PWMSC is a newly Flexible Alternating Current Transmission System (FACTS) device that can modulate the impedance of a transmission line through applying a variation to the duty cycle (D) of a train of pulses with fixed frequency. This results in an improvement of the system performance as it provides virtual compensation of distribution line impedance by injecting controllable apparent reactance in series with the distribution line. This controllable reactance can operate in both capacitive and inductive modes and this makes PWMSC highly effective in controlling the power flow and increasing system stability in the system. The purpose of this work is to study the impact of fault resistance (RF) which varies between 0 to 30 Ω on the fault current calculations in case of a ground fault and a fixed fault location. The case study is for a medium voltage (MV) Algerian distribution line which is compensated by PWMSC in the 30 kV Algerian distribution power network. The analysis is based on symmetrical components method which involves the calculations of symmetrical components of currents and voltages, without and with PWMSC in both cases of maximum and minimum duty cycle value for capacitive and inductive modes. The paper presents simulation results which are verified by the theoretical analysis.

Keywords: pulse width modulated series compensator (pwmsc), duty cycle, distribution line, short-circuit calculations, ground fault, symmetrical components method

Procedia PDF Downloads 499
142 Forecasting of COVID-19 Cases, Hospitalization Admissions, and Death Cases Based on Wastewater Sars-COV-2 Surveillance Using Copula Time Series Model

Authors: Hueiwang Anna Jeng, Norou Diawara, Nancy Welch, Cynthia Jackson, Rekha Singh, Kyle Curtis, Raul Gonzalez, David Jurgens, Sasanka Adikari

Abstract:

Modeling effort is needed to predict the COVID-19 trends for developing management strategies and adaptation measures. The objective of this study was to assess whether SARS-CoV-2 viral load in wastewater could serve as a predictor for forecasting COVID-19 cases, hospitalization cases, and death cases using copula-based time series modeling. SARS-CoV-2 RNA load in raw wastewater in Chesapeake VA was measured using the RT-qPCR method. Gaussian copula time series marginal regression model, incorporating an autoregressive moving average model and the copula function, served as a forecasting model. COVID-19 cases were correlated with wastewater viral load, hospitalization cases, and death cases. The forecasted trend of COVID-19 cases closely paralleled one of the reported cases, with over 90% of the forecasted COVID-19 cases falling within the 99% confidence interval of the reported cases. Wastewater SARS-CoV-2 viral load could serve as a predictor for COVID-19 cases and hospitalization cases.

Keywords: COVID-19, modeling, time series, copula function

Procedia PDF Downloads 68
141 Non-Parametric Changepoint Approximation for Road Devices

Authors: Loïc Warscotte, Jehan Boreux

Abstract:

The scientific literature of changepoint detection is vast. Today, a lot of methods are available to detect abrupt changes or slight drift in a signal, based on CUSUM or EWMA charts, for example. However, these methods rely on strong assumptions, such as the stationarity of the stochastic underlying process, or even the independence and Gaussian distributed noise at each time. Recently, the breakthrough research on locally stationary processes widens the class of studied stochastic processes with almost no assumptions on the signals and the nature of the changepoint. Despite the accurate description of the mathematical aspects, this methodology quickly suffers from impractical time and space complexity concerning the signals with high-rate data collection, if the characteristics of the process are completely unknown. In this paper, we then addressed the problem of making this theory usable to our purpose, which is monitoring a high-speed weigh-in-motion system (HS-WIM) towards direct enforcement without supervision. To this end, we first compute bounded approximations of the initial detection theory. Secondly, these approximating bounds are empirically validated by generating many independent long-run stochastic processes. The abrupt changes and the drift are both tested. Finally, this relaxed methodology is tested on real signals coming from a HS-WIM device in Belgium, collected over several months.

Keywords: changepoint, weigh-in-motion, process, non-parametric

Procedia PDF Downloads 78
140 Medical Image Augmentation Using Spatial Transformations for Convolutional Neural Network

Authors: Trupti Chavan, Ramachandra Guda, Kameshwar Rao

Abstract:

The lack of data is a pain problem in medical image analysis using a convolutional neural network (CNN). This work uses various spatial transformation techniques to address the medical image augmentation issue for knee detection and localization using an enhanced single shot detector (SSD) network. The spatial transforms like a negative, histogram equalization, power law, sharpening, averaging, gaussian blurring, etc. help to generate more samples, serve as pre-processing methods, and highlight the features of interest. The experimentation is done on the OpenKnee dataset which is a collection of knee images from the openly available online sources. The CNN called enhanced single shot detector (SSD) is utilized for the detection and localization of the knee joint from a given X-ray image. It is an enhanced version of the famous SSD network and is modified in such a way that it will reduce the number of prediction boxes at the output side. It consists of a classification network (VGGNET) and an auxiliary detection network. The performance is measured in mean average precision (mAP), and 99.96% mAP is achieved using the proposed enhanced SSD with spatial transformations. It is also seen that the localization boundary is comparatively more refined and closer to the ground truth in spatial augmentation and gives better detection and localization of knee joints.

Keywords: data augmentation, enhanced SSD, knee detection and localization, medical image analysis, openKnee, Spatial transformations

Procedia PDF Downloads 154
139 Comparisons of Co-Seismic Gravity Changes between GRACE Observations and the Predictions from the Finite-Fault Models for the 2012 Mw = 8.6 Indian Ocean Earthquake Off-Sumatra

Authors: Armin Rahimi

Abstract:

The Gravity Recovery and Climate Experiment (GRACE) has been a very successful project in determining math redistribution within the Earth system. Large deformations caused by earthquakes are in the high frequency band. Unfortunately, GRACE is only capable to provide reliable estimate at the low-to-medium frequency band for the gravitational changes. In this study, we computed the gravity changes after the 2012 Mw8.6 Indian Ocean earthquake off-Sumatra using the GRACE Level-2 monthly spherical harmonic (SH) solutions released by the University of Texas Center for Space Research (UTCSR). Moreover, we calculated gravity changes using different fault models derived from teleseismic data. The model predictions showed non-negligible discrepancies in gravity changes. However, after removing high-frequency signals, using Gaussian filtering 350 km commensurable GRACE spatial resolution, the discrepancies vanished, and the spatial patterns of total gravity changes predicted from all slip models became similar at the spatial resolution attainable by GRACE observations, and predicted-gravity changes were consistent with the GRACE-detected gravity changes. Nevertheless, the fault models, in which give different slip amplitudes, proportionally lead to different amplitude in the predicted gravity changes.

Keywords: undersea earthquake, GRACE observation, gravity change, dislocation model, slip distribution

Procedia PDF Downloads 355
138 Applying Laser Scanning and Digital Photogrammetry for Developing an Archaeological Model Structure for Old Castle in Germany

Authors: Bara' Al-Mistarehi

Abstract:

Documentation and assessment of conservation state of an archaeological structure is a significant procedure in any management plan. However, it has always been a challenge to apply this with a low coast and safe methodology. It is also a time-demanding procedure. Therefore, a low cost, efficient methodology for documenting the state of a structure is needed. In the scope of this research, this paper will employ digital photogrammetry and laser scanner to one of highly significant structures in Germany, The Old Castle (German: Altes Schloss). The site is well known for its unique features. However, the castle suffers from serious deterioration threats because of the environmental conditions and the absence of continuous monitoring, maintenance and repair plans. Digital photogrammetry is a generally accepted technique for the collection of 3D representations of the environment. For this reason, this image-based technique has been extensively used to produce high quality 3D models of heritage sites and historical buildings for documentation and presentation purposes. Additionally, terrestrial laser scanners are used, which directly measure 3D surface coordinates based on the run-time of reflected light pulses. These systems feature high data acquisition rates, good accuracy and high spatial data density. Despite the potential of each single approach, in this research work maximum benefit is to be expected by a combination of data from both digital cameras and terrestrial laser scanners. Within the paper, the usage, application and advantages of the technique will be investigated in terms of building high realistic 3D textured model for some parts of the old castle. The model will be used as diagnosing tool of the conservation state of the castle and monitoring mean for future changes.

Keywords: Digital photogrammetry, Terrestrial laser scanners, 3D textured model, archaeological structure

Procedia PDF Downloads 178
137 Bayesian Variable Selection in Quantile Regression with Application to the Health and Retirement Study

Authors: Priya Kedia, Kiranmoy Das

Abstract:

There is a rich literature on variable selection in regression setting. However, most of these methods assume normality for the response variable under consideration for implementing the methodology and establishing the statistical properties of the estimates. In many real applications, the distribution for the response variable may be non-Gaussian, and one might be interested in finding the best subset of covariates at some predetermined quantile level. We develop dynamic Bayesian approach for variable selection in quantile regression framework. We use a zero-inflated mixture prior for the regression coefficients, and consider the asymmetric Laplace distribution for the response variable for modeling different quantiles of its distribution. An efficient Gibbs sampler is developed for our computation. Our proposed approach is assessed through extensive simulation studies, and real application of the proposed approach is also illustrated. We consider the data from health and retirement study conducted by the University of Michigan, and select the important predictors when the outcome of interest is out-of-pocket medical cost, which is considered as an important measure for financial risk. Our analysis finds important predictors at different quantiles of the outcome, and thus enhance our understanding on the effects of different predictors on the out-of-pocket medical cost.

Keywords: variable selection, quantile regression, Gibbs sampler, asymmetric Laplace distribution

Procedia PDF Downloads 156
136 Thermal Radiation Effect on Mixed Convection Boundary Layer Flow over a Vertical Plate with Varying Density and Volumetric Expansion Coefficient

Authors: Sadia Siddiqa, Z. Khan, M. A. Hossain

Abstract:

In this article, the effect of thermal radiation on mixed convection boundary layer flow of a viscous fluid along a highly heated vertical flat plate is considered with varying density and volumetric expansion coefficient. The density of the fluid is assumed to vary exponentially with temperature, however; volumetric expansion coefficient depends linearly on temperature. Boundary layer equations are transformed into convenient form by introducing primitive variable formulations. Solutions of transformed system of equations are obtained numerically through implicit finite difference method along with Gaussian elimination technique. Results are discussed in view of various parameters, like thermal radiation parameter, volumetric expansion parameter and density variation parameter on the wall shear stress and heat transfer rate. It is concluded from the present investigation that increase in volumetric expansion parameter decreases wall shear stress and enhances heat transfer rate.

Keywords: thermal radiation, mixed convection, variable density, variable volumetric expansion coefficient

Procedia PDF Downloads 368
135 Track and Evaluate Cortical Responses Evoked by Electrical Stimulation

Authors: Kyosuke Kamada, Christoph Kapeller, Michael Jordan, Mostafa Mohammadpour, Christy Li, Christoph Guger

Abstract:

Cortico-cortical evoked potentials (CCEP) refer to responses generated by cortical electrical stimulation at distant brain sites. These responses provide insights into the functional networks associated with language or motor functions, and in the context of epilepsy, they can reveal pathological networks. Locating the origin and spread of seizures within the cortex is crucial for pre-surgical planning. This process can be enhanced by employing cortical stimulation at the seizure onset zone (SOZ), leading to the generation of CCEPs in remote brain regions that may be targeted for disconnection. In the case of a 24-year-old male patient suffering from intractable epilepsy, corpus callosotomy was performed as part of the treatment. DTI-MRI imaging, conducted using a 3T MRI scanner for fiber tracking, along with CCEP, is used as part of an assessment for surgical planning. Stimulation of the SOZ, with alternating monophasic pulses of 300µs duration and 15mA current intensity, resulted in CCEPs on the contralateral frontal cortex, reaching a peak amplitude of 206µV with a latency of 31ms, specifically in the left pars triangularis. The related fiber tracts were identified with a two-tensor unscented Kalman filter (UKF) technique, showing transversal fibers through the corpus callosum. The CCEPs were monitored through the progress of the surgery. Notably, the SOZ-associated CCEPs exhibited a reduction following the resection of the anterior portion of the corpus callosum, reaching the identified connecting fibers. This intervention demonstrated a potential strategy for mitigating the impact of intractable epilepsy through targeted disconnection of identified cortical regions.

Keywords: CCEP, SOZ, Corpus callosotomy, DTI

Procedia PDF Downloads 66
134 Distribution of Maximum Loss of Fractional Brownian Motion with Drift

Authors: Ceren Vardar Acar, Mine Caglar

Abstract:

In finance, the price of a volatile asset can be modeled using fractional Brownian motion (fBm) with Hurst parameter H>1/2. The Black-Scholes model for the values of returns of an asset using fBm is given as, 〖Y_t=Y_0 e^((r+μ)t+σB)〗_t^H, 0≤t≤T where Y_0 is the initial value, r is constant interest rate, μ is constant drift and σ is constant diffusion coefficient of fBm, which is denoted by B_t^H where t≥0. Black-Scholes model can be constructed with some Markov processes such as Brownian motion. The advantage of modeling with fBm to Markov processes is its capability of exposing the dependence between returns. The real life data for a volatile asset display long-range dependence property. For this reason, using fBm is a more realistic model compared to Markov processes. Investors would be interested in any kind of information on the risk in order to manage it or hedge it. The maximum possible loss is one way to measure highest possible risk. Therefore, it is an important variable for investors. In our study, we give some theoretical bounds on the distribution of maximum possible loss of fBm. We provide both asymptotical and strong estimates for the tail probability of maximum loss of standard fBm and fBm with drift and diffusion coefficients. In the investment point of view, these results explain, how large values of possible loss behave and its bounds.

Keywords: maximum drawdown, maximum loss, fractional brownian motion, large deviation, Gaussian process

Procedia PDF Downloads 483
133 Spatiotemporal Analysis of Land Surface Temperature and Urban Heat Island Evaluation of Four Metropolitan Areas of Texas, USA

Authors: Chunhong Zhao

Abstract:

Remotely sensed land surface temperature (LST) is vital to understand the land-atmosphere energy balance, hydrological cycle, and thus is widely used to describe the urban heat island (UHI) phenomenon. However, due to technical constraints, satellite thermal sensors are unable to provide LST measurement with both high spatial and high temporal resolution. Despite different downscaling techniques and algorithms to generate high spatiotemporal resolution LST. Four major metropolitan areas in Texas, USA: Dallas-Fort Worth, Houston, San Antonio, and Austin all demonstrate UHI effects. Different cities are expected to have varying SUHI effect during the urban development trajectory. With the help of the Landsat, ASTER, and MODIS archives, this study focuses on the spatial patterns of UHIs and the seasonal and annual variation of these metropolitan areas. With Gaussian model, and Local Indicators of Spatial Autocorrelations (LISA), as well as data fusion methods, this study identifies the hotspots and the trajectory of the UHI phenomenon of the four cities. By making comparison analysis, the result can help to alleviate the advent effect of UHI and formulate rational urban planning in the long run.

Keywords: spatiotemporal analysis, land surface temperature, urban heat island evaluation, metropolitan areas of Texas, USA

Procedia PDF Downloads 417
132 Ultra-High Voltage Energization of Electrostatic Precipitators for Coal Fired Boilers

Authors: Mads Kirk Larsen

Abstract:

Strict air pollution control is today high on the agenda world-wide. By reducing the particular emission, not only the mg/Nm3 will be reduced – also parts of mercury and other hazardous matters attached to the particles will be reduced. Furthermore, it is possible to catch the fine particles (PM2.5). For particulate control, the precipitators are still the preferred choice and much efforts have been done to improve the efficiencies. Many ESP’s have seen electrical upgrading by changing the traditional 1 phase power system into either 3 phase or SMPS (High Frequency) units. However, there exist a 4th type of power supply – the pulse type. This is unfortunately widely unknown, but may be of great benefit to power plants. The FLSmidth type is called COROMAX® and it is a high voltage pulse generator for precipitators using a semiconductor switch operating at medium potential. The generated high voltage pulses have rated amplitude of 80 kV and duration of 75 μs and are superimposed on a variable base voltage of 60 kV rated voltage. Hereby, achieving a peak voltage of 140 kV. COROMAX® has the ability to increase the voltage beyond the natural spark limit inside the precipitator. Voltage levels may often be twice as high after installation of COROMAX®. Hereby also the migration velocity increases and thereby the efficiency. As the collection efficiency is proportional to the voltage peak and mean values, this also increases the collection efficiency of the fine particles where test has shown 80% removal of particles less than 0.07 micron. Another great advantage is the indifference to back-corona. Simultaneously with emission reduction, the power consumption will also be reduced. Another great advantage of the COROMAX® system is that the emission can be improved without the need to change the internal parts or enlarge the ESP. Recently, more than 150 units have been installed in China, where emissions have been reduced to ultra-low levels.

Keywords: eleectrostatic precipitator, high resistivity dust, micropulse energization, particulate removal

Procedia PDF Downloads 300
131 Superficial Metrology of Organometallic Chemical Vapour Deposited Undoped ZnO Thin Films on Stainless Steel and Soda-Lime Glass Substrates

Authors: Uchenna Sydney Mbamara, Bolu Olofinjana, Ezekiel Oladele B. Ajayi

Abstract:

Elaborate surface metrology of undoped ZnO thin films, deposited by organometallic chemical vapour deposition (OMCVD) technique at different precursor flow rates, was carried out. Dicarbomethyl-zinc precursor was used. The films were deposited on AISI304L steel and soda-lime glass substrates. Ultraviolet-visible-near-infrared (UV-Vis-NIR) spectroscopy showed that all the thin films were over 80% transparent, with an average bandgap of 3.39 eV, X-ray diffraction (XRD) results showed that the thin films were crystalline with a hexagonal structure, while Rutherford backscattering spectroscopy (RBS) results identified the elements present in each thin film as zinc and oxygen in the ratio of 1:1. Microscope and contactless profilometer results gave images with characteristic colours. The profilometer also gave the surface roughness data in both 2D and 3D. The asperity distribution of the thin film surfaces was Gaussian, while the average fractal dimension Da was in the range of 2.5 ≤ Da. The metrology proved the surfaces good for ‘touch electronics’ and coating mechanical parts for low friction.

Keywords: undoped ZnO, precursor flow rate, OMCVD, thin films, surface texture, tribology

Procedia PDF Downloads 62
130 An Improved Data Aided Channel Estimation Technique Using Genetic Algorithm for Massive Multi-Input Multiple-Output

Authors: M. Kislu Noman, Syed Mohammed Shamsul Islam, Shahriar Hassan, Raihana Pervin

Abstract:

With the increasing rate of wireless devices and high bandwidth operations, wireless networking and communications are becoming over crowded. To cope with such crowdy and messy situation, massive MIMO is designed to work with hundreds of low costs serving antennas at a time as well as improve the spectral efficiency at the same time. TDD has been used for gaining beamforming which is a major part of massive MIMO, to gain its best improvement to transmit and receive pilot sequences. All the benefits are only possible if the channel state information or channel estimation is gained properly. The common methods to estimate channel matrix used so far is LS, MMSE and a linear version of MMSE also proposed in many research works. We have optimized these methods using genetic algorithm to minimize the mean squared error and finding the best channel matrix from existing algorithms with less computational complexity. Our simulation result has shown that the use of GA worked beautifully on existing algorithms in a Rayleigh slow fading channel and existence of Additive White Gaussian Noise. We found that the GA optimized LS is better than existing algorithms as GA provides optimal result in some few iterations in terms of MSE with respect to SNR and computational complexity.

Keywords: channel estimation, LMMSE, LS, MIMO, MMSE

Procedia PDF Downloads 191
129 Predicting Relative Performance of Sector Exchange Traded Funds Using Machine Learning

Authors: Jun Wang, Ge Zhang

Abstract:

Machine learning has been used in many areas today. It thrives at reviewing large volumes of data and identifying patterns and trends that might not be apparent to a human. Given the huge potential benefit and the amount of data available in the financial market, it is not surprising to see machine learning applied to various financial products. While future prices of financial securities are extremely difficult to forecast, we study them from a different angle. Instead of trying to forecast future prices, we apply machine learning algorithms to predict the direction of future price movement, in particular, whether a sector Exchange Traded Fund (ETF) would outperform or underperform the market in the next week or in the next month. We apply several machine learning algorithms for this prediction. The algorithms are Linear Discriminant Analysis (LDA), k-Nearest Neighbors (KNN), Decision Tree (DT), Gaussian Naive Bayes (GNB), and Neural Networks (NN). We show that these machine learning algorithms, most notably GNB and NN, have some predictive power in forecasting out-performance and under-performance out of sample. We also try to explore whether it is possible to utilize the predictions from these algorithms to outperform the buy-and-hold strategy of the S&P 500 index. The trading strategy to explore out-performance predictions does not perform very well, but the trading strategy to explore under-performance predictions can earn higher returns than simply holding the S&P 500 index out of sample.

Keywords: machine learning, ETF prediction, dynamic trading, asset allocation

Procedia PDF Downloads 98
128 Image Segmentation Using Active Contours Based on Anisotropic Diffusion

Authors: Shafiullah Soomro

Abstract:

Active contour is one of the image segmentation techniques and its goal is to capture required object boundaries within an image. In this paper, we propose a novel image segmentation method by using an active contour method based on anisotropic diffusion feature enhancement technique. The traditional active contour methods use only pixel information to perform segmentation, which produces inaccurate results when an image has some noise or complex background. We use Perona and Malik diffusion scheme for feature enhancement, which sharpens the object boundaries and blurs the background variations. Our main contribution is the formulation of a new SPF (signed pressure force) function, which uses global intensity information across the regions. By minimizing an energy function using partial differential framework the proposed method captures semantically meaningful boundaries instead of catching uninterested regions. Finally, we use a Gaussian kernel which eliminates the problem of reinitialization in level set function. We use several synthetic and real images from different modalities to validate the performance of the proposed method. In the experimental section, we have found the proposed method performance is better qualitatively and quantitatively and yield results with higher accuracy compared to other state-of-the-art methods.

Keywords: active contours, anisotropic diffusion, level-set, partial differential equations

Procedia PDF Downloads 160
127 Recognizing an Individual, Their Topic of Conversation and Cultural Background from 3D Body Movement

Authors: Gheida J. Shahrour, Martin J. Russell

Abstract:

The 3D body movement signals captured during human-human conversation include clues not only to the content of people’s communication but also to their culture and personality. This paper is concerned with automatic extraction of this information from body movement signals. For the purpose of this research, we collected a novel corpus from 27 subjects, arranged them into groups according to their culture. We arranged each group into pairs and each pair communicated with each other about different topics. A state-of-art recognition system is applied to the problems of person, culture, and topic recognition. We borrowed modeling, classification, and normalization techniques from speech recognition. We used Gaussian Mixture Modeling (GMM) as the main technique for building our three systems, obtaining 77.78%, 55.47%, and 39.06% from the person, culture, and topic recognition systems respectively. In addition, we combined the above GMM systems with Support Vector Machines (SVM) to obtain 85.42%, 62.50%, and 40.63% accuracy for person, culture, and topic recognition respectively. Although direct comparison among these three recognition systems is difficult, it seems that our person recognition system performs best for both GMM and GMM-SVM, suggesting that inter-subject differences (i.e. subject’s personality traits) are a major source of variation. When removing these traits from culture and topic recognition systems using the Nuisance Attribute Projection (NAP) and the Intersession Variability Compensation (ISVC) techniques, we obtained 73.44% and 46.09% accuracy from culture and topic recognition systems respectively.

Keywords: person recognition, topic recognition, culture recognition, 3D body movement signals, variability compensation

Procedia PDF Downloads 541
126 Is More Inclusive More Effective? The 'New Style' Public Distribution System in India

Authors: Avinash Kishore, Suman Chakrabarti

Abstract:

In September 2013, the parliament of India enacted the National Food Security Act (NFSA) which entitles two-thirds of India’s population to five kilograms of rice, wheat or coarse cereals per person per month at one to three rupees per kilogram. Five states in India—Andhra Pradesh, Chhattisgarh, Tamil Nadu, Odisha and West Bengal—had already implemented somewhat similar changes in the TPDS a few years earlier using their own budgetary resources. They made rice—coincidentally, all five states are predominantly rice-eating—available in fair price shops to a majority of their population at very low prices (less than Rs.3/kg). This paper tries to account for the changes in household consumption patterns associated with the change in TPDS policy in these states using data from household consumption surveys by the National Sample Survey Organization (NSSO). NSS data show improvement in the coverage of TPDS and average off-take of grains from fair price shops between 2004-05 and 2009-10 across all states of India. However, the increase in coverage and off-take was significantly higher in four out of these five states than in the rest of India. An average household in these states purchased three kilos more rice per month from fair price shops than its counterpart in non-treated states as a result of more generous TPDS policies backed by administrative reforms. The increase in consumption of PDS rice was the highest in Chhattisgarh, the poster state of PDS reforms. Households in Chhattisgarh used money saved on rice to spend more on pulses, edible oil, vegetables and sugar and other non-food items. We also find evidence that making TPDS more inclusive and more generous is not enough unless it is supported by administrative reforms to improve grain delivery and control diversion to open markets.

Keywords: public distribution system, social safety-net, national food security act, diet quality, Chhattisgarh

Procedia PDF Downloads 373
125 Design and Implementation of a Counting and Differentiation System for Vehicles through Video Processing

Authors: Derlis Gregor, Kevin Cikel, Mario Arzamendia, Raúl Gregor

Abstract:

This paper presents a self-sustaining mobile system for counting and classification of vehicles through processing video. It proposes a counting and classification algorithm divided in four steps that can be executed multiple times in parallel in a SBC (Single Board Computer), like the Raspberry Pi 2, in such a way that it can be implemented in real time. The first step of the proposed algorithm limits the zone of the image that it will be processed. The second step performs the detection of the mobile objects using a BGS (Background Subtraction) algorithm based on the GMM (Gaussian Mixture Model), as well as a shadow removal algorithm using physical-based features, followed by morphological operations. In the first step the vehicle detection will be performed by using edge detection algorithms and the vehicle following through Kalman filters. The last step of the proposed algorithm registers the vehicle passing and performs their classification according to their areas. An auto-sustainable system is proposed, powered by batteries and photovoltaic solar panels, and the data transmission is done through GPRS (General Packet Radio Service)eliminating the need of using external cable, which will facilitate it deployment and translation to any location where it could operate. The self-sustaining trailer will allow the counting and classification of vehicles in specific zones with difficult access.

Keywords: intelligent transportation system, object detection, vehicle couting, vehicle classification, video processing

Procedia PDF Downloads 322
124 Conventional and Computational Investigation of the Synthesized Organotin(IV) Complexes Derived from o-Vanillin and 3-Nitro-o-Phenylenediamine

Authors: Harminder Kaur, Manpreet Kaur, Akanksha Kapila, Reenu

Abstract:

Schiff base with general formula H₂L was derived from condensation of o-vanillin and 3-nitro-o-phenylenediamine. This Schiff base was used for the synthesis of organotin(IV) complexes with general formula R₂SnL [R=Phenyl or n-octyl] using equimolar quantities. Elemental analysis UV-Vis, FTIR, and multinuclear spectroscopic techniques (¹H, ¹³C, and ¹¹⁹Sn) NMR were carried out for the characterization of the synthesized complexes. These complexes were coloured and soluble in polar solvents. Computational studies have been performed to obtain the details of the geometry and electronic structures of ligand as well as complexes. Geometry of the ligands and complexes have been optimized at the level of Density Functional Theory with B3LYP/6-311G (d,p) and B3LYP/MPW1PW91 respectively followed by vibrational frequency analysis using Gaussian 09. Observed ¹¹⁹Sn NMR chemical shifts of one of the synthesized complexes showed tetrahedral geometry around Tin atom which is also confirmed by DFT. HOMO-LUMO energy distribution was calculated. FTIR, ¹HNMR and ¹³CNMR spectra were also obtained theoretically using DFT. Further IRC calculations were employed to determine the transition state for the reaction and to get the theoretical information about the reaction pathway. Moreover, molecular docking studies can be explored to ensure the anticancer activity of the newly synthesized organotin(IV) complexes.

Keywords: DFT, molecular docking, organotin(IV) complexes, o-vanillin, 3-nitro-o-phenylenediamine

Procedia PDF Downloads 159
123 Modeling and Simulation of Organic Solar Cells Based on P3HT:PCBM using SCAPS 1-D (Influence of Defects and Temperature on the Performance of the Solar Cell)

Authors: Souhila Boukli Hacene, Djamila Kherbouche, Abdelhak Chikhaoui

Abstract:

In this work, we elucidate theoretically the effect of defects and temperature on the performance of the organic bulk heterojunction solar cell (BHJ) P3HT: PCBM. We have studied the influence of their parameters on cell characteristics. For this purpose, we used the effective medium model and the solar cell simulator (SCAPS) to model the characteristics of the solar cell. We also explore the transport of charge carriers in the device. It was assumed that the mixture is lightly p-type doped and that the band gap contains acceptor defects near the HOMO level with a Gaussian distribution of energy states at 100 and 50 meV. We varied defects density between 1012-1017 cm-3, from 1016 cm-3, a total decrease of the photovoltaic characteristics due to the increase of the non-radiative recombination can be noticed. Then we studied the effect of variation of the electron and the hole capture cross-section on the cell’s performance, we noticed that the cell obtains a better efficiency of about 3.6% for an electron capture cross section ≤ 10-15 cm2 and a hole capture cross section ≤ 10-19 cm2. On the other hand, we also varied the temperature between 120K and 400K. We observed that the temperature of the solar cell induces a noticeable effect on its voltage. While the effect of temperature on the solar cell current is negligible.

Keywords: organic solar cell, P3HT:PCBM, defects, temperature, SCAPS

Procedia PDF Downloads 91
122 Dynamic Distribution Calibration for Improved Few-Shot Image Classification

Authors: Majid Habib Khan, Jinwei Zhao, Xinhong Hei, Liu Jiedong, Rana Shahzad Noor, Muhammad Imran

Abstract:

Deep learning is increasingly employed in image classification, yet the scarcity and high cost of labeled data for training remain a challenge. Limited samples often lead to overfitting due to biased sample distribution. This paper introduces a dynamic distribution calibration method for few-shot learning. Initially, base and new class samples undergo normalization to mitigate disparate feature magnitudes. A pre-trained model then extracts feature vectors from both classes. The method dynamically selects distribution characteristics from base classes (both adjacent and remote) in the embedding space, using a threshold value approach for new class samples. Given the propensity of similar classes to share feature distributions like mean and variance, this research assumes a Gaussian distribution for feature vectors. Subsequently, distributional features of new class samples are calibrated using a corrected hyperparameter, derived from the distribution features of both adjacent and distant base classes. This calibration augments the new class sample set. The technique demonstrates significant improvements, with up to 4% accuracy gains in few-shot classification challenges, as evidenced by tests on miniImagenet and CUB datasets.

Keywords: deep learning, computer vision, image classification, few-shot learning, threshold

Procedia PDF Downloads 66
121 Enhanced Iron Accumulation in Chickpea Though Expression of Iron-Regulated Transport and Ferritin Genes

Authors: T. M. L. Hoang, G. Tan, S. D. Bhowmik, B. Williams, A. Johnson, M. R. Karbaschi, Y. Cheng, H. Long, S. G. Mundree

Abstract:

Iron deficiency is a worldwide problem affecting both developed and developing countries. Currently, two major approaches namely iron supplementation and food fortification have been used to combat this issue. These measures, however, are limited by the economic status of the targeted demographics. Iron biofortification through genetic modification to enhance the inherent iron content and bioavailability of crops has been employed recently. Several important crops such as rice, wheat, and banana were reported successfully improved iron content via this method, but there is no known study in legumes. Chickpea (Cicer arietinum) is an important leguminous crop that is widely consumed, particularly in India where iron deficiency anaemia is prevalent. Chickpea is also an ideal pulse in the formulation of complementary food between pulses and cereals to improve micronutrient contents. This project aims at generating enhanced ion accumulation and bioavailability chickpea through the exogenous expression of genes related to iron transport and iron homeostasis in chickpea plants. Iron-Regulated Transport (IRT) and Ferritin genes in combination were transformed into chickpea half-embryonic axis by agrobacterium–mediated transformation. Transgenic independent event was confirmed by Southern Blot analysis. T3 leaves and seeds of transgenic chickpea were assessed for iron contents using LA-ICP-MS (Laser Ablation – Inductively Coupled Plasma Mass Spectrometry) and ICP-OES (Inductively Coupled Plasma Optical Emission Spectrometry). The correlation between transgene expression levels and iron content in T3 plants and seeds was assessed using qPCR. Results show that iron content in transgenic chickpea expressing the above genes significantly increased compared to that in non-transgenic controls.

Keywords: iron biofortification, chickpea, IRT, ferritin, Agrobacterium-mediated transformation, LA-ICP-MS, ICP-OES

Procedia PDF Downloads 441
120 Theoretical Study of Structural Parameters, Chemical Reactivity and Spectral and Thermodynamical Properties of Organometallic Complexes Containing Zinc, Nickel and Cadmium with Nitrilotriacetic Acid and Tea Ligands: Density Functional Theory Investigation

Authors: Nour El Houda Bensiradj, Nafila Zouaghi, Taha Bensiradj

Abstract:

The pollution of water resources is characterized by the presence of microorganisms, chemicals, or industrial waste. Generally, this waste generates effluents containing large quantities of heavy metals, making the water unsuitable for consumption and causing the death of aquatic life and associated biodiversity. Currently, it is very important to assess the impact of heavy metals in water pollution as well as the processes for treating and reducing them. Among the methods of water treatment and disinfection, we mention the complexation of metal ions using ligands which serve to precipitate and subsequently eliminate these ions. In this context, we are interested in the study of complexes containing heavy metals such as zinc, nickel, and cadmium, which are present in several industrial discharges and are discharged into water sources. We will use the ligands of triethanolamine (TEA) and nitrilotriacetic acid (NTA). The theoretical study is based on molecular modeling, using the density functional theory (DFT) implemented in the Gaussian 09 program. The geometric and energetic properties of the above complexes will be calculated. Spectral properties such as infrared, as well as reactivity descriptors, and thermodynamic properties such as enthalpy and free enthalpy will also be determined.

Keywords: heavy metals, NTA, TEA, DFT, IR, reactivity descriptors

Procedia PDF Downloads 101
119 Diagnosis and Analysis of Automated Liver and Tumor Segmentation on CT

Authors: R. R. Ramsheeja, R. Sreeraj

Abstract:

For view the internal structures of the human body such as liver, brain, kidney etc have a wide range of different modalities for medical images are provided nowadays. Computer Tomography is one of the most significant medical image modalities. In this paper use CT liver images for study the use of automatic computer aided techniques to calculate the volume of the liver tumor. Segmentation method is used for the detection of tumor from the CT scan is proposed. Gaussian filter is used for denoising the liver image and Adaptive Thresholding algorithm is used for segmentation. Multiple Region Of Interest(ROI) based method that may help to characteristic the feature different. It provides a significant impact on classification performance. Due to the characteristic of liver tumor lesion, inherent difficulties appear selective. For a better performance, a novel proposed system is introduced. Multiple ROI based feature selection and classification are performed. In order to obtain of relevant features for Support Vector Machine(SVM) classifier is important for better generalization performance. The proposed system helps to improve the better classification performance, reason in which we can see a significant reduction of features is used. The diagnosis of liver cancer from the computer tomography images is very difficult in nature. Early detection of liver tumor is very helpful to save the human life.

Keywords: computed tomography (CT), multiple region of interest(ROI), feature values, segmentation, SVM classification

Procedia PDF Downloads 509
118 Brain Tumor Segmentation Based on Minimum Spanning Tree

Authors: Simeon Mayala, Ida Herdlevær, Jonas Bull Haugsøen, Shamundeeswari Anandan, Sonia Gavasso, Morten Brun

Abstract:

In this paper, we propose a minimum spanning tree-based method for segmenting brain tumors. The proposed method performs interactive segmentation based on the minimum spanning tree without tuning parameters. The steps involve preprocessing, making a graph, constructing a minimum spanning tree, and a newly implemented way of interactively segmenting the region of interest. In the preprocessing step, a Gaussian filter is applied to 2D images to remove the noise. Then, the pixel neighbor graph is weighted by intensity differences and the corresponding minimum spanning tree is constructed. The image is loaded in an interactive window for segmenting the tumor. The region of interest and the background are selected by clicking to split the minimum spanning tree into two trees. One of these trees represents the region of interest and the other represents the background. Finally, the segmentation given by the two trees is visualized. The proposed method was tested by segmenting two different 2D brain T1-weighted magnetic resonance image data sets. The comparison between our results and the standard gold segmentation confirmed the validity of the minimum spanning tree approach. The proposed method is simple to implement and the results indicate that it is accurate and efficient.

Keywords: brain tumor, brain tumor segmentation, minimum spanning tree, segmentation, image processing

Procedia PDF Downloads 122