Search results for: variable precision rough sets theory
5285 Adaptive Multipath Mitigation Acquisition Approach for Global Positioning System Software Receivers
Authors: Animut Meseret Simachew
Abstract:
Parallel Code Phase Search Acquisition (PCSA) Algorithm has been considered as a promising method in GPS software receivers for detection and estimation of the accurate correlation peak between the received Global Positioning System (GPS) signal and locally generated replicas. GPS signal acquisition in highly dense multipath environments is the main research challenge. In this work, we proposed a robust variable step-size (RVSS) PCSA algorithm based on fast frequency transform (FFT) filtering technique to mitigate short time delay multipath signals. Simulation results reveal the effectiveness of the proposed algorithm over the conventional PCSA algorithm. The proposed RVSS-PCSA algorithm equalizes the received carrier wiped-off signal with locally generated C/A code.Keywords: adaptive PCSA, detection and estimation, GPS signal acquisition, GPS software receiver
Procedia PDF Downloads 1155284 NaOH/Pumice and LiOH/Pumice as Heterogeneous Solid Base Catalysts for Biodiesel Production from Soybean Oil: An Optimization Study
Authors: Joy Marie Mora, Mark Daniel De Luna, Tsair-Wang Chung
Abstract:
Transesterification reaction of soybean oil with methanol was carried out to produce fatty acid methyl esters (FAME) using calcined alkali metal (Na and Li) supported by pumice silica as the solid base catalyst. Pumice silica catalyst was activated by loading alkali metal ions to its surface via an ion-exchange method. Response surface methodology (RSM) in combination with Box-Behnken design (BBD) was used to optimize the operating parameters in biodiesel production, namely: reaction temperature, methanol to oil molar ratio, reaction time, and catalyst concentration. Using the optimized sets of parameters, FAME yields using sodium and lithium silicate catalysts were 98.80% and 98.77%, respectively. A pseudo-first order kinetic equation was applied to evaluate the kinetic parameters of the reaction. The prepared catalysts were characterized by several techniques such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET) sorptometer, and scanning electron microscopy (SEM). In addition, the reusability of the catalysts was successfully tested in two subsequent cycles.Keywords: alkali metal, biodiesel, Box-Behnken design, heterogeneous catalyst, kinetics, optimization, pumice, transesterification
Procedia PDF Downloads 3045283 Dynamical Models for Enviromental Effect Depuration for Structural Health Monitoring of Bridges
Authors: Francesco Morgan Bono, Simone Cinquemani
Abstract:
This research aims to enhance bridge monitoring by employing innovative techniques that incorporate exogenous factors into the modeling of sensor signals, thereby improving long-term predictability beyond traditional static methods. Using real datasets from two different bridges equipped with Linear Variable Displacement Transducer (LVDT) sensors, the study investigates the fundamental principles governing sensor behavior for more precise long-term forecasts. Additionally, the research evaluates performance on noisy and synthetically damaged data, proposing a residual-based alarm system to detect anomalies in the bridge. In summary, this novel approach combines advanced modeling, exogenous factors, and anomaly detection to extend prediction horizons and improve preemptive damage recognition, significantly advancing structural health monitoring practices.Keywords: structural health monitoring, dynamic models, sindy, railway bridges
Procedia PDF Downloads 375282 The Motivation System Development: Case-Study of the Trade Metal Company in Russian Federation
Authors: Elena V. Lysenko
Abstract:
Motivating as the leading function of a modern Human Resources Management involves issues of increasing the effectiveness of the organization in a broader context. During the formation of motivational systems, the top-management of organization should pay equal attention to both external motivation (incentive system) and internal (self-motivation). The balance of internal and external motivation harmonizes the relations between employers and employees, increases the level of job satisfaction by the organization staff, which in turn leads the organization to success and ensures the organization`s profitability and competitiveness in the market environment. The article is devoted to the study of personnel motivation system in the small metal trade company, which is located in Yekaterinburg, Russian Federation. The study took place during November-December, 2016 ordered by the Company Director to analyze the motivational potential of work (managerial aspect of motivation) and motivation of personnel (personnel aspect of motivation) with the purpose to construct a system of employees’ motivation. The research tools included 6 specially selected tests of motivation, which are: “Motivation profile of your job”, “Constructive motivational attitudes”, Tests about Motivation of achievements (1st variant: Test by А.Mehrabian by the theory of D.С.McClelland and 2nd variant: Test about leading needs according with the theory of D.С.MacClelland), Tests by T.Elers (1st variant: “Determination of the motivation towards success or to avoid failure” and 2nd variant: “Trends to achieve results or to avoid failure”). The results of the study showed only one, but fundamental problem of the whole organization: high level of both motivational potential in work and self-motivation, especially in terms of achievement motivation, but serious lack of productivity. According the results which study showed this problem is derived from insufficient staff competence. The research suggests basic guidelines in order to build the new personnel motivation system for this Company, which is planned to be developed in the nearest future.Keywords: incentive system, motivation of achievements, motivation system, self-motivation
Procedia PDF Downloads 3105281 The Continuous Facility Location Problem and Transportation Mode Selection in the Supply Chain under Sustainability
Authors: Abdulaziz Alageel, Martino Luis, Shuya Zhong
Abstract:
The main focus of this research study is on the challenges faced in decision-making in a supply chain network regarding the facility location while considering carbon emissions. The study aims (i) to locate facilities (i.e., distribution centeres) in a continuous space considering limitations of capacity and the costs associated with opening and (ii) to reduce the cost of carbon emissions by selecting the mode of transportation. The problem is formulated as mixed-integer linear programming. This study hybridised a greedy randomised adaptive search (GRASP) and variable neighborhood search (VNS) to deal with the problem. Well-known datasets from the literature (Brimberg et al. 2001) are used and adapted in order to assess the performance of the proposed method. The proposed hybrid method produces encouraging results based on computational analysis. The study also highlights some research avenues for future recommendations.Keywords: supply chain, facility location, weber problem, sustainability
Procedia PDF Downloads 995280 Theoretical Study on the Visible-Light-Induced Radical Coupling Reactions Mediated by Charge Transfer Complex
Authors: Lishuang Ma
Abstract:
Charge transfer (CT) complex, also known as Electron donor-acceptor (EDA) complex, has received attentions increasingly in the field of synthetic chemistry community, due to the CT complex can absorb the visible light through the intermolecular charge transfer excited states, various of catalyst-free photochemical transformations under mild visible-light conditions. However, a number of fundamental questions are still ambiguous, such as the origin of visible light absorption, the photochemical and photophysical properties of the CT complex, as well as the detailed mechanism of the radical coupling pathways mediated by CT complex. Since these are critical factors for target-specific design and synthesis of more new-type CT complexes. To this end, theoretical investigations were performed in our group to answer these questions based on multiconfigurational perturbation theory. The photo-induced fluoroalkylation reactions are mediated by CT complexes, which are formed by the association of an acceptor of perfluoroalkyl halides RF−X (X = Br, I) and a suitable donor molecule such as β-naphtholate anion, were chosen as a paradigm example in this work. First, spectrum simulations were carried out by both CASPT2//CASSCF/PCM and TD-DFT/PCM methods. The computational results showed that the broadening spectra in visible light range (360-550nm) of the CT complexes originate from the 1(σπ*) excitation, accompanied by an intermolecular electron transfer, which was also found closely related to the aggregate states of the donor and acceptor. Moreover, from charge translocation analysis, the CT complex that showed larger charge transfer in the round state would exhibit smaller charge transfer in excited stated of 1(σπ*), causing blue shift relatively. Then, the excited-state potential energy surface (PES) was calculated at CASPT2//CASSCF(12,10)/ PCM level of theory to explore the photophysical properties of the CT complexes. The photo-induced C-X (X=I, Br) bond cleavage was found to occur in the triplet state, which is accessible through a fast intersystem crossing (ISC) process that is controlled by the strong spin-orbit coupling resulting from the heavy iodine and bromine atoms. Importantly, this rapid fragmentation process can compete and suppress the backward electron transfer (BET) event, facilitating the subsequent effective photochemical transformations. Finally, the reaction pathways of the radical coupling were also inspected, which showed that the radical chain propagation pathway could easy to accomplish with a small energy barrier no more than 3.0 kcal/mol, which is the key factor that promote the efficiency of the photochemical reactions induced by CT complexes. In conclusion, theoretical investigations were performed to explore the photophysical and photochemical properties of the CT complexes, as well as the mechanism of radical coupling reactions mediated by CT complex. The computational results and findings in this work can provide some critical insights into mechanism-based design for more new-type EDA complexesKeywords: charge transfer complex, electron transfer, multiconfigurational perturbation theory, radical coupling
Procedia PDF Downloads 1435279 Improved Whale Algorithm Based on Information Entropy and Its Application in Truss Structure Optimization Design
Authors: Serges Mendomo Meye, Li Guowei, Shen Zhenzhong, Gan Lei, Xu Liqun
Abstract:
Given the limitations of the original whale optimization algorithm (WAO) in local optimum and low convergence accuracy in truss structure optimization problems, based on the fundamental whale algorithm, an improved whale optimization algorithm (SWAO) based on information entropy is proposed. The information entropy itself is an uncertain measure. It is used to control the range of whale searches in path selection. It can overcome the shortcomings of the basic whale optimization algorithm (WAO) and can improve the global convergence speed of the algorithm. Taking truss structure as the optimization research object, the mathematical model of truss structure optimization is established; the cross-sectional area of truss is taken as the design variable; the objective function is the weight of truss structure; and an improved whale optimization algorithm (SWAO) is used for optimization design, which provides a new idea and means for its application in large and complex engineering structure optimization design.Keywords: information entropy, structural optimization, truss structure, whale algorithm
Procedia PDF Downloads 2465278 Little Retrieval Augmented Generation for Named Entity Recognition: Toward Lightweight, Generative, Named Entity Recognition Through Prompt Engineering, and Multi-Level Retrieval Augmented Generation
Authors: Sean W. T. Bayly, Daniel Glover, Don Horrell, Simon Horrocks, Barnes Callum, Stuart Gibson, Mac Misuira
Abstract:
We assess suitability of recent, ∼7B parameter, instruction-tuned Language Models Mistral-v0.3, Llama-3, and Phi-3, for Generative Named Entity Recognition (GNER). Our proposed Multi-Level Information Retrieval method achieves notable improvements over finetuned entity-level and sentence-level methods. We consider recent developments at the cross roads of prompt engineering and Retrieval Augmented Generation (RAG), such as EmotionPrompt. We conclude that language models directed toward this task are highly capable when distinguishing between positive classes (precision). However, smaller models seem to struggle to find all entities (recall). Poorly defined classes such as ”Miscellaneous” exhibit substantial declines in performance, likely due to the ambiguity it introduces to the prompt. This is partially resolved through a self verification method using engineered prompts containing knowledge of the stricter class definitions, particularly in areas where their boundaries are in danger of overlapping, such as the conflation between the location ”Britain” and the nationality ”British”. Finally, we explore correlations between model performance on the GNER task with performance on relevant academic benchmarks.Keywords: generative named entity recognition, information retrieval, lightweight artificial intelligence, prompt engineering, personal information identification, retrieval augmented generation, self verification
Procedia PDF Downloads 445277 Investigating the Neural Heterogeneity of Developmental Dyscalculia
Authors: Fengjuan Wang, Azilawati Jamaludin
Abstract:
Developmental Dyscalculia (DD) is defined as a particular learning difficulty with continuous challenges in learning requisite math skills that cannot be explained by intellectual disability or educational deprivation. Recent studies have increasingly recognized that DD is a heterogeneous, instead of monolithic, learning disorder with not only cognitive and behavioral deficits but so too neural dysfunction. In recent years, neuroimaging studies employed group comparison to explore the neural underpinnings of DD, which contradicted the heterogenous nature of DD and may obfuscate critical individual differences. This research aimed to investigate the neural heterogeneity of DD using case studies with functional near-infrared spectroscopy (fNIRS). A total of 54 aged 6-7 years old of children participated in this study, comprising two comprehensive cognitive assessments, an 8-minute resting state, and an 8-minute one-digit addition task. Nine children met the criteria of DD and scored at or below 85 (i.e., the 16th percentile) on the Mathematics or Math Fluency subtest of the Wechsler Individual Achievement Test, Third Edition (WIAT-III) (both subtest scores were 90 and below). The remaining 45 children formed the typically developing (TD) group. Resting-state data and brain activation in the inferior frontal gyrus (IFG), superior frontal gyrus (SFG), and intraparietal sulcus (IPS) were collected for comparison between each case and the TD group. Graph theory was used to analyze the brain network under the resting state. This theory represents the brain network as a set of nodes--brain regions—and edges—pairwise interactions across areas to reveal the architectural organizations of the nervous network. Next, a single-case methodology developed by Crawford et al. in 2010 was used to compare each case’s brain network indicators and brain activation against 45 TD children’s average data. Results showed that three out of the nine DD children displayed significant deviation from TD children’s brain indicators. Case 1 had inefficient nodal network properties. Case 2 showed inefficient brain network properties and weaker activation in the IFG and IPS areas. Case 3 displayed inefficient brain network properties with no differences in activation patterns. As a rise above, the present study was able to distill differences in architectural organizations and brain activation of DD vis-à-vis TD children using fNIRS and single-case methodology. Although DD is regarded as a heterogeneous learning difficulty, it is noted that all three cases showed lower nodal efficiency in the brain network, which may be one of the neural sources of DD. Importantly, although the current “brain norm” established for the 45 children is tentative, the results from this study provide insights not only for future work in “developmental brain norm” with reliable brain indicators but so too the viability of single-case methodology, which could be used to detect differential brain indicators of DD children for early detection and interventions.Keywords: brain activation, brain network, case study, developmental dyscalculia, functional near-infrared spectroscopy, graph theory, neural heterogeneity
Procedia PDF Downloads 525276 Survey of Selected Pathogenic Bacteria in Chickens from Rural Households in Limpopo Province
Authors: M. Lizzy Madiwani, Ignatious Ncube, Evelyn Madoroba
Abstract:
This study was designed to determine the distribution of pathogenic bacteria in household raised chickens and study their virulence and antibiotic profiles. For this purpose, 40 chickens were purchased from families in the Capricorn district and sacrificed for sampling. Tissues were cultured on different bacteriological media followed by biotyping using Matrix-assisted Laser Desorption Ionization-time of Flight (MALDI-TOF). Disk diffusion test was performed to determine the antibiotic susceptibility profiles of these bacteria. Out of a total of 160 tissue samples evaluated, E. coli and Salmonella were detected in these tissues. Furthermore, determination of the pathogenic E. coli and Salmonella strains at species level using primer sets that target selected genes of interest in the polymerase chain reaction (PCR) assay was employed. The invA gene, a confirmatory gene of Salmonella was detected in all the Salmonella isolates. The study revealed that there is a high distribution of Salmonella and pathogenic E. coli in these chickens. Therefore, further studies on identification at the species level are highly recommended to provide management and sanitation practices to lower this prevalence. The antimicrobial susceptibly data generated from this study can be a valuable reference to veterinarians for treating bacterial diseases in poultry.Keywords: antimicrobial, Escherichia coli, pathogens, Salmonella
Procedia PDF Downloads 1265275 The Role of Interpersonal and Institutional Trusts for the Public Support of Welfare State
Authors: Nazim Habibov, Alena Auchynnikava, Lida Fan
Abstract:
The exploration of the relationship between social trust and the support of the welfare system in transitional countries has attracted growing interests in recent decades. This study estimates the effects of interpersonal and institutional trust on the support of the welfare system in 27 countries in Eastern Europe the former Soviet Union. We estimate the data sets from the Life-in-Transition Survey 2010 and 2016 with binomial regression models. The results indicate that both interpersonal and institutional trust have positive effects on the support for the welfare system in all the three areas under investigation: helping the needy, public healthcare and public education, both in the less developed countries of the former Soviet Union and in the more developed Eastern European countries. Furthermore, the positive effects of interpersonal and institutional trust on support for helping the needy, public healthcare and public education were found to grow over time. In conclusion, this study confirms that interpersonal and institutional trusts have positive effects for the public support of the welfare system in these transitional countries under investigation, regardless of their level of development.Keywords: central and eastern Europe, former Soviet union, international social welfare policy, comparative social welfare policy
Procedia PDF Downloads 1295274 Optimizing Electric Vehicle Charging with Charging Data Analytics
Authors: Tayyibah Khanam, Mohammad Saad Alam, Sanchari Deb, Yasser Rafat
Abstract:
Electric vehicles are considered as viable replacements to gasoline cars since they help in reducing harmful emissions and stimulate power generation through renewable energy sources, hence contributing to sustainability. However, one of the significant obstacles in the mass deployment of electric vehicles is the charging time anxiety among users and, thus, the subsequent large waiting times for available chargers at charging stations. Data analytics, on the other hand, has revolutionized the decision-making tasks of management and operating systems since its arrival. In this paper, we attempt to optimize the choice of EV charging stations for users in their vicinity by minimizing the time taken to reach the charging stations and the waiting times for available chargers. Time taken to travel to the charging station is calculated by the Google Maps API and the waiting times are predicted by polynomial regression of the historical data stored. The proposed framework utilizes real-time data and historical data from all operating charging stations in the city and assists the user in finding the best suitable charging station for their current situation and can be implemented in a mobile phone application. The algorithm successfully predicts the most optimal choice of a charging station and the minimum required time for various sample data sets.Keywords: charging data, electric vehicles, machine learning, waiting times
Procedia PDF Downloads 1925273 Political Connections, Business Strategy and Tax Aggressiveness: Evidence from China
Authors: Liqiang Chen
Abstract:
This study investigates the effects of political connections on the association between firms’ business strategy and their tax aggressiveness in an emerging economy such as China. By studying all public Chinese firms in the period from 2011 to 2017, we find that firms adopting innovative business strategy are more tax aggressive overall, but innovative firms with political connections are less tax aggressive compared to those without political connections. Moreover, we document several channels through which political connections affect the association between innovative business strategy and tax aggressiveness. In particular, we show that the mitigation effect of political connections on tax aggressiveness is stronger for innovative firms located in areas with a lower marketization index and for innovative firms with a lower leverage level or with less earnings management. Our results are robust to an instrumental variable approach to account for possible endogenous bias. Our study contributes to the understanding of firms’ tax behaviors in an emerging economy setting and suggests that there are costs associated with political connections, such as foregone tax saving opportunities, which are understudied in the prior literature.Keywords: tax aggressiveness, business strategy, political connections, emerging economy
Procedia PDF Downloads 1245272 Light-Weight Network for Real-Time Pose Estimation
Authors: Jianghao Hu, Hongyu Wang
Abstract:
The effective and efficient human pose estimation algorithm is an important task for real-time human pose estimation on mobile devices. This paper proposes a light-weight human key points detection algorithm, Light-Weight Network for Real-Time Pose Estimation (LWPE). LWPE uses light-weight backbone network and depthwise separable convolutions to reduce parameters and lower latency. LWPE uses the feature pyramid network (FPN) to fuse the high-resolution, semantically weak features with the low-resolution, semantically strong features. In the meantime, with multi-scale prediction, the predicted result by the low-resolution feature map is stacked to the adjacent higher-resolution feature map to intermediately monitor the network and continuously refine the results. At the last step, the key point coordinates predicted in the highest-resolution are used as the final output of the network. For the key-points that are difficult to predict, LWPE adopts the online hard key points mining strategy to focus on the key points that hard predicting. The proposed algorithm achieves excellent performance in the single-person dataset selected in the AI (artificial intelligence) challenge dataset. The algorithm maintains high-precision performance even though the model only contains 3.9M parameters, and it can run at 225 frames per second (FPS) on the generic graphics processing unit (GPU).Keywords: depthwise separable convolutions, feature pyramid network, human pose estimation, light-weight backbone
Procedia PDF Downloads 1525271 Determination of MDA by HPLC in Blood of Levofloxacin Treated Rats
Authors: D. S. Mohale, A. P. Dewani, A. S.tripathi, A. V. Chandewar
Abstract:
Present work demonstrates the applicability of high-performance liquid chromatography (HPLC) with UV-Vis detection for the quantification of malondialdehyde as malondialdehyde-thiobarbituric acid complex (MDA-TBA) in-vivo in rats. The HPLC method for MDA-TBA was achieved by isocratic mode on a reverse-phase C18 column (250mm×4.6mm) at a flow rate of 1.0mLmin−1 followed by detection at 532 nm. The chromatographic conditions were optimized by varying the concentration and pH of water followed by changes in percentage of organic phase optimal mobile phase consisted of mixture of water (0.2% triethylamine pH adjusted to 2.3 by ortho-phosphoric acid) and acetonitrile in ratio (80:20v/v). The retention time of MDA-TBA complex was 3.7 min. The developed method was sensitive as limit of detection and quantification (LOD and LOQ) for MDA-TBA complex were (standard deviation and slope of calibration curve) 110 ng/ml and 363 ng/ml respectively. Calibration studies were done by spiking MDA into rat plasma at concentrations ranging from 500 to 1000 ng/ml. The precision of developed method measured in terms of relative standard deviations for intra-day and inter-day studies was 1.6–5.0% and 1.9–3.6% respectively. The HPLC method was applied for monitoring MDA levels in rats subjected to chronic treatment of levofloxacin (LEV) (5mg/kg/day) for 21 days. Results were compared by findings in control group rats. Mean peak areas of both study groups was subjected for statistical treatment to unpaired student t-test to find p-values. The p value was <0.001 indicating significant results and suggesting increased MDA levels in rats subjected to chronic treatment of LEV of 21 days.Keywords: malondialdehyde-thiobarbituric acid complex, levofloxacin, HPLC, oxidative stress
Procedia PDF Downloads 3325270 Using Predictive Analytics to Identify First-Year Engineering Students at Risk of Failing
Authors: Beng Yew Low, Cher Liang Cha, Cheng Yong Teoh
Abstract:
Due to a lack of continual assessment or grade related data, identifying first-year engineering students in a polytechnic education at risk of failing is challenging. Our experience over the years tells us that there is no strong correlation between having good entry grades in Mathematics and the Sciences and excelling in hardcore engineering subjects. Hence, identifying students at risk of failure cannot be on the basis of entry grades in Mathematics and the Sciences alone. These factors compound the difficulty of early identification and intervention. This paper describes the development of a predictive analytics model in the early detection of students at risk of failing and evaluates its effectiveness. Data from continual assessments conducted in term one, supplemented by data of student psychological profiles such as interests and study habits, were used. Three classification techniques, namely Logistic Regression, K Nearest Neighbour, and Random Forest, were used in our predictive model. Based on our findings, Random Forest was determined to be the strongest predictor with an Area Under the Curve (AUC) value of 0.994. Correspondingly, the Accuracy, Precision, Recall, and F-Score were also highest among these three classifiers. Using this Random Forest Classification technique, students at risk of failure could be identified at the end of term one. They could then be assigned to a Learning Support Programme at the beginning of term two. This paper gathers the results of our findings. It also proposes further improvements that can be made to the model.Keywords: continual assessment, predictive analytics, random forest, student psychological profile
Procedia PDF Downloads 1335269 A Design of Active Elastic Metamaterial with Extreme Anisotropic Stiffness
Authors: Conner Side, Hunter Pearce
Abstract:
Traditional elastic metamaterials have difficulties in achieving independent tunable working frequency in two orthogonal directions. In this work, we proposed a pragmatic active elastic metamaterial to obtain extreme anisotropic stiffness with a tunable working frequency range. Piezoelectric patches shunted with variable conductance are properly proposed in the microstructure unit cell to manipulate the effective elastic stiffness along two principal directions at the subwavelength scale. Simulation of manipulation of wave propagation in such metamaterials is performed. An experimental study is also conducted to validate the design, and the results are in good agreement with mathematic analysis and numerical predictions. The proposed active elastic metamaterial will bring forth significant guidelines for ultrasonic imaging technique, and the results are expected to offer novel and general design methodology for elastic metamaterials.Keywords: microstructure, active elastic metamaterials, piezoelectric patches, experimental study
Procedia PDF Downloads 925268 GUI Design of Mathematical Model of Cardiovascular-Respiratory System
Authors: Ntaganda J.M., Maniraguha J.D., Mukeshimana S., Harelimana D, Bizimungu T., Ruataganda E.
Abstract:
This paper presents the design of Graphic User Interface (GUI) in Matlab as interaction tool between human and machine. The designed GUI can be used by medical doctors and other experts particularly the physiologists. Matlab packages and estimated parameters of the mathematical model of cardiovascular-respiratory system developed in Rwandan context are used in GUI. The ordinary differential equations (ODE’s) govern a mathematical model in designing GUI in Matlab and a window that sets model estimated parameters and the measured parameters by any user. For healthy subject, these measured parameters include heart rate, systolic blood and diastolic blood pressure, partial pressure of oxygen in arterial blood, partial pressure of carbon dioxide in arterial blood, concentration of bound and dissolved oxygen in the mixed venous blood entering the lungs, and concentration of bound and dissolved carbon dioxide in the mixed venous blood entering the lungs. The results of numerical test give a consistent appearance as empirically known results.Keywords: Graphic User Interface, mathematical model, cardiovascur-respiratory system, walking physical activity, blood pressure, oxygen
Procedia PDF Downloads 1175267 Migrant Women English Instructors' Transformative Workplace Learning Experiences in Post-Secondary English Language Programs in Ontario, Canada
Authors: Justine Jun
Abstract:
This study aims to reveal migrant women English instructors' workplace learning experiences in Canadian post-secondary institutions in Ontario. Although many scholars have conducted research studies on internationally educated teachers and their professional and employment challenges, few studies have recorded migrant women English language instructors’ professional learning and support experiences in post-secondary English language programs in Canada. This study employs a qualitative research paradigm. Mezirow’s Transformative Learning Theory is an essential lens for the researcher to explain, analyze, and interpret the research data. It is a collaborative research project. The researcher and participants cooperatively create photographic or other artwork data responding to the research questions. Photovoice and arts-informed data collection methodology are the main methods. Research participants engage in the study as co-researchers and inquire about their own workplace learning experiences, actively utilizing their critical self-reflective and dialogic skills. Co-researchers individually select the forms of artwork they prefer to engage with to represent their transformative workplace learning experiences about the Canadian workplace cultures that they underwent while working with colleagues and administrators in the workplace. Once the co-researchers generate their cultural artifacts as research data, they collaboratively interpret their artworks with the researcher and other volunteer co-researchers. Co-researchers jointly investigate the themes emerging from the artworks. They also interpret the meanings of their own and others’ workplace learning experiences embedded in the artworks through interactive one-on-one or group interviews. The following are the research questions that the migrant women English instructor participants examine and answer: (1) What have they learned about their workplace culture and how do they explain their learning experiences?; (2) How transformative have their learning experiences been at work?; (3) How have their colleagues and administrators influenced their transformative learning?; (4) What kind of support have they received? What supports have been valuable to them and what changes would they like to see?; (5) What have their learning experiences transformed?; (6) What has this arts-informed research process transformed? The study findings implicate English language instructor support currently practiced in post-secondary English language programs in Ontario, Canada, especially for migrant women English instructors. This research is a doctoral empirical study in progress. This research has the urgency to address the research problem that few studies have investigated migrant English instructors’ professional learning and support issues in the workplace, precisely that of English instructors working with adult learners in Canada. While appropriate social and professional support for migrant English instructors is required throughout the country, the present workplace realities in Ontario's English language programs need to be heard soon. For that purpose, the conceptualization of this study is crucial. It makes the investigation of under-represented instructors’ under-researched social phenomena, workplace learning and support, viable and rigorous. This paper demonstrates the robust theorization of English instructors’ workplace experiences using Mezirow’s Transformative Learning Theory in the English language teacher education field.Keywords: English teacher education, professional learning, transformative learning theory, workplace learning
Procedia PDF Downloads 1285266 Soil Macronutrients Sensing for Precision Agriculture Purpose Using Fourier Transform Infrared Spectroscopy
Authors: Hossein Navid, Maryam Adeli Khadem, Shahin Oustan, Mahmoud Zareie
Abstract:
Among the nutrients needed by the plants, three elements containing nitrate, phosphorus and potassium are more important. The objective of this research was measuring these nutrient amounts in soil using Fourier transform infrared spectroscopy in range of 400- 4000 cm-1. Soil samples for different soil types (sandy, clay and loam) were collected from different areas of East Azerbaijan. Three types of fertilizers in conventional farming (urea, triple superphosphate, potassium sulphate) were used for soil treatment. Each specimen was divided into two categories: The first group was used in the laboratory (direct measurement) to extract nitrate, phosphorus and potassium uptake by colorimetric method of Olsen and ammonium acetate. The second group was used to measure drug absorption spectrometry. In spectrometry, the small amount of soil samples mixed with KBr and was taken in a small pill form. For the tests, the pills were put in the center of infrared spectrometer and graphs were obtained. Analysis of data was done using MINITAB and PLSR software. The data obtained from spectrometry method were compared with amount of soil nutrients obtained from direct drug absorption using EXCEL software. There were good fitting between these two data series. For nitrate, phosphorus and potassium R2 was 79.5%, 92.0% and 81.9%, respectively. Also, results showed that the range of MIR (mid-infrared) is appropriate for determine the amount of soil nitrate and potassium and can be used in future research to obtain detailed maps of land in agricultural use.Keywords: nitrate, phosphorus, potassium, soil nutrients, spectroscopy
Procedia PDF Downloads 4015265 A Generalization of Planar Pascal’s Triangle to Polynomial Expansion and Connection with Sierpinski Patterns
Authors: Wajdi Mohamed Ratemi
Abstract:
The very well-known stacked sets of numbers referred to as Pascal’s triangle present the coefficients of the binomial expansion of the form (x+y)n. This paper presents an approach (the Staircase Horizontal Vertical, SHV-method) to the generalization of planar Pascal’s triangle for polynomial expansion of the form (x+y+z+w+r+⋯)n. The presented generalization of Pascal’s triangle is different from other generalizations of Pascal’s triangles given in the literature. The coefficients of the generalized Pascal’s triangles, presented in this work, are generated by inspection, using embedded Pascal’s triangles. The coefficients of I-variables expansion are generated by horizontally laying out the Pascal’s elements of (I-1) variables expansion, in a staircase manner, and multiplying them with the relevant columns of vertically laid out classical Pascal’s elements, hence avoiding factorial calculations for generating the coefficients of the polynomial expansion. Furthermore, the classical Pascal’s triangle has some pattern built into it regarding its odd and even numbers. Such pattern is known as the Sierpinski’s triangle. In this study, a presentation of Sierpinski-like patterns of the generalized Pascal’s triangles is given. Applications related to those coefficients of the binomial expansion (Pascal’s triangle), or polynomial expansion (generalized Pascal’s triangles) can be in areas of combinatorics, and probabilities.Keywords: pascal’s triangle, generalized pascal’s triangle, polynomial expansion, sierpinski’s triangle, combinatorics, probabilities
Procedia PDF Downloads 3675264 Ranking of Inventory Policies Using Distance Based Approach Method
Authors: Gupta Amit, Kumar Ramesh, P. C. Tewari
Abstract:
Globalization is putting enormous pressure on the business organizations specially manufacturing one to rethink the supply chain in innovative manners. Inventory consumes major portion of total sale revenue. Effective and efficient inventory management plays a vital role for the successful functioning of any organization. Selection of inventory policy is one of the important purchasing activities. This paper focuses on selection and ranking of alternative inventory policies. A deterministic quantitative model-based on Distance Based Approach (DBA) method has been developed for evaluation and ranking of inventory policies. We have employed this concept first time for this type of the selection problem. Four inventory policies Economic Order Quantity (EOQ), Just in Time (JIT), Vendor Managed Inventory (VMI) and monthly policy are considered. Improper selection could affect a company’s competitiveness in terms of the productivity of its facilities and quality of its products. The ranking of inventory policies is a multi-criteria problem. There is a need to first identify the selection criteria and then processes the information with reference to relative importance of attributes for comparison. Criteria values for each inventory policy can be obtained either analytically or by using a simulation technique or they are linguistic subjective judgments defined by fuzzy sets, like, for example, the values of criteria. A methodology is developed and applied to rank the inventory policies.Keywords: inventory policy, ranking, DBA, selection criteria
Procedia PDF Downloads 3905263 Investigation Of Eugan's, Optical Properties With Dft
Authors: Bahieddine. Bouabdellah, Benameur. Amiri, Abdelkader.nouri
Abstract:
Europium-doped gallium nitride (EuGaN) is a promising material for optoelectronic and thermoelectric devices. This study investigates its optical properties using density functional theory (DFT) with the FP-LAPW method and MBJ+U correction. The simulation substitutes a gallium atom with europium in a hexagonal GaN lattice (6% doping). Distinct absorption peaks are observed in the optical analysis. These results highlight EuGaN's potential for various applications and pave the way for further research on rare earth-doped materials.Keywords: eugan, fp-lapw, dft, wien2k, mbj hubbard
Procedia PDF Downloads 655262 Failure to Replicate the Unconscious Thought Advantages
Authors: Vladimíra Čavojová, Eva Ballová Mikušková
Abstract:
In this study we tried to replicate the unconscious thought advantage (UTA), which states that complex decisions are better handled by unconscious thinking. We designed an experiment in e-prime using similar material as the original study (choosing between four different apartments, each described by 12 attributes). A total of 73 participants (52 women (71.2%); 18 to 62 age: M=24.63; SD=8.7) took part in the experiment. We did not replicate the results suggested by UTT. However, from the present study we cannot conclude whether this was the case of flaws in the theory or flaws in our experiment and we discuss several ways in which the issue of UTA could be examined further.Keywords: decision making, unconscious thoughts, UTT, complex decisions
Procedia PDF Downloads 3065261 Preventing Factors for Innovation: The Case of Swedish Construction Small and Medium-Sized Local Companies towards a One-Stop-Shop Business Concept
Authors: Georgios Pardalis, Krushna Mahapatra, Brijesh Mainali
Abstract:
Compared to other sectors, the residential and service sector in Sweden is responsible for almost 40% of the national final energy use and faces great challenges towards achieving reduction of energy intensity. The one- and two-family (henceforth 'detached') houses, constituting 60% of the residential floor area and using 32 TWh for space heating and hot water purposes, offers significant opportunities for improved energy efficiency. More than 80% of those houses are more than 35 years of old and a large share of them need major renovations. However, the rate of energy renovations for such houses is significantly low. The renovation market is dominated by small and medium-sized local companies (SMEs), who mostly offer individual solutions. A one-stop-shop business framework, where a single actor collaborates with other actors and coordinates them to offer a full package for holistic renovations, may speed up the rate of renovation. Such models are emerging in some European countries. This paper aims to understand the willingness of the SMEs to adopt a one-stop-shop business framework. Interviews were conducted with 13 SMEs in Kronoberg county in Sweden, a geographic region known for its initiatives towards sustainability and energy efficiency. The examined firms seem reluctant to adopt one-stop-shop for nonce due to the perceived risks they see in such a business move and due to their characteristics, although they agree that such a move will advance their position in the market and their business volume. By using threat-rigidity and prospect theory, we illustrate how this type of companies can move from being reluctant to adopt one-stop-shop framework to its adoption. Additionally, with the use of behavioral theory, we gain deeper knowledge on those exact reasons preventing those firms from adopting the one-stop-shop framework.Keywords: construction SMEs, innovation adoption, one-stop-shop, perceived risks
Procedia PDF Downloads 1255260 Disease Level Assessment in Wheat Plots Using a Residual Deep Learning Algorithm
Authors: Felipe A. Guth, Shane Ward, Kevin McDonnell
Abstract:
The assessment of disease levels in crop fields is an important and time-consuming task that generally relies on expert knowledge of trained individuals. Image classification in agriculture problems historically has been based on classical machine learning strategies that make use of hand-engineered features in the top of a classification algorithm. This approach tends to not produce results with high accuracy and generalization to the classes classified by the system when the nature of the elements has a significant variability. The advent of deep convolutional neural networks has revolutionized the field of machine learning, especially in computer vision tasks. These networks have great resourcefulness of learning and have been applied successfully to image classification and object detection tasks in the last years. The objective of this work was to propose a new method based on deep learning convolutional neural networks towards the task of disease level monitoring. Common RGB images of winter wheat were obtained during a growing season. Five categories of disease levels presence were produced, in collaboration with agronomists, for the algorithm classification. Disease level tasks performed by experts provided ground truth data for the disease score of the same winter wheat plots were RGB images were acquired. The system had an overall accuracy of 84% on the discrimination of the disease level classes.Keywords: crop disease assessment, deep learning, precision agriculture, residual neural networks
Procedia PDF Downloads 3315259 Train Timetable Rescheduling Using Sensitivity Analysis: Application of Sobol, Based on Dynamic Multiphysics Simulation of Railway Systems
Authors: Soha Saad, Jean Bigeon, Florence Ossart, Etienne Sourdille
Abstract:
Developing better solutions for train rescheduling problems has been drawing the attention of researchers for decades. Most researches in this field deal with minor incidents that affect a large number of trains due to cascading effects. They focus on timetables, rolling stock and crew duties, but do not take into account infrastructure limits. The present work addresses electric infrastructure incidents that limit the power available for train traction, and hence the transportation capacity of the railway system. Rescheduling is needed in order to optimally share the available power among the different trains. We propose a rescheduling process based on dynamic multiphysics railway simulations that include the mechanical and electrical properties of all the system components and calculate physical quantities such as the train speed profiles, voltage along the catenary lines, temperatures, etc. The optimization problem to solve has a large number of continuous and discrete variables, several output constraints due to physical limitations of the system, and a high computation cost. Our approach includes a phase of sensitivity analysis in order to analyze the behavior of the system and help the decision making process and/or more precise optimization. This approach is a quantitative method based on simulation statistics of the dynamic railway system, considering a predefined range of variation of the input parameters. Three important settings are defined. Factor prioritization detects the input variables that contribute the most to the outputs variation. Then, factor fixing allows calibrating the input variables which do not influence the outputs. Lastly, factor mapping is used to study which ranges of input values lead to model realizations that correspond to feasible solutions according to defined criteria or objectives. Generalized Sobol indexes are used for factor prioritization and factor fixing. The approach is tested in the case of a simple railway system, with a nominal traffic running on a single track line. The considered incident is the loss of a feeding power substation, which limits the power available and the train speed. Rescheduling is needed and the variables to be adjusted are the trains departure times, train speed reduction at a given position and the number of trains (cancellation of some trains if needed). The results show that the spacing between train departure times is the most critical variable, contributing to more than 50% of the variation of the model outputs. In addition, we identify the reduced range of variation of this variable which guarantees that the output constraints are respected. Optimal solutions are extracted, according to different potential objectives: minimizing the traveling time, the train delays, the traction energy, etc. Pareto front is also built.Keywords: optimization, rescheduling, railway system, sensitivity analysis, train timetable
Procedia PDF Downloads 3985258 Impact of Contemporary Performance Measurement System and Organization Justice on Academic Staff Work Performance
Authors: Amizawati Mohd Amir, Ruhanita Maelah, Zaidi Mohd Noor
Abstract:
As part of the Malaysia Higher Institutions' Strategic Plan in promoting high-quality research and education, the Ministry of Higher Education has introduced various instrument to assess the universities performance. The aims are that university will produce more commercially-oriented research and continue to contribute in producing professional workforce for domestic and foreign needs. Yet the spirit of the success lies in the commitment of university particularly the academic staff to translate the vision into reality. For that reason, the element of fairness and justice in assessing individual academic staff performance is crucial to promote directly linked between university and individual work goals. Focusing on public research universities (RUs) in Malaysia, this study observes at the issue through the practice of university contemporary performance measurement system. Accordingly management control theory has conceptualized that contemporary performance measurement consisting of three dimension namely strategic, comprehensive and dynamic building upon equity theory, the relationships between contemporary performance measurement system and organizational justice and in turn the effect on academic staff work performance are tested based on online survey data administered on 365 academic staff from public RUs, which were analyzed using statistics analysis SPSS and Equation Structure Modeling. The findings validated the presence of strategic, comprehensive and dynamic in the contemporary performance measurement system. The empirical evidence also indicated that contemporary performance measure and procedural justice are significantly associated with work performance but not for distributive justice. Furthermore, procedural justice does mediate the relationship between contemporary performance measurement and academic staff work performance. Evidently, this study provides evidence on the importance of perceptions of justice towards influencing academic staff work performance. This finding may be a fruitful input in the setting up academic staff performance assessment policy.Keywords: comprehensive, dynamic, distributive justice, contemporary performance measurement system, strategic, procedure justice, work performance
Procedia PDF Downloads 4055257 A Quantitative Analysis for the Correlation between Corporate Financial and Social Performance
Authors: Wafaa Salah, Mostafa A. Salama, Jane Doe
Abstract:
Recently, the corporate social performance (CSP) is not less important than the corporate financial performance (CFP). Debate still exists about the nature of the relationship between the CSP and CFP, whether it is a positive, negative or a neutral correlation. The objective of this study is to explore the relationship between corporate social responsibility (CSR) reports and CFP. The study uses the accounting-based and market-based quantitative measures to quantify the financial performance of seven organizations listed on the Egyptian Stock Exchange in 2007-2014. Then uses the information retrieval technologies to quantify the contribution of each of the three dimensions of the corporate social responsibility report (environmental, social and economic). Finally, the correlation between these two sets of variables is viewed together in a model to detect the correlations between them. This model is applied on seven firms that generate social responsibility reports. The results show a positive correlation between the Earnings per share (market based measure) and the economical dimension in the CSR report. On the other hand, total assets and property, plant and equipment (accounting-based measure) are positively correlated to the environmental and social dimensions of the CSR reports. While there is not any significant relationship between ROA, ROE, Operating income and corporate social responsibility. This study contributes to the literature by providing more clarification of the relationship between CFP and the isolated CSR activities in a developing country.Keywords: financial, social, machine learning, corporate social performance, corporate social responsibility
Procedia PDF Downloads 3105256 Modeling and Power Control of DFIG Used in Wind Energy System
Authors: Nadia Ben Si Ali, Nadia Benalia, Nora Zerzouri
Abstract:
Wind energy generation has attracted great interests in recent years. Doubly Fed Induction Generator (DFIG) for wind turbines are largely deployed because variable-speed wind turbines have many advantages over fixed-speed generation such as increased energy capture, operation at maximum power point, improved efficiency, and power quality. This paper presents the operation and vector control of a Doubly-fed Induction Generator (DFIG) system where the stator is connected directly to a stiff grid and the rotor is connected to the grid through bidirectional back-to-back AC-DC-AC converter. The basic operational characteristics, mathematical model of the aerodynamic system and vector control technique which is used to obtain decoupled control of powers are investigated using the software Mathlab/Simulink.Keywords: wind turbine, Doubly Fed Induction Generator, wind speed controller, power system stability
Procedia PDF Downloads 376