Search results for: interactive learning environments
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9338

Search results for: interactive learning environments

5798 Overcoming Usability Challenges of Educational Math Apps: Designing and Testing a Mobile Graphing Calculator

Authors: M. Tomaschko

Abstract:

The integration of technology in educational settings has gained a lot of interest. Especially the use of mobile devices and accompanying mobile applications can offer great potentials to complement traditional education with new technologies and enrich students’ learning in various ways. Nevertheless, the usability of the deployed mathematics application is an indicative factor to exploit the full potential of technology enhanced learning because directing cognitive load toward using an application will likely inhibit effective learning. For this reason, the purpose of this research study is the identification of possible usability issues of the mobile GeoGebra Graphing Calculator application. Therefore, eye tracking in combination with task scenarios, think aloud method, and a SUS questionnaire were used. Based on the revealed usability issues, the mobile application was iteratively redesigned and assessed in order to verify the success of the usability improvements. In this paper, the identified usability issues are presented, and recommendations on how to overcome these concerns are provided. The main findings relate to the conception of a mathematics keyboard and the interaction design in relation to an equation editor, as well as the representation of geometrical construction tools. In total, 12 recommendations were formed to improve the usability of a mobile graphing calculator application. The benefit to be gained from this research study is not only the improvement of the usability of the existing GeoGebra Graphing Calculator application but also to provide helpful hints that could be considered from designers and developers of mobile math applications.

Keywords: GeoGebra, graphing calculator, math education, smartphone, usability

Procedia PDF Downloads 134
5797 Effective Teaching Pyramid and Its Impact on Enhancing the Participation of Students in Swimming Classes

Authors: Salam M. H. Kareem

Abstract:

Instructional or teaching procedures and their proper sequence are essential for high-quality learning outcomes. These actions are the path that the teacher takes during the learning process after setting the learning objectives. Teachers and specialists in the education field should include teaching procedures with putting in place an effective mechanism for the procedure’s implementation to achieve a logical sequence with the desired output of overall education process. Determining the sequence of these actions may be a strategic process outlined by a strategic educational plan or drawn by teachers with a high level of experience, enabling them to determine those logical procedures. While specific actions may be necessary for a specific form, many Physical Education (PE) teachers can work out on various sports disciplines. This study was conducted to investigate the impact of using the teaching sequence of the teaching pyramid in raising the level of enjoyment in swimming classes. Four months later of teaching swimming skills to the control and experimental groups of the study, we figured that using the tools shown in the teaching pyramid with the experimental group led to statistically significant differences in the positive tendencies of students to participate in the swimming classes by using the traditional procedures of teaching and using of successive procedures in the teaching pyramid, and in favor of the teaching pyramid, The students are influenced by enhancing their tendency to participate in swimming classes when the teaching procedures followed are sensitive to individual differences and are based on the element of pleasure in learning, and less positive levels of the tendency of students when using traditional teaching procedures, by getting the level of skills' requirements higher and more difficult to perform. The level of positive tendencies of students when using successive procedures in the teaching pyramid was increased, by getting the level of skills' requirements higher and more difficult to perform, because of the high level of motivation and the desire to challenge the self-provided by the teaching pyramid.

Keywords: physical education, swimming classes, teaching process, teaching pyramid

Procedia PDF Downloads 147
5796 Learning Activities in Teaching Nihon-Go in the Philippines: Basis for a Proposed Action Plan

Authors: Esperanza C. Santos

Abstract:

Japanese Language was traditionally considered as a means of imparting culture and training aesthetic experience in students and therefore as something beyond the practical aims of language teaching and learning. Due to the complexity of foreign languages, lots of language learners and teachers shared deep reservations about the potentials of foreign language in enhancing the communication skills of the students. In spite of the arguments against the use of Foreign Language (Nihon-go) in the classroom, the researcher strongly support the use of Nihon-go in teaching communication skills as the researcher believes that Nihon-go is a valuable resource to be exploited in the classroom in order to help the students explore the language in an interesting and challenging way. The focus of this research is to find out the relationship between the preferences, opinions, and perceptions with the communication skills. This study also identifies the significance of the relationship between preferences, opinions and perceptions and communications skills in the activities employed in Foreign language (Nihon-go) among the junior and senior students in Foreign Language 2 at the Imus Institute, Imus Cavite during the academic year 2013-2014. The results of the study are expected to encourage further studies that particularly focused on the communication skills as brought about by the identified factors namely: preferences, opinions, and perceptions on the benefits factor namely the language acquisition; access to Japanese culture and students' interpretative ability. Therefore, this research is in its quest for the issues and concerns on how to effectively teach different learning activities in a Nihon-go class.

Keywords: preferences, opinions, perceptions, language acquisition

Procedia PDF Downloads 309
5795 Deradicalization for Former Terrorists through Entrepreneurship Program

Authors: Jamal Wiwoho, Pujiyono, Triyanto

Abstract:

Terrorism is a real enemy for all countries, including Indonesia. Bomb attacks in some parts of Indonesia are proof that Indonesia has serious problems with terrorism. Perpetrators of terror are arrested and imprisoned, and some of them were executed. However, this method did not succeed in stopping the terrorist attacks. Former terrorists continue to carry out bomb attacks. Therefore, this paper proposes a program towards deradicalization efforts of former terrorists through entrepreneurship. This is necessary because it is impossible to change their radical ideology. The program is also motivated by understanding that terrorists generally come from poor families. This program aims to occupy their time with business activities so there is no time to plan and carry out bomb attacks. This research is an empirical law study. Data were collected by literature study, observation, and in-depth interviews. Data were analyzed with the Miles and Huberman interactive model. The results show that the entrepreneurship program is effective to prevent terrorist attack. Former terrorists are busy with their business. Therefore, they have no time to carry out bomb attacks.

Keywords: deradicalization, terrorism, terrorists, entrepreneurship

Procedia PDF Downloads 271
5794 A Non-Destructive Estimation Method for Internal Time in Perilla Leaf Using Hyperspectral Data

Authors: Shogo Nagano, Yusuke Tanigaki, Hirokazu Fukuda

Abstract:

Vegetables harvested early in the morning or late in the afternoon are valued in plant production, and so the time of harvest is important. The biological functions known as circadian clocks have a significant effect on this harvest timing. The purpose of this study was to non-destructively estimate the circadian clock and so construct a method for determining a suitable harvest time. We took eight samples of green busil (Perilla frutescens var. crispa) every 4 hours, six times for 1 day and analyzed all samples at the same time. A hyperspectral camera was used to collect spectrum intensities at 141 different wavelengths (350–1050 nm). Calculation of correlations between spectrum intensity of each wavelength and harvest time suggested the suitability of the hyperspectral camera for non-destructive estimation. However, even the highest correlated wavelength had a weak correlation, so we used machine learning to raise the accuracy of estimation and constructed a machine learning model to estimate the internal time of the circadian clock. Artificial neural networks (ANN) were used for machine learning because this is an effective analysis method for large amounts of data. Using the estimation model resulted in an error between estimated and real times of 3 min. The estimations were made in less than 2 hours. Thus, we successfully demonstrated this method of non-destructively estimating internal time.

Keywords: artificial neural network (ANN), circadian clock, green busil, hyperspectral camera, non-destructive evaluation

Procedia PDF Downloads 299
5793 Impact Location From Instrumented Mouthguard Kinematic Data In Rugby

Authors: Jazim Sohail, Filipe Teixeira-Dias

Abstract:

Mild traumatic brain injury (mTBI) within non-helmeted contact sports is a growing concern due to the serious risk of potential injury. Extensive research is being conducted looking into head kinematics in non-helmeted contact sports utilizing instrumented mouthguards that allow researchers to record accelerations and velocities of the head during and after an impact. This does not, however, allow the location of the impact on the head, and its magnitude and orientation, to be determined. This research proposes and validates two methods to quantify impact locations from instrumented mouthguard kinematic data, one using rigid body dynamics, the other utilizing machine learning. The rigid body dynamics technique focuses on establishing and matching moments from Euler’s and torque equations in order to find the impact location on the head. The methodology is validated with impact data collected from a lab test with the dummy head fitted with an instrumented mouthguard. Additionally, a Hybrid III Dummy head finite element model was utilized to create synthetic kinematic data sets for impacts from varying locations to validate the impact location algorithm. The algorithm calculates accurate impact locations; however, it will require preprocessing of live data, which is currently being done by cross-referencing data timestamps to video footage. The machine learning technique focuses on eliminating the preprocessing aspect by establishing trends within time-series signals from instrumented mouthguards to determine the impact location on the head. An unsupervised learning technique is used to cluster together impacts within similar regions from an entire time-series signal. The kinematic signals established from mouthguards are converted to the frequency domain before using a clustering algorithm to cluster together similar signals within a time series that may span the length of a game. Impacts are clustered within predetermined location bins. The same Hybrid III Dummy finite element model is used to create impacts that closely replicate on-field impacts in order to create synthetic time-series datasets consisting of impacts in varying locations. These time-series data sets are used to validate the machine learning technique. The rigid body dynamics technique provides a good method to establish accurate impact location of impact signals that have already been labeled as true impacts and filtered out of the entire time series. However, the machine learning technique provides a method that can be implemented with long time series signal data but will provide impact location within predetermined regions on the head. Additionally, the machine learning technique can be used to eliminate false impacts captured by sensors saving additional time for data scientists using instrumented mouthguard kinematic data as validating true impacts with video footage would not be required.

Keywords: head impacts, impact location, instrumented mouthguard, machine learning, mTBI

Procedia PDF Downloads 217
5792 Determination of the Gain in Learning the Free-Fall Motion of Bodies by Applying the Resource of Previous Concepts

Authors: Ricardo Merlo

Abstract:

In this paper, we analyzed the different didactic proposals for teaching about the free fall motion of bodies available online. An important aspect was the interpretation of the direction and sense of the acceleration of gravity and of the falling velocity of a body, which is why we found different applications of the Cartesian reference system used and also different graphical presentations of the velocity as a function of time and of the distance traveled vertically by the body in the period of time that it was dropped from a height h0. In this framework, a survey of previous concepts was applied to a voluntary group of first-year university students of an Engineering degree before and after the development of the class of the subject in question. Then, Hake's index (0.52) was determined, which resulted in an average learning gain from the meaningful use of the reference system and the respective graphs of v=ƒ (t) and h=ƒ (t).

Keywords: didactic gain, free–fall, physics teaching, previous knowledge

Procedia PDF Downloads 163
5791 A Case Study on the Development and Application of Media Literacy Education Program Based on Circular Learning

Authors: Kim Hyekyoung, Au Yunkyung

Abstract:

As media plays an increasingly important role in our lives, the age at which media usage begins is getting younger worldwide. Particularly, young children are exposed to media at an early age, making early childhood media literacy education an essential task. However, most existing early childhood media literacy education programs focus solely on teaching children how to use media, and practical implementation and application are challenging. Therefore, this study aims to develop a play-based early childhood media literacy education program utilizing topic-based media content and explore the potential application and impact of this program on young children's media literacy learning. Based on theoretical and literature review on media literacy education, analysis of existing educational programs, and a survey on the current status and teacher perceptions of media literacy education for preschool children, this study developed a media literacy education program for preschool children, considering the components of media literacy (understanding media characteristics, self-regulation, self-expression, critical understanding, ethical norms, and social communication). To verify the effectiveness of the program, 20 preschool children aged 5 from C City M Kindergarten were chosen as participants, and the program was implemented from March 28th to July 4th, 2022, once a week for a total of 7 sessions. The program was developed based on Gallenstain's (2003) iterative learning model (participation-exploration-explanation-extension-evaluation). To explore the quantitative changes before and after the program, a repeated measures analysis of variance was conducted, and qualitative analysis was employed to examine the observed process changes. It was found that after the application of the education program, media literacy levels such as understanding media characteristics, self-regulation, self-expression, critical understanding, ethical norms, and social communication significantly improved. The recursive learning-based early childhood media literacy education program developed in this study can be effectively applied to young children's media literacy education and help enhance their media literacy levels. In terms of observed process changes, it was confirmed that children learned about various topics, expressed their thoughts, and improved their ability to communicate with others using media content. These findings emphasize the importance of developing and implementing media literacy education programs and can contribute to empowering young children to safely and effectively utilize media in their media environment. The results of this study, exploring the potential application and impact of the recursive learning-based early childhood media literacy education program on young children's media literacy learning, demonstrated positive changes in young children's media literacy levels. These results go beyond teaching children how to use media and can help foster their ability to safely and effectively utilize media in their media environment. Additionally, to enhance young children's media literacy levels and create a safe media environment, diverse content and methodologies are needed, and the continuous development and evaluation of education programs should be conducted.

Keywords: young children, media literacy, recursive learning, education program

Procedia PDF Downloads 77
5790 Assessment of DNA Sequence Encoding Techniques for Machine Learning Algorithms Using a Universal Bacterial Marker

Authors: Diego Santibañez Oyarce, Fernanda Bravo Cornejo, Camilo Cerda Sarabia, Belén Díaz Díaz, Esteban Gómez Terán, Hugo Osses Prado, Raúl Caulier-Cisterna, Jorge Vergara-Quezada, Ana Moya-Beltrán

Abstract:

The advent of high-throughput sequencing technologies has revolutionized genomics, generating vast amounts of genetic data that challenge traditional bioinformatics methods. Machine learning addresses these challenges by leveraging computational power to identify patterns and extract information from large datasets. However, biological sequence data, being symbolic and non-numeric, must be converted into numerical formats for machine learning algorithms to process effectively. So far, some encoding methods, such as one-hot encoding or k-mers, have been explored. This work proposes additional approaches for encoding DNA sequences in order to compare them with existing techniques and determine if they can provide improvements or if current methods offer superior results. Data from the 16S rRNA gene, a universal marker, was used to analyze eight bacterial groups that are significant in the pulmonary environment and have clinical implications. The bacterial genes included in this analysis are Prevotella, Abiotrophia, Acidovorax, Streptococcus, Neisseria, Veillonella, Mycobacterium, and Megasphaera. These data were downloaded from the NCBI database in Genbank file format, followed by a syntactic analysis to selectively extract relevant information from each file. For data encoding, a sequence normalization process was carried out as the first step. From approximately 22,000 initial data points, a subset was generated for testing purposes. Specifically, 55 sequences from each bacterial group met the length criteria, resulting in an initial sample of approximately 440 sequences. The sequences were encoded using different methods, including one-hot encoding, k-mers, Fourier transform, and Wavelet transform. Various machine learning algorithms, such as support vector machines, random forests, and neural networks, were trained to evaluate these encoding methods. The performance of these models was assessed using multiple metrics, including the confusion matrix, ROC curve, and F1 Score, providing a comprehensive evaluation of their classification capabilities. The results show that accuracies between encoding methods vary by up to approximately 15%, with the Fourier transform obtaining the best results for the evaluated machine learning algorithms. These findings, supported by the detailed analysis using the confusion matrix, ROC curve, and F1 Score, provide valuable insights into the effectiveness of different encoding methods and machine learning algorithms for genomic data analysis, potentially improving the accuracy and efficiency of bacterial classification and related genomic studies.

Keywords: DNA encoding, machine learning, Fourier transform, Fourier transformation

Procedia PDF Downloads 23
5789 Teachers’ Stress as a Moderator of the Impact of POMPedaSens on Preschool Children’s Social-Emotional Learning

Authors: Maryam Zarra-Nezhad, Ali Moazami-Goodarzi, Joona Muotka, Nina Sajaniemi

Abstract:

This study examines the extent to which the impact of a universal intervention program, i.e., POMPedaSens, on children’s early social-emotional learning (SEL) is different depending on early childhood education (ECE) teaches stress at work. The POMPedaSens program aims to promote children’s (5–6-year-olds) SEL by supporting ECE teachers’ engagement and emotional availability. The intervention effectiveness has been monitored using an 8-month randomized controlled trial design with an intervention (IG; 26 teachers and 195 children) and a waiting control group (CG; 36 teachers and 198 children) that provided the data before and after the program implementation. The ECE teachers in the IG are trained to implement the intervention program in their early childhood education and care groups. Latent change score analysis suggests that the program increases children’s prosocial behavior in the IG when teachers show a low level of stress. No significant results were found for the IG regarding a change in antisocial behavior. However, when teachers showed a high level of stress, an increase in prosocial behavior and a decrease in antisocial behavior were only found for children in the CG. The results suggest a promising application of the POMPedaSens program for promoting prosocial behavior in early childhood when teachers have low stress. The intervention will likely need a longer time to display the moderating effect of ECE teachers’ well-being on children’s antisocial behavior change.

Keywords: early childhood, social-emotional learning, universal intervention program, professional development, teachers' stress

Procedia PDF Downloads 89
5788 Machine Learning for Exoplanetary Habitability Assessment

Authors: King Kumire, Amos Kubeka

Abstract:

The synergy of machine learning and astronomical technology advancement is giving rise to the new space age, which is pronounced by better habitability assessments. To initiate this discussion, it should be recorded for definition purposes that the symbiotic relationship between astronomy and improved computing has been code-named the Cis-Astro gateway concept. The cosmological fate of this phrase has been unashamedly plagiarized from the cis-lunar gateway template and its associated LaGrange points which act as an orbital bridge to the moon from our planet Earth. However, for this study, the scientific audience is invited to bridge toward the discovery of new habitable planets. It is imperative to state that cosmic probes of this magnitude can be utilized as the starting nodes of the astrobiological search for galactic life. This research can also assist by acting as the navigation system for future space telescope launches through the delimitation of target exoplanets. The findings and the associated platforms can be harnessed as building blocks for the modeling of climate change on planet earth. The notion that if the human genus exhausts the resources of the planet earth or there is a bug of some sort that makes the earth inhabitable for humans explains the need to find an alternative planet to inhabit. The scientific community, through interdisciplinary discussions of the International Astronautical Federation so far has the common position that engineers can reduce space mission costs by constructing a stable cis-lunar orbit infrastructure for refilling and carrying out other associated in-orbit servicing activities. Similarly, the Cis-Astro gateway can be envisaged as a budget optimization technique that models extra-solar bodies and can facilitate the scoping of future mission rendezvous. It should be registered as well that this broad and voluminous catalog of exoplanets shall be narrowed along the way using machine learning filters. The gist of this topic revolves around the indirect economic rationale of establishing a habitability scoping platform.

Keywords: machine-learning, habitability, exoplanets, supercomputing

Procedia PDF Downloads 90
5787 Machine Learning for Exoplanetary Habitability Assessment

Authors: King Kumire, Amos Kubeka

Abstract:

The synergy of machine learning and astronomical technology advancement is giving rise to the new space age, which is pronounced by better habitability assessments. To initiate this discussion, it should be recorded for definition purposes that the symbiotic relationship between astronomy and improved computing has been code-named the Cis-Astro gateway concept. The cosmological fate of this phrase has been unashamedly plagiarized from the cis-lunar gateway template and its associated LaGrange points which act as an orbital bridge to the moon from our planet Earth. However, for this study, the scientific audience is invited to bridge toward the discovery of new habitable planets. It is imperative to state that cosmic probes of this magnitude can be utilized as the starting nodes of the astrobiological search for galactic life. This research can also assist by acting as the navigation system for future space telescope launches through the delimitation of target exoplanets. The findings and the associated platforms can be harnessed as building blocks for the modeling of climate change on planet earth. The notion that if the human genus exhausts the resources of the planet earth or there is a bug of some sort that makes the earth inhabitable for humans explains the need to find an alternative planet to inhabit. The scientific community, through interdisciplinary discussions of the International Astronautical Federation so far, has the common position that engineers can reduce space mission costs by constructing a stable cis-lunar orbit infrastructure for refilling and carrying out other associated in-orbit servicing activities. Similarly, the Cis-Astro gateway can be envisaged as a budget optimization technique that models extra-solar bodies and can facilitate the scoping of future mission rendezvous. It should be registered as well that this broad and voluminous catalog of exoplanets shall be narrowed along the way using machine learning filters. The gist of this topic revolves around the indirect economic rationale of establishing a habitability scoping platform.

Keywords: exoplanets, habitability, machine-learning, supercomputing

Procedia PDF Downloads 118
5786 Transgressing Boundaries for Encouraging Critical Thinking: Reflections on the Integration of Active Pedagogy and Transnational Exchange into Social Work Education

Authors: Rosemary R. Carlton, Roxane Caron

Abstract:

Almost three decades ago, bell hooks (1994) identified the classroom as “the most radical space of possibility in the academy”. A feminist scholar, educator, and activist, hooks urged educators to transgress the boundaries of what might be customary or considered acceptable in teaching, thus encouraging the pursuit of new ways of knowing and different strategies for sharing knowledge. This paper reflects upon a particular response to hooks’ still relevant call for transgression in teaching. Specifically, this paper reports on the design, implementation, and preliminary analysis of a social work course integrating active pedagogy and transnational exchange to encourage students’ critical thinking and autonomous learning in their development as social workers in a global context. The bachelor’s level course, Pratiques spécifiques: Projet international, was developed collaboratively across three francophone institutions of higher learning in Belgium, Canada, and France: the Haute École de Namur-Liège-Luxembourg (Hénallux); the Université de Montréal; and, the Institut d’enseignement supérieur et professionnel, l’IRTS Paris Île-de-France. The driving aims of the course are to promote autonomous learning and critical thinking through a lens of transnational understandings of social problems -competencies indispensable to students’ development as social workers. The course is offered to two paired cohorts, one addressing the subject of “migrations” (Canada/France) and the other the subject of “sexual exploitation” (Canada/Belgium). Through the adaptation of a critical pedagogy of problem-based learning, students are called upon to actively engage in acquiring and applying knowledge to respond to “real life” social issues relating to migration or sexual exploitation. At the conclusion of the course, each cohort of students is brought together for a week-long intensive period of transnational exchange either at the Université de Montréal in Canada or at Hénallux in Belgium. Extending the bounds of the classroom across international borders allows students novel opportunities to deepen and expand their understandings of issues relating to predefined social issues and to critically examine associated social work practices. The paper opens with a presentation of the social work course. Specifically, the authors will outline their adaptation of a pedagogy of problem-based learning integrating transnational exchange in the design and implementation of the course. Returning to hooks’ notion of transgression in teaching, the paper offers a preliminary analysis of how and with what effect the course provides opportunities to transgress hierarchical student-teacher relationships; transgress conventional modes of learning to explore diverse sources of knowledge and transgress the walls of the university to engage with and learn from local and global partners. The paper concludes with a consideration of the potential influence of such transgressions in teaching for students’ development of critical thinking in their practice of social work in global context.

Keywords: active learning, critical pedagogy, social work intervention, transnational learning

Procedia PDF Downloads 165
5785 Building Information Modeling Acting as Protagonist and Link between the Virtual Environment and the Real-World for Efficiency in Building Production

Authors: Cristiane R. Magalhaes

Abstract:

Advances in Information and Communication Technologies (ICT) have led to changes in different sectors particularly in architecture, engineering, construction, and operation (AECO) industry. In this context, the advent of BIM (Building Information Modeling) has brought a number of opportunities in the field of the digital architectural design process bringing integrated design concepts that impact on the development, elaboration, coordination, and management of ventures. The project scope has begun to contemplate, from its original stage, the third dimension, by means of virtual environments (VEs), composed of models containing different specialties, substituting the two-dimensional products. The possibility to simulate the construction process of a venture in a VE starts at the beginning of the design process offering, through new technologies, many possibilities beyond geometrical digital modeling. This is a significant change and relates not only to form, but also to how information is appropriated in architectural and engineering models and exchanged among professionals. In order to achieve the main objective of this work, the Design Science Research Method will be adopted to elaborate an artifact containing strategies for the application and use of ICTs from BIM flows, with pre-construction cut-off to the execution of the building. This article intends to discuss and investigate how BIM can be extended to the site acting as a protagonist and link between the Virtual Environments and the Real-World, as well as its contribution to the integration of the value chain and the consequent increase of efficiency in the production of the building. The virtualization of the design process has reached high levels of development through the use of BIM. Therefore it is essential that the lessons learned with the virtual models be transposed to the actual building production increasing precision and efficiency. Thus, this paper discusses how the Fourth Industrial Revolution has impacted on property developments and how BIM could be the propellant acting as the main fuel and link between the virtual environment and the real production for the structuring of flows, information management and efficiency in this process. The results obtained are partial and not definite up to the date of this publication. This research is part of a doctoral thesis development, which focuses on the discussion of the impact of digital transformation in the construction of residential buildings in Brazil.

Keywords: building information modeling, building production, digital transformation, ICT

Procedia PDF Downloads 122
5784 Family Income and Parental Behavior: Maternal Personality as a Moderator

Authors: Robert H. Bradley, Robert F. Corwyn

Abstract:

There is abundant research showing that socio-economic status is implicated in parenting. However, additional factors such as family context, parent personality, parenting history and child behavior also help determine how parents enact the role of caregiver. Each of these factors not only helps determine how a parent will act in a given situation, but each can serve to moderate the influence of the other factors. Personality has long been studied as a factor that influences parental behavior, but it has almost never been considered as a moderator of family contextual factors. For this study, relations between three maternal personality characteristics (agreeableness, extraversion, neuroticism) and four aspects of parenting (harshness, sensitivity, stimulation, learning materials) were examined when children were 6 months, 36 months, and 54 months old and again at 5th grade. Relations between these three aspects of personality and the overall home environment were also examined. A key concern was whether maternal personality characteristics moderated relations between household income and the four aspects of parenting and between household income and the overall home environment. The data for this study were taken from the NICHD Study of Early Child Care and Youth Development (NICHD SECCYD). The total sample consisted of 1364 families living in ten different sites in the United States. However, the samples analyzed included only those with complete data on all four parenting outcomes (i.e., sensitivity, harshness, stimulation, and provision of learning materials), income, maternal education and all three measures of personality (i.e., agreeableness, neuroticism, extraversion) at each age examined. Results from hierarchical regression analysis showed that mothers high in agreeableness were more likely to demonstrate sensitivity and stimulation as well as provide more learning materials to their children but were less likely to manifest harshness. Maternal agreeableness also consistently moderated the effects of low income on parental behavior. Mothers high in extraversion were more likely to provide stimulation and learning materials, with extraversion serving as a moderator of low income on both. By contrast, mothers high in neuroticism were less likely to demonstrate positive aspects of parenting and more likely to manifest negative aspects (e.g., harshness). Neuroticism also served to moderate the influence of low income on parenting, especially for stimulation and learning materials. The most consistent effects of parent personality were on the overall home environment, with significant main and interaction effects observed in 11 of the 12 models tested. These findings suggest that it may behoove professional who work with parents living in adverse circumstances to consider parental personality in helping to better target prevention or intervention efforts aimed at supporting parental efforts to act in ways that benefit children.

Keywords: home environment, household income, learning materials, personality, sensitivity, stimulation

Procedia PDF Downloads 211
5783 A Study of Variables Affecting on a Quality Assessment of Mathematics Subject in Thailand by Using Value Added Analysis on TIMSS 2011

Authors: Ruangdech Sirikit

Abstract:

The purposes of this research were to study the variables affecting the quality assessment of mathematics subject in Thailand by using value-added analysis on TIMSS 2011. The data used in this research is the secondary data from the 2011 Trends in International Mathematics and Science Study (TIMSS), collected from 6,124 students in 172 schools from Thailand, studying only mathematics subjects. The data were based on 14 assessment tests of knowledge in mathematics. There were 3 steps of data analysis: 1) To analyze descriptive statistics 2) To estimate competency of students from the assessment of their mathematics proficiency by using MULTILOG program; 3) analyze value added in the model of quality assessment using Value-Added Model with Hierarchical Linear Modeling (HLM) and 2 levels of analysis. The research results were as follows: 1. Student level variables that had significant effects on the competency of students at .01 levels were Parental care, Resources at home, Enjoyment of learning mathematics and Extrinsic motivation in learning mathematics. Variable that had significant effects on the competency of students at .05 levels were Education of parents and self-confident in learning mathematics. 2. School level variable that had significant effects on competency of students at .01 levels was Extra large school. Variable that had significant effects on competency of students at .05 levels was medium school.

Keywords: quality assessment, value-added model, TIMSS, mathematics, Thailand

Procedia PDF Downloads 283
5782 An Exploratory Study on the Integration of Neurodiverse University Students into Mainstream Learning and Their Performance: The Case of the Jones Learning Center

Authors: George Kassar, Phillip A. Cartwright

Abstract:

Based on data collected from The Jones Learning Center (JLC), University of the Ozarks, Arkansas, U.S., this study explores the impact of inclusive classroom practices on neuro-diverse college students’ and their consequent academic performance having participated in integrative therapies designed to support students who are intellectually capable of obtaining a college degree, but who require support for learning challenges owing to disabilities, AD/HD, or ASD. The purpose of this study is two-fold. The first objective is to explore the general process, special techniques, and practices of the (JLC) inclusive program. The second objective is to identify and analyze the effectiveness of the processes, techniques, and practices in supporting the academic performance of enrolled college students with learning disabilities following integration into mainstream university learning. Integrity, transparency, and confidentiality are vital in the research. All questions were shared in advance and confirmed by the concerned management at the JLC. While administering the questionnaire as well as conducted the interviews, the purpose of the study, its scope, aims, and objectives were clearly explained to all participants prior starting the questionnaire / interview. Confidentiality of all participants assured and guaranteed by using encrypted identification of individuals, thus limiting access to data to only the researcher, and storing data in a secure location. Respondents were also informed that their participation in this research is voluntary, and they may withdraw from it at any time prior to submission if they wish. Ethical consent was obtained from the participants before proceeding with videorecording of the interviews. This research uses a mixed methods approach. The research design involves collecting, analyzing, and “mixing” quantitative and qualitative methods and data to enable a research inquiry. The research process is organized based on a five-pillar approach. The first three pillars are focused on testing the first hypothesis (H1) directed toward determining the extent to the academic performance of JLC students did improve after involvement with comprehensive JLC special program. The other two pillars relate to the second hypothesis (H2), which is directed toward determining the extent to which collective and applied knowledge at JLC is distinctive from typical practices in the field. The data collected for research were obtained from three sources: 1) a set of secondary data in the form of Grade Point Average (GPA) received from the registrar, 2) a set of primary data collected throughout structured questionnaire administered to students and alumni at JLC, and 3) another set of primary data collected throughout interviews conducted with staff and educators at JLC. The significance of this study is two folds. First, it validates the effectiveness of the special program at JLC for college-level students who learn differently. Second, it identifies the distinctiveness of the mix of techniques, methods, and practices, including the special individualized and personalized one-on-one approach at JLC.

Keywords: education, neuro-diverse students, program effectiveness, Jones learning center

Procedia PDF Downloads 74
5781 Develop a Conceptual Data Model of Geotechnical Risk Assessment in Underground Coal Mining Using a Cloud-Based Machine Learning Platform

Authors: Reza Mohammadzadeh

Abstract:

The major challenges in geotechnical engineering in underground spaces arise from uncertainties and different probabilities. The collection, collation, and collaboration of existing data to incorporate them in analysis and design for given prospect evaluation would be a reliable, practical problem solving method under uncertainty. Machine learning (ML) is a subfield of artificial intelligence in statistical science which applies different techniques (e.g., Regression, neural networks, support vector machines, decision trees, random forests, genetic programming, etc.) on data to automatically learn and improve from them without being explicitly programmed and make decisions and predictions. In this paper, a conceptual database schema of geotechnical risks in underground coal mining based on a cloud system architecture has been designed. A new approach of risk assessment using a three-dimensional risk matrix supported by the level of knowledge (LoK) has been proposed in this model. Subsequently, the model workflow methodology stages have been described. In order to train data and LoK models deployment, an ML platform has been implemented. IBM Watson Studio, as a leading data science tool and data-driven cloud integration ML platform, is employed in this study. As a Use case, a data set of geotechnical hazards and risk assessment in underground coal mining were prepared to demonstrate the performance of the model, and accordingly, the results have been outlined.

Keywords: data model, geotechnical risks, machine learning, underground coal mining

Procedia PDF Downloads 274
5780 Road Condition Monitoring Using Built-in Vehicle Technology Data, Drones, and Deep Learning

Authors: Judith Mwakalonge, Geophrey Mbatta, Saidi Siuhi, Gurcan Comert, Cuthbert Ruseruka

Abstract:

Transportation agencies worldwide continuously monitor their roads' conditions to minimize road maintenance costs and maintain public safety and rideability quality. Existing methods for carrying out road condition surveys involve manual observations of roads using standard survey forms done by qualified road condition surveyors or engineers either on foot or by vehicle. Automated road condition survey vehicles exist; however, they are very expensive since they require special vehicles equipped with sensors for data collection together with data processing and computing devices. The manual methods are expensive, time-consuming, infrequent, and can hardly provide real-time information for road conditions. This study contributes to this arena by utilizing built-in vehicle technologies, drones, and deep learning to automate road condition surveys while using low-cost technology. A single model is trained to capture flexible pavement distresses (Potholes, Rutting, Cracking, and raveling), thereby providing a more cost-effective and efficient road condition monitoring approach that can also provide real-time road conditions. Additionally, data fusion is employed to enhance the road condition assessment with data from vehicles and drones.

Keywords: road conditions, built-in vehicle technology, deep learning, drones

Procedia PDF Downloads 124
5779 Efficacy of Problem Solving Approach on the Achievement of Students in Mathematics

Authors: Akintunde O. Osibamowo, Abdulrasaq O. Olusanya

Abstract:

The present study was designed to examine the effect of problem-solving approach as a medium of instruction in teaching and learning of mathematics to improve the achievement of the student. One Hundred (100) students were randomly chosen from five (5) Junior Secondary School in Ijebu-Ode Local Government Area of Ogun State, Nigeria. The data was collected through Mathematics Achievement Test (MAT) on the two groups (experimental and control group). The study confirmed that there is a significant different in the achievement of students exposed to problem-solving approach than those not exposed. The result also indicated that male students, however, had a greater mean-score than the female with no significant difference in their achievement. The result of the study supports the use of problem-solving approach in the teaching and learning of mathematics in secondary schools.

Keywords: problem, achievement, teaching phases, experimental control

Procedia PDF Downloads 290
5778 Online Delivery Approaches of Post Secondary Virtual Inclusive Media Education

Authors: Margot Whitfield, Andrea Ducent, Marie Catherine Rombaut, Katia Iassinovskaia, Deborah Fels

Abstract:

Learning how to create inclusive media, such as closed captioning (CC) and audio description (AD), in North America is restricted to the private sector, proprietary company-based training. We are delivering (through synchronous and asynchronous online learning) the first Canadian post-secondary, practice-based continuing education course package in inclusive media for broadcast production and processes. Despite the prevalence of CC and AD taught within the field of translation studies in Europe, North America has no comparable field of study. This novel approach to audio visual translation (AVT) education develops evidence-based methodology innovations, stemming from user study research with blind/low vision and Deaf/hard of hearing audiences for television and theatre, undertaken at Ryerson University. Knowledge outcomes from the courses include a) Understanding how CC/AD fit within disability/regulatory frameworks in Canada. b) Knowledge of how CC/AD could be employed in the initial stages of production development within broadcasting. c) Writing and/or speaking techniques designed for media. d) Hands-on practice in captioning re-speaking techniques and open source technologies, or in AD techniques. e) Understanding of audio production technologies and editing techniques. The case study of the curriculum development and deployment, involving first-time online course delivery from academic and practitioner-based instructors in introductory Captioning and Audio Description courses (CDIM 101 and 102), will compare two different instructors' approaches to learning design, including the ratio of synchronous and asynchronous classroom time and technological engagement tools on meeting software platform such as breakout rooms and polling. Student reception of these two different approaches will be analysed using qualitative thematic and quantitative survey analysis. Thus far, anecdotal conversations with students suggests that they prefer synchronous compared with asynchronous learning within our hands-on online course delivery method.

Keywords: inclusive media theory, broadcasting practices, AVT post secondary education, respeaking, audio description, learning design, virtual education

Procedia PDF Downloads 183
5777 Developing a Smart Card Using Internet of Things-Uni-C

Authors: Enji E. Alzamzami, Kholod A. Almwallad, Rahaf J. Alwafi, Roaa H. Alansari, Shatha S. Alshehri, Aeshah A. Alsiyami

Abstract:

This paper demonstrates a system that helps solve the congestion problem at the entrance gates and limits the spread of viruses among people in crowded environments, such as COVID-19, using the IoT (Internet of Things). This system may assist in organizing the campus entry process efficiently by developing a smart card application supported by NFC (Near Field Communication) technology through which users' information could be sent to a reader to share it with the server and allow the server to perform its tasks and send a confirmation response for the request either by acceptance or rejection.

Keywords: COVID-19, IoT, NFC technology, smart card

Procedia PDF Downloads 136
5776 Critical Understanding on Equity and Access in Higher Education Engaging with Adult Learners and International Student in the Context of Globalisation

Authors: Jin-Hee Kim

Abstract:

The way that globalization distinguishes itself from the previous changes is scope and intensity of changes, which together affect many parts of a nation’s system. In this way, globalization has its relation with the concept of ‘internationalization’ in that a nation state formulates a set of strategies in many areas of its governance to actively react to it. In short, globalization is a ‘catalyst,’ and internationalization is a ‘response’. In this regard, the field of higher education is one of the representative cases that globalization has several consequences that change the terrain of national policy-making. Started and been dominated mainly by the Western world, it has now been expanded to the ‘late movers,’ such as Asia-Pacific countries. The case of internationalization of Korean higher education is, therefore, located in a unique place in this arena. Yet Korea still is one of the major countries of sending its students to the so-called, ‘first world.’ On the other hand, it has started its effort to recruit international students from the world to its higher education system. After new Millennium, particularly, internationalization of higher education has been launched in its full-scale and gradually been one of the important global policy agenda, striving in both ways by opening its turf to foreign educational service providers and recruiting prospective students from other countries. Particularly the latter, recruiting international students, has been highlighted under the government project named ‘Study Korea,’ launched in 2004. Not only global, but also local issues and motivations were based to launch this nationwide project. Bringing international students means various desirable economic outcomes such as reducing educational deficit as well as utilizing them in Korean industry after the completion of their study, to name a few. In addition, in a similar vein, Korea's higher education institutes have started to have a new comers of adult learners. When it comes to the questions regarding the quality and access of this new learning agency, the answer is quite tricky. This study will investigate the different dimension of education provision and learning process to empower diverse group regardless of nationality, race, class and gender in Korea. Listening to the voices of international students and adult learning as non-traditional participants in a changing Korean higher educational space not only benefit students themselves, but Korean stakeholders who should try to accommodate more comprehensive and fair educational provisions for more and more diversifying groups of learners.

Keywords: education equity, access, globalisation, international students, adult learning, learning support

Procedia PDF Downloads 209
5775 Black-Box-Base Generic Perturbation Generation Method under Salient Graphs

Authors: Dingyang Hu, Dan Liu

Abstract:

DNN (Deep Neural Network) deep learning models are widely used in classification, prediction, and other task scenarios. To address the difficulties of generic adversarial perturbation generation for deep learning models under black-box conditions, a generic adversarial ingestion generation method based on a saliency map (CJsp) is proposed to obtain salient image regions by counting the factors that influence the input features of an image on the output results. This method can be understood as a saliency map attack algorithm to obtain false classification results by reducing the weights of salient feature points. Experiments also demonstrate that this method can obtain a high success rate of migration attacks and is a batch adversarial sample generation method.

Keywords: adversarial sample, gradient, probability, black box

Procedia PDF Downloads 104
5774 A Developmental Study of the Flipped Classroom Approach on Students’ Learning in English Language Modules in British University in Egypt

Authors: A. T. Zaki

Abstract:

The flipped classroom approach as a mode of blended learning was formally introduced to students of the English language modules at the British University in Egypt (BUE) at the start of the academic year 2015/2016. This paper aims to study the impact of the flipped classroom approach after three semesters of implementation. It will restrict itself to the examination of students’ achievement rates, student satisfaction, and how different student cohorts have benefited differently from the flipped practice. The paper concludes with recommendations of how the experience can be further developed.

Keywords: achievement rates, developmental experience, Egypt, flipped classroom, higher education, student cohorts, student satisfaction

Procedia PDF Downloads 258
5773 The Use of Self-Determination Theory to Assess the Opportunities and Challenges for Blended E-Learning in Egypt: An Analysis of the Motivations of Logistics Lecturers

Authors: Aisha Tarek Noour, Nick Hubbard

Abstract:

Blended e-Learning (BL) is proving to be an effective pedagogical tool in many areas of business and management education, but there remains a number of barriers to overcome before its implementation. This paper seeks to analyse the views of lecturers towards BL according to Self-Determination Theory (SDT), and identifies the opportunities and challenges for using BL in Logistics Education in an Egyptian higher education establishment. SDT is approached from a different perspective and the relationship between intrinsic motivation (IM), extrinsic motivation (EM), and amotivation (AM) is analysed and related to the opportunities and challenges of the BL method. The case study methodology comprises of a series of interviews with lecturers employed at three Colleges of International Transport and Logistics (CITLs) at the Arab Academy for Science, Technology, Maritime and Transport (AAST&MT) in Egypt. A structured face-to-face interview was undertaken with 61 interviewees across all faculty positions: Deans, Associate Professors, Assistant Professor, Department Heads, Part-time instructors, Teaching Assistants, and Graduate Teaching Assistants. The findings were based on "content analysis" of the interview transcripts and use of the NVivo10 software program. The research contributes to the application of SDT within the field of BL through an analysis of the views of lecturers towards the opportunities and challenges that BL offers to logistics educators in Egypt.

Keywords: intrinsic motivation, extrinsic motivation, amotivation, autonomy, competence, relatedness, self-determination theory and blended e-learning

Procedia PDF Downloads 440
5772 Perceptions and Expectations by Participants of Monitoring and Evaluation Short Course Training Programmes in Africa

Authors: Mokgophana Ramasobana

Abstract:

Background: At the core of the demand to utilize evidence-based approaches in the policy-making cycle, prioritization of limited financial resources and results driven initiatives is the urgency to develop a cohort of competent Monitoring and Evaluation (M&E) practitioners and public servants. The ongoing strides in the evaluation capacity building (ECB) initiatives are a direct response to produce the highly-sought after M&E skills. Notwithstanding the rapid growth of M&E short courses, participants perceived value and expectation of M&E short courses as a panacea for ECB have not been empirically quantified or measured. The objective of this article is to explicitly illustrate the importance of measuring ECB interventions and understanding what works in ECB and why it works. Objectives: This article illustrates the importance of establishing empirical ECB measurement tools to evaluate ECB interventions in order to ascertain its contribution to the broader evaluation practice. Method: The study was primarily a desktop review of existing literature, juxtaposed by a survey of the participants across the African continent based on the 43 M&E short courses hosted by the Centre for Learning on Evaluation and Results Anglophone Africa (CLEAR-AA) in collaboration with the Department of Planning Monitoring and Evaluation (DPME) Results: The article established that participants perceive short course training as a panacea to improve their M&E practical skill critical to executing their organizational duties. In tandem, participants are likely to demand customized training as opposed to general topics in Evaluation. However, the organizational environments constrain the application of the newly acquired skills. Conclusion: This article aims to contribute to the 'how to' measure ECB interventions discourse and contribute towards the improvement to evaluate ECB interventions. The study finds that participants prefer training courses with longer duration to cover more topics. At the same time, whilst organizations call for customization of programmes, the study found that individual participants demand knowledge of generic and popular evaluation topics.

Keywords: evaluation capacity building, effectiveness and training, monitoring and evaluation (M&E) short course training, perceptions and expectations

Procedia PDF Downloads 128
5771 Blockchain-Based Assignment Management System

Authors: Amogh Katti, J. Sai Asritha, D. Nivedh, M. Kalyan Srinivas, B. Somnath Chakravarthi

Abstract:

Today's modern education system uses Learning Management System (LMS) portals for the scoring and grading of student performances, to maintain student records, and teachers are instructed to accept assignments through online submissions of .pdf,.doc,.ppt, etc. There is a risk of data tampering in the traditional portals; we will apply the Blockchain model instead of this traditional model to avoid data tampering and also provide a decentralized mechanism for overall fairness. Blockchain technology is a better and also recommended model because of the following features: consensus mechanism, decentralized system, cryptographic encryption, smart contracts, Ethereum blockchain. The proposed system ensures data integrity and tamper-proof assignment submission and grading, which will be helpful for both students and also educators.

Keywords: education technology, learning management system, decentralized applications, blockchain

Procedia PDF Downloads 84
5770 Melanoma and Non-Melanoma, Skin Lesion Classification, Using a Deep Learning Model

Authors: Shaira L. Kee, Michael Aaron G. Sy, Myles Joshua T. Tan, Hezerul Abdul Karim, Nouar AlDahoul

Abstract:

Skin diseases are considered the fourth most common disease, with melanoma and non-melanoma skin cancer as the most common type of cancer in Caucasians. The alarming increase in Skin Cancer cases shows an urgent need for further research to improve diagnostic methods, as early diagnosis can significantly improve the 5-year survival rate. Machine Learning algorithms for image pattern analysis in diagnosing skin lesions can dramatically increase the accuracy rate of detection and decrease possible human errors. Several studies have shown the diagnostic performance of computer algorithms outperformed dermatologists. However, existing methods still need improvements to reduce diagnostic errors and generate efficient and accurate results. Our paper proposes an ensemble method to classify dermoscopic images into benign and malignant skin lesions. The experiments were conducted using the International Skin Imaging Collaboration (ISIC) image samples. The dataset contains 3,297 dermoscopic images with benign and malignant categories. The results show improvement in performance with an accuracy of 88% and an F1 score of 87%, outperforming other existing models such as support vector machine (SVM), Residual network (ResNet50), EfficientNetB0, EfficientNetB4, and VGG16.

Keywords: deep learning - VGG16 - efficientNet - CNN – ensemble – dermoscopic images - melanoma

Procedia PDF Downloads 81
5769 Review of Full Body Imaging and High-Resolution Automatic 3D Mapping Systems for Medical Application

Authors: Jurijs Salijevs, Katrina Bolocko

Abstract:

The integration of artificial intelligence and neural networks has significantly changed full-body imaging and high-resolution 3D mapping systems, and this paper reviews research in these areas. With an emphasis on their use in the early identification of melanoma and other disorders, the goal is to give a wide perspective on the current status and potential future of these medical imaging technologies. Authors also examine methodologies such as machine learning and deep learning, seeking to identify efficient procedures that enhance diagnostic capabilities through the analysis of 3D body scans. This work aims to encourage further research and technological development to harness the full potential of AI in disease diagnosis.

Keywords: artificial intelligence, neural networks, 3D scan, body scan, 3D mapping system, healthcare

Procedia PDF Downloads 103