Search results for: sensor network design
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17413

Search results for: sensor network design

13933 A Survey on Requirements and Challenges of Internet Protocol Television Service over Software Defined Networking

Authors: Esmeralda Hysenbelliu

Abstract:

Over the last years, the demand for high bandwidth services, such as live (IPTV Service) and on-demand video streaming, steadily and rapidly increased. It has been predicted that video traffic (IPTV, VoD, and WEB TV) will account more than 90% of global Internet Protocol traffic that will cross the globe in 2016. Consequently, the importance and consideration on requirements and challenges of service providers faced today in supporting user’s requests for entertainment video across the various IPTV services through virtualization over Software Defined Networks (SDN), is tremendous in the highest stage of attention. What is necessarily required, is to deliver optimized live and on-demand services like Internet Protocol Service (IPTV Service) with low cost and good quality by strictly fulfill the essential requirements of Clients and ISP’s (Internet Service Provider’s) in the same time. The aim of this study is to present an overview of the important requirements and challenges of IPTV service with two network trends on solving challenges through virtualization (SDN and Network Function Virtualization). This paper provides an overview of researches published in the last five years.

Keywords: challenges, IPTV service, requirements, software defined networking (SDN)

Procedia PDF Downloads 271
13932 Changing Routes: The Adaptability of Somali Migrants and Their Smuggling Networks

Authors: Alexandra Amling, Emina Sadic

Abstract:

The migration routes linking the Horn of Africa to Europe shift in response to political and humanitarian developments across the region. Abrupt changes to those routes can have profound effects on the relative ease of movement and the well-being of migrants. Somali migrants have traditionally been able to rely on a sophisticated, well-established, and reliable network of smugglers to facilitate their journey through the Sahel to Libya, but changes to the routes have undermined those networks. Recently, these shifts have made the journey from Somalia to Europe much more perilous. As the Libyan coast guard intensifies its efforts to stymie boats leaving its coast for Italian shores, arrivals in Spain are trending upwards. This paper thus, will examine how the instability in transit countries that are most commonly used by Somali migrants has had an impact on the reliability of their massive network of smuggling, and how resurgence in the Western route toward Spain provides a potentially new opportunity to reach Europe—a route that has rarely been used by the Somali migrant population in the past. First, the paper will discuss what scholars have called the pastoralist, nomadic tradition of Somalis which reportedly has allowed them to endure the long journeys from Somalia to their chosen destinations. Facilitated by relatives or clan affiliation, Somali migrants have historically been able to rely on a smuggling network that – at least tangentially – provided more security nets during their travels. Given the violence and chaos that unfolded both in Libya and Yemen in 2011 and 2015, respectively, the paper will, secondly, examine which actors in smuggling hubs increase the vulnerabilities of Somalis, pushing them to consider other routes. As a result, this paper will consider to what extent Somalis could follow the stream of other migrants to Algeria and Morocco to enter Europe via Spain. By examining one particular group of migrants and the nature and limitations of the networks associated with their movements, the paper will demonstrate the resilience and adaptability of both the migrants and the networks regardless of the ever-changing nature of migration routes and actors.

Keywords: Europe, migration, smuggling networks, Somalia

Procedia PDF Downloads 191
13931 High Voltage Magnetic Pulse Generation Using Capacitor Discharge Technique

Authors: Mohamed Adel Abdallah

Abstract:

A high voltage magnetic pulse is designed by applying an electrical pulse to the coil. Capacitor banks are developed to generate a pulse current. Switching circuit consisting of DPDT switches, thyristor, and triggering circuit is built and tested. The coil current is measured using a Hall-effect current sensor. The magnetic pulse created is measured and tabulated in the graph. Simulation using FEMM is done to compare the results obtained between experiment and simulation. This technology can be applied to area such as medical equipment, measuring instrument, and military equipment.

Keywords: high voltage, magnetic pulse, capacitor discharge, coil

Procedia PDF Downloads 680
13930 Designing Social Media into Higher Education Courses

Authors: Thapanee Seechaliao

Abstract:

This research paper presents guiding on how to design social media into higher education courses. The research methodology used a survey approach. The research instrument was a questionnaire about guiding on how to design social media into higher education courses. Thirty-one lecturers completed the questionnaire. The data were scored by frequency and percentage. The research results were the lecturers’ opinions concerning the designing social media into higher education courses as follows: 1) Lecturers deem that the most suitable learning theory is Collaborative Learning. 2) Lecturers consider that the most important learning and innovation Skill in the 21st century is communication and collaboration skills. 3) Lecturers think that the most suitable evaluation technique is authentic assessment. 4) Lecturers consider that the most appropriate portion used as blended learning should be 70% in the classroom setting and 30% online.

Keywords: instructional design, social media, courses, higher education

Procedia PDF Downloads 510
13929 Design and Analysis of Piping System with Supports Using CAESAR-II

Authors: M. Jamuna Rani, K. Ramanathan

Abstract:

A steam power plant is housed with various types of equipments like boiler, turbine, heat exchanger etc. These equipments are mainly connected with piping systems. Such a piping layout design depends mainly on stress analysis and flexibility. It will vary with respect to pipe geometrical properties, pressure, temperature, and supports. The present paper is to analyze the presence and effect of hangers and expansion joints in the piping layout/routing using CAESAR-II software. Main aim of piping stress analysis is to provide adequate flexibility for absorbing thermal expansion, code compliance for stresses and displacement incurred in piping system. The design is said to be safe if all these are in allowable range as per code. In this study, a sample problem is considered for analysis as per power piping ASME B31.1 code and the results thus obtained are compared.

Keywords: ASTM B31.1, hanger, expansion joint, CAESAR-II

Procedia PDF Downloads 364
13928 Aircraft Pitch Attitude Control Using Backstepping

Authors: Labane Chrif

Abstract:

A nonlinear approach to the automatic pitch attitude control problem for aircraft transportation is presented. A nonlinear model describing the longitudinal equations of motion in strict feedback form is derived. Backstepping is utilized for the construction of a globally stabilizing controller with a number of free design parameters. The controller is evaluated using the aircraft transportation. The adaptation scheme proposed allowed us to design an explicit controller with a minimal knowledge of the aircraft aerodynamics. Finally, the simulation results will show that backstepping controller have better dynamic performance, simpler design, higher precision, easier implement, etc. At the same time, the control effect will be significantly improved. In addition, backstepping control is superior in short transition, good stability, anti-disturbance and good control.

Keywords: nonlinear control, backstepping, aircraft control, Lyapunov function, longitudinal model

Procedia PDF Downloads 581
13927 The Use of a Miniature Bioreactor as Research Tool for Biotechnology Process Development

Authors: Muhammad Zainuddin Arriafdi, Hamudah Hakimah Abdullah, Mohd Helmi Sani, Wan Azlina Ahmad, Muhd Nazrul Hisham Zainal Alam

Abstract:

The biotechnology process development demands numerous experimental works. In laboratory environment, this is typically carried out using a shake flask platform. This paper presents the design and fabrication of a miniature bioreactor system as an alternative research tool for bioprocessing. The working volume of the reactor is 100 ml, and it is made of plastic. The main features of the reactor included stirring control, temperature control via the electrical heater, aeration strategy through a miniature air compressor, and online optical cell density (OD) sensing. All sensors and actuators integrated into the reactor was controlled using an Arduino microcontroller platform. In order to demonstrate the functionality of such miniature bioreactor concept, series of batch Saccharomyces cerevisiae fermentation experiments were performed under various glucose concentrations. Results attained from the fermentation experiments were utilized to solve the Monod equation constants, namely the saturation constant, Ks, and cells maximum growth rate, μmax as to further highlight the usefulness of the device. The mixing capacity of the reactor was also evaluated. It was found that the results attained from the miniature bioreactor prototype were comparable to results achieved using a shake flask. The unique features of the device as compared to shake flask platform is that the reactor mixing condition is much more comparable to a lab-scale bioreactor setup. The prototype is also integrated with an online OD sensor, and as such, no sampling was needed to monitor the progress of the reaction performed. Operating cost and medium consumption are also low and thus, making it much more economical to be utilized for biotechnology process development compared to lab-scale bioreactors.

Keywords: biotechnology, miniature bioreactor, research tools, Saccharomyces cerevisiae

Procedia PDF Downloads 117
13926 Classifying the Role of Technology in Technology Development

Authors: Hyun Joung No, Chul Lee

Abstract:

Even though technology evolves and develops through interaction with each other, not all technologies contribute to the development of technology equally. While some technologies play a central role in developing technology, others play a secondary role. The role of the technological components can be classified as core or non-core (peripheral) technology. The core technologies have a considerable knowledge interaction with other technological components while the non-core technologies barely interact with others within the system. This study introduces the concept that classifies the technological components into core or peripheral technology according to their role and importance in the technology field. The study adapted the social network analysis to examine the relationship between technological components. Using a continuous core-periphery analysis, it identifies the technological network structure and classifies the core and peripheral nodes. Based on their knowledge inflow/outflow direction and their dependence/influence on core technologies, the technological clusters are classified into four categories: (1) high dependence and high influence on core technology, (2) high dependence and low influence on core technology, (3) low dependence and high influence on core technology, and (4) low dependence and low influence on core technology.

Keywords: core technology, periphery technology, technological components, technological role

Procedia PDF Downloads 538
13925 Theory of Mind and Its Brain Distribution in Patients with Temporal Lobe Epilepsy

Authors: Wei-Han Wang, Hsiang-Yu Yu, Mau-Sun Hua

Abstract:

Theory of Mind (ToM) refers to the ability to infer another’s mental state. With appropriate ToM, one can behave well in social interactions. A growing body of evidence has demonstrated that patients with temporal lobe epilepsy (TLE) may have damaged ToM due to impact on regions of the underlying neural network of ToM. However, the question of whether there is cerebral laterality for ToM functions remains open. This study aimed to examine whether there is cerebral lateralization for ToM abilities in TLE patients. Sixty-seven adult TLE patients and 30 matched healthy controls (HC) were recruited. Patients were classified into right (RTLE), left (LTLE), and bilateral (BTLE) TLE groups on the basis of a consensus panel review of their seizure semiology, EEG findings, and brain imaging results. All participants completed an intellectual test and four tasks measuring basic and advanced ToM. The results showed that, on all ToM tasks; (1)each patient group performed worse than HC; (2)there were no significant differences between LTLE and RTLE groups; (3)the BTLE group performed the worst. It appears that the neural network responsible for ToM is distributed evenly between the cerebral hemispheres.

Keywords: cerebral lateralization, social cognition, temporal lobe epilepsy, theory of mind

Procedia PDF Downloads 420
13924 Feature Extraction and Impact Analysis for Solid Mechanics Using Supervised Finite Element Analysis

Authors: Edward Schwalb, Matthias Dehmer, Michael Schlenkrich, Farzaneh Taslimi, Ketron Mitchell-Wynne, Horen Kuecuekyan

Abstract:

We present a generalized feature extraction approach for supporting Machine Learning (ML) algorithms which perform tasks similar to Finite-Element Analysis (FEA). We report results for estimating the Head Injury Categorization (HIC) of vehicle engine compartments across various impact scenarios. Our experiments demonstrate that models learned using features derived with a simple discretization approach provide a reasonable approximation of a full simulation. We observe that Decision Trees could be as effective as Neural Networks for the HIC task. The simplicity and performance of the learned Decision Trees could offer a trade-off of a multiple order of magnitude increase in speed and cost improvement over full simulation for a reasonable approximation. When used as a complement to full simulation, the approach enables rapid approximate feedback to engineering teams before submission for full analysis. The approach produces mesh independent features and is further agnostic of the assembly structure.

Keywords: mechanical design validation, FEA, supervised decision tree, convolutional neural network.

Procedia PDF Downloads 139
13923 DISGAN: Efficient Generative Adversarial Network-Based Method for Cyber-Intrusion Detection

Authors: Hongyu Chen, Li Jiang

Abstract:

Ubiquitous anomalies endanger the security of our system con- stantly. They may bring irreversible damages to the system and cause leakage of privacy. Thus, it is of vital importance to promptly detect these anomalies. Traditional supervised methods such as Decision Trees and Support Vector Machine (SVM) are used to classify normality and abnormality. However, in some case, the abnormal status are largely rarer than normal status, which leads to decision bias of these methods. Generative adversarial network (GAN) has been proposed to handle the case. With its strong generative ability, it only needs to learn the distribution of normal status, and identify the abnormal status through the gap between it and the learned distribution. Nevertheless, existing GAN-based models are not suitable to process data with discrete values, leading to immense degradation of detection performance. To cope with the discrete features, in this paper, we propose an efficient GAN-based model with specifically-designed loss function. Experiment results show that our model outperforms state-of-the-art models on discrete dataset and remarkably reduce the overhead.

Keywords: GAN, discrete feature, Wasserstein distance, multiple intermediate layers

Procedia PDF Downloads 129
13922 Conceptual Design of Experimental Helium Cooling Loop for Indian TBM R&D Experiments

Authors: B. K. Yadav, A. Gandhi, A. K. Verma, T. S. Rao, A. Saraswat, E. R. Kumar, M. Sarkar, K. N. Vyas

Abstract:

This paper deals with the conceptual design of Experimental Helium Cooling Loop (EHCL) for Indian Test Blanket Module (TBM) and its related thermal hydraulic experiments. Indian TBM team is developing Lead Lithium cooled Ceramic Breeder (IN-LLCB) TBM to be tested in ITER. The TBM box structure is cooled by high pressure (8 MPa) and high temperature (300-500C) helium gas. The first wall of TBM made of complex channel geometry having several parallel channels carrying helium gas for efficient heat extraction. Several mock-ups of these channels need to be tested before finalizing the TBM first wall design and fabrication. Besides the individual testing of such mock-ups of breeding blanket, the testing of Pb-Li to helium heat exchanger, the operational experience of helium loop and understanding of the behaviour of high pressure and high temperature system components are very essential for final development of Helium Cooling System for LLCB TBM in ITER. The main requirements and characteristics of the EHCL and its conceptual design are presented in this paper.

Keywords: DEMO, EHCL, ITER, LLCB TBM

Procedia PDF Downloads 383
13921 Mannequin Evaluation of 3D-Printed Intermittent Oro-Esophageal Tube Guide for Dysphagia

Authors: Yujin Jeong, Youkyung Son, Myounghwan Choi, Sanghyub Lee, Sangyeol Lee, Changho Hwang, Kyo-in Koo

Abstract:

Dysphasia is difficulty in swallowing food because of oral cavity impairments induced by stroke, muscle damage, tumor. Intermittent oro-esophageal (IOE) tube feeding is one of the well-known feeding methods for the dysphasia patients. However, it is hard to insert at the proper position in esophagus. In this study, we design and fabricate the IOE tube guide using 3-dimensional (3D) printer. The printed IOE tube is tested in a mannequin (Airway Management Trainer, Co., Ltd., Copenhagen, Denmark) mimicking human’s esophagus. The gag reflex point is measured as the design point in the mannequin. To avoid the gag reflex, we design various shapes of IOE tube guide. One structure is separated into three parts; biting part, part through oral cavity, connecting part to oro-esophageal. We designed 6 types of IOE tube guide adjusting length and angle of these three parts. To evaluate the IOE tube guide, it is inserted in the mannequin, and through the inserted guide, an endoscopic camera successfully arrived at the oro-esophageal. We had planned to apply this mannequin-based design experience to patients in near future.

Keywords: dysphagia, feeding method, IOE tube guide, 3-D printer

Procedia PDF Downloads 434
13920 Smart Interior Design: A Revolution in Modern Living

Authors: Fatemeh Modirzare

Abstract:

Smart interior design represents a transformative approach to creating living spaces that integrate technology seamlessly into our daily lives, enhancing comfort, convenience, and sustainability. This paper explores the concept of smart interior design, its principles, benefits, challenges, and future prospects. It also highlights various examples and applications of smart interior design to illustrate its potential in shaping the way we live and interact with our surroundings. In an increasingly digitized world, the boundaries between technology and interior design are blurring. Smart interior design, also known as intelligent or connected interior design, involves the incorporation of advanced technologies and automation systems into residential and commercial spaces. This innovative approach aims to make living environments more efficient, comfortable, and adaptable while promoting sustainability and user well-being. Smart interior design seamlessly integrates technology into the aesthetics and functionality of a space, ensuring that devices and systems do not disrupt the overall design. Sustainable materials, energy-efficient systems, and eco-friendly practices are central to smart interior design, reducing environmental impact. Spaces are designed to be adaptable, allowing for reconfiguration to suit changing needs and preferences. Smart homes and spaces offer greater comfort through features like automated climate control, adjustable lighting, and customizable ambiance. Smart interior design can significantly reduce energy consumption through optimized heating, cooling, and lighting systems. Smart interior design integrates security systems, fire detection, and emergency response mechanisms for enhanced safety. Sustainable materials, energy-efficient appliances, and waste reduction practices contribute to a greener living environment. Implementing smart interior design can be expensive, particularly when retrofitting existing spaces with smart technologies. The increased connectivity raises concerns about data privacy and cybersecurity, requiring robust measures to protect user information. Rapid advancements in technology may lead to obsolescence, necessitating updates and replacements. Users must be familiar with smart systems to fully benefit from them, requiring education and ongoing support. Residential spaces incorporate features like voice-activated assistants, automated lighting, and energy management systems. Intelligent office design enhances productivity and employee well-being through smart lighting, climate control, and meeting room booking systems. Hospitals and healthcare facilities use smart interior design for patient monitoring, wayfinding, and energy conservation. Smart retail design includes interactive displays, personalized shopping experiences, and inventory management systems. The future of smart interior design holds exciting possibilities, including AI-powered design tools that create personalized spaces based on user preferences. Smart interior design will increasingly prioritize factors that improve physical and mental health, such as air quality monitoring and mood-enhancing lighting. Smart interior design is revolutionizing the way we interact with our living and working spaces. By embracing technology, sustainability, and user-centric design principles, smart interior design offers numerous benefits, from increased comfort and convenience to energy efficiency and sustainability. Despite challenges, the future holds tremendous potential for further innovation in this field, promising a more connected, efficient, and harmonious way of living and working.

Keywords: smart interior design, home automation, sustainable living spaces, technological integration, user-centric design

Procedia PDF Downloads 70
13919 The Design and Construction of the PV-Wind Autonomous System for Greenhouse Plantations in Central Thailand

Authors: Napat Watjanatepin, Wikorn Wong-Satiean

Abstract:

The objective of this research is to design and construct the PV-Wind hybrid autonomous system for the greenhouse plantation, and analyze the technical performance of the PV-Wind energy system. This design depends on the water consumption in the greenhouse by using 24 of the fogging mist each with the capability of 24 liter/min. The operating time is 4 times per day, each round for 15 min. The fogging system is being driven by water pump with AC motor rating 0.5 hp. The load energy consumed is around 1.125 kWh/d. The designing results of the PV-Wind hybrid energy system is that sufficient energy could be generated by this system. The results of this study can be applied as a technical data reference for other areas in the central part of Thailand.

Keywords: PV-Wind hybrid autonomous system, greenhouse plantation, fogging system, central part of Thailand

Procedia PDF Downloads 314
13918 Intercultural Intelligence: How to Turn Cultural Difference into a Key Added Value with Tree Lighting Design Project Examples

Authors: Fanny Soulard

Abstract:

Today work environment is more multicultural than ever: spatial limits have been blown out, encouraging people and ideas mobility all around the globe. Indeed, opportunities to design with culturally diverse team workers, clients, or end-users, have become within everyone's reach. We enjoy traveling to discover other civilizations, but when it comes to business, we often take for granted that our own work methodology will be generic enough to federate each party and cover the project needs. This paper aims to explore why, by skipping cultural awareness, we often create misunderstandings, frustration, and even counterproductive design. Tree lighting projects successively developed by a French lighting studio, a Vietnamese lighting studio, and an Australian Engineering company will be assessed from their concept stage to completion. All these study cases are based in Vietnam, where the construction market is equally led by local and international consultants. Core criteria such as lighting standard reference, service scope, communication tools, internal team organization, delivery package content, key priorities, and client relationship will help to spot and list when and how cultural diversity has impacted the design output and effectiveness. On the second hand, we will demonstrate through the same selected projects how intercultural intelligence tools and mindset can not only respond positively to previous situations and avoid major clashes but also turn cultural differences into a key added value to generate significant benefits for individuals, teams, and companies. By understanding the major importance of including a cultural factor within any design, intercultural intelligence will quickly turn out as a “must have” skill to be developed and acquired by any designer.

Keywords: intercultural intelligence, lighting design, work methodology, multicultural diversity

Procedia PDF Downloads 95
13917 An Approach for Coagulant Dosage Optimization Using Soft Jar Test: A Case Study of Bangkhen Water Treatment Plant

Authors: Ninlawat Phuangchoke, Waraporn Viyanon, Setta Sasananan

Abstract:

The most important process of the water treatment plant process is the coagulation using alum and poly aluminum chloride (PACL), and the value of usage per day is a hundred thousand baht. Therefore, determining the dosage of alum and PACL are the most important factors to be prescribed. Water production is economical and valuable. This research applies an artificial neural network (ANN), which uses the Levenberg–Marquardt algorithm to create a mathematical model (Soft Jar Test) for prediction chemical dose used to coagulation such as alum and PACL, which input data consists of turbidity, pH, alkalinity, conductivity, and, oxygen consumption (OC) of Bangkhen water treatment plant (BKWTP) Metropolitan Waterworks Authority. The data collected from 1 January 2019 to 31 December 2019 cover changing seasons of Thailand. The input data of ANN is divided into three groups training set, test set, and validation set, which the best model performance with a coefficient of determination and mean absolute error of alum are 0.73, 3.18, and PACL is 0.59, 3.21 respectively.

Keywords: soft jar test, jar test, water treatment plant process, artificial neural network

Procedia PDF Downloads 166
13916 Analysis of Scholarly Communication Patterns in Korean Studies

Authors: Erin Hea-Jin Kim

Abstract:

This study aims to investigate scholarly communication patterns in Korean studies, which focuses on all aspects of Korea, including history, culture, literature, politics, society, economics, religion, and so on. It is called ‘national study or home study’ as the subject of the study is itself, whereas it is called ‘area study’ as the subject of the study is others, i.e., outside of Korea. Understanding of the structure of scholarly communication in Korean studies is important since the motivations, procedures, results, or outcomes of individual studies may be affected by the cooperative relationships that appear in the communication structure. To this end, we collected 1,798 articles with the (author or index) keyword ‘Korean’ published in 2018 from the Scopus database and extracted the institution and country of the authors using a text mining technique. A total of 96 countries, including South Korea, was identified. Then we constructed a co-authorship network based on the countries identified. The indicators of social network analysis (SNA), co-occurrences, and cluster analysis were used to measure the activity and connectivity of participation in collaboration in Korean studies. As a result, the highest frequency of collaboration appears in the following order: S. Korea with the United States (603), S. Korea with Japan (146), S. Korea with China (131), S. Korea with the United Kingdom (83), and China with the United States (65). This means that the most active participants are S. Korea as well as the USA. The highest rank in the role of mediator measured by betweenness centrality appears in the following order: United States (0.165), United Kingdom (0.045), China (0.043), Japan (0.037), Australia (0.026), and South Africa (0.023). These results show that these countries contribute to connecting in Korean studies. We found two major communities among the co-authorship network. Asian countries and America belong to the same community, and the United Kingdom and European countries belong to the other community. Korean studies have a long history, and the study has emerged since Japanese colonization. However, Korean studies have never been investigated by digital content analysis. The contributions of this study are an analysis of co-authorship in Korean studies with a global perspective based on digital content, which has not attempted so far to our knowledge, and to suggest ideas on how to analyze the humanities disciplines such as history, literature, or Korean studies by text mining. The limitation of this study is that the scholarly data we collected did not cover all domestic journals because we only gathered scholarly data from Scopus. There are thousands of domestic journals not indexed in Scopus that we can consider in terms of national studies, but are not possible to collect.

Keywords: co-authorship network, Korean studies, Koreanology, scholarly communication

Procedia PDF Downloads 158
13915 Artificial Neural Network Approach for GIS-Based Soil Macro-Nutrients Mapping

Authors: Shahrzad Zolfagharnassab, Abdul Rashid Mohamed Shariff, Siti Khairunniza Bejo

Abstract:

Conventional methods for nutrient soil mapping are based on laboratory tests of samples that are obtained from surveys. The time and cost involved in gathering and analyzing soil samples are the reasons that researchers use Predictive Soil Mapping (PSM). PSM can be defined as the development of a numerical or statistical model of the relationship among environmental variables and soil properties, which is then applied to a geographic database to create a predictive map. Kriging is a group of geostatistical techniques to spatially interpolate point values at an unobserved location from observations of values at nearby locations. The main problem with using kriging as an interpolator is that it is excessively data-dependent and requires a large number of closely spaced data points. Hence, there is a need to minimize the number of data points without sacrificing the accuracy of the results. In this paper, an Artificial Neural Networks (ANN) scheme was used to predict macronutrient values at un-sampled points. ANN has become a popular tool for prediction as it eliminates certain difficulties in soil property prediction, such as non-linear relationships and non-normality. Back-propagation multilayer feed-forward network structures were used to predict nitrogen, phosphorous and potassium values in the soil of the study area. A limited number of samples were used in the training, validation and testing phases of ANN (pattern reconstruction structures) to classify soil properties and the trained network was used for prediction. The soil analysis results of samples collected from the soil survey of block C of Sawah Sempadan, Tanjung Karang rice irrigation project at Selangor of Malaysia were used. Soil maps were produced by the Kriging method using 236 samples (or values) that were a combination of actual values (obtained from real samples) and virtual values (neural network predicted values). For each macronutrient element, three types of maps were generated with 118 actual and 118 virtual values, 59 actual and 177 virtual values, and 30 actual and 206 virtual values, respectively. To evaluate the performance of the proposed method, for each macronutrient element, a base map using 236 actual samples and test maps using 118, 59 and 30 actual samples respectively produced by the Kriging method. A set of parameters was defined to measure the similarity of the maps that were generated with the proposed method, termed the sample reduction method. The results show that the maps that were generated through the sample reduction method were more accurate than the corresponding base maps produced through a smaller number of real samples. For example, nitrogen maps that were produced from 118, 59 and 30 real samples have 78%, 62%, 41% similarity, respectively with the base map (236 samples) and the sample reduction method increased similarity to 87%, 77%, 71%, respectively. Hence, this method can reduce the number of real samples and substitute ANN predictive samples to achieve the specified level of accuracy.

Keywords: artificial neural network, kriging, macro nutrient, pattern recognition, precision farming, soil mapping

Procedia PDF Downloads 70
13914 Automated Heart Sound Classification from Unsegmented Phonocardiogram Signals Using Time Frequency Features

Authors: Nadia Masood Khan, Muhammad Salman Khan, Gul Muhammad Khan

Abstract:

Cardiologists perform cardiac auscultation to detect abnormalities in heart sounds. Since accurate auscultation is a crucial first step in screening patients with heart diseases, there is a need to develop computer-aided detection/diagnosis (CAD) systems to assist cardiologists in interpreting heart sounds and provide second opinions. In this paper different algorithms are implemented for automated heart sound classification using unsegmented phonocardiogram (PCG) signals. Support vector machine (SVM), artificial neural network (ANN) and cartesian genetic programming evolved artificial neural network (CGPANN) without the application of any segmentation algorithm has been explored in this study. The signals are first pre-processed to remove any unwanted frequencies. Both time and frequency domain features are then extracted for training the different models. The different algorithms are tested in multiple scenarios and their strengths and weaknesses are discussed. Results indicate that SVM outperforms the rest with an accuracy of 73.64%.

Keywords: pattern recognition, machine learning, computer aided diagnosis, heart sound classification, and feature extraction

Procedia PDF Downloads 263
13913 Analysis of Lift Arm Failure and Its Improvement for the Use in Farm Tractor

Authors: Japinder Wadhawan, Pradeep Rajan, Alok K. Saran, Navdeep S. Sidhu, Daanvir K. Dhir

Abstract:

Currently, research focus in the development of agricultural equipment and tractor parts in India is innovation and use of alternate materials like austempered ductile iron (ADI). Three-point linkage mechanism of the tractor is susceptible to unpredictable load conditions in the field, and one of the critical components vulnerable to failure is lift arm. Conventionally, lift arm is manufactured either by forging or casting (SG Iron) and main objective of the present work is to reduce the failure occurrences in the lift arm, which is achieved by changing the manufacturing material, i.e ADI, without changing existing design. Effect of four pertinent variables of manufacturing ADI, viz. austenitizing temperature, austenitizing time, austempering temperature, austempering time, was investigated using Taguchi method for design of experiments. To analyze the effect of parameters on the mechanical properties, mean average and signal-to-noise (S/N) ratio was calculated based on the design of experiments with L9 orthogonal array and the linear graph. The best combination for achieving the desired mechanical properties of lift arm is austenitization at 860°C for 90 minutes and austempering at 350°C for 60 minutes. Results showed that the developed component is having 925 MPA tensile strength, 7.8 per cent elongation and 120 joules toughness making it more suitable material for lift arm manufacturing. The confirmatory experiment has been performed and found a good agreement between predicted and experimental value. Also, the CAD model of the existing design was developed in computer aided design software, and structural loading calculations were performed by a commercial finite element analysis package. An optimized shape of the lift arm has also been proposed resulting in light weight and cheaper product than the existing design, which can withstand the same loading conditions effectively.

Keywords: austempered ductile iron, design of experiment, finite element analysis, lift arm

Procedia PDF Downloads 233
13912 Deep Learning Based Polarimetric SAR Images Restoration

Authors: Hossein Aghababaei, Sergio Vitale, Giampaolo ferraioli

Abstract:

In the context of Synthetic Aperture Radar (SAR) data, polarization is an important source of information for Earth's surface monitoring . SAR Systems are often considered to transmit only one polarization. This constraint leads to either single or dual polarimetric SAR imaging modalities. Single polarimetric systems operate with a fixed single polarization of both transmitted and received electromagnetic (EM) waves, resulting in a single acquisition channel. Dual polarimetric systems, on the other hand, transmit in one fixed polarization and receive in two orthogonal polarizations, resulting in two acquisition channels. Dual polarimetric systems are obviously more informative than single polarimetric systems and are increasingly being used for a variety of remote sensing applications. In dual polarimetric systems, the choice of polarizations for the transmitter and the receiver is open. The choice of circular transmit polarization and coherent dual linear receive polarizations forms a special dual polarimetric system called hybrid polarimetry, which brings the properties of rotational invariance to geometrical orientations of features in the scene and optimizes the design of the radar in terms of reliability, mass, and power constraints. The complete characterization of target scattering, however, requires fully polarimetric data, which can be acquired with systems that transmit two orthogonal polarizations. This adds further complexity to data acquisition and shortens the coverage area or swath of fully polarimetric images compared to the swath of dual or hybrid polarimetric images. The search for solutions to augment dual polarimetric data to full polarimetric data will therefore take advantage of full characterization and exploitation of the backscattered field over a wider coverage with less system complexity. Several methods for reconstructing fully polarimetric images using hybrid polarimetric data can be found in the literature. Although the improvements achieved by the newly investigated and experimented reconstruction techniques are undeniable, the existing methods are, however, mostly based upon model assumptions (especially the assumption of reflectance symmetry), which may limit their reliability and applicability to vegetation and forest scenarios. To overcome the problems of these techniques, this paper proposes a new framework for reconstructing fully polarimetric information from hybrid polarimetric data. The framework uses Deep Learning solutions to augment hybrid polarimetric data without relying on model assumptions. A convolutional neural network (CNN) with a specific architecture and loss function is defined for this augmentation problem by focusing on different scattering properties of the polarimetric data. In particular, the method controls the CNN training process with respect to several characteristic features of polarimetric images defined by the combination of different terms in the cost or loss function. The proposed method is experimentally validated with real data sets and compared with a well-known and standard approach from the literature. From the experiments, the reconstruction performance of the proposed framework is superior to conventional reconstruction methods. The pseudo fully polarimetric data reconstructed by the proposed method also agree well with the actual fully polarimetric images acquired by radar systems, confirming the reliability and efficiency of the proposed method.

Keywords: SAR image, deep learning, convolutional neural network, deep neural network, SAR polarimetry

Procedia PDF Downloads 90
13911 Words of Peace in the Speeches of the Egyptian President, Abdulfattah El-Sisi: A Corpus-Based Study

Authors: Mohamed S. Negm, Waleed S. Mandour

Abstract:

The present study aims primarily at investigating words of peace (lexemes of peace) in the formal speeches of the Egyptian president Abdulfattah El-Sisi in a two-year span of time, from 2018 to 2019. This paper attempts to shed light not only on the contextual use of the antonyms, war and peace, but also it underpins quantitative analysis through the current methods of corpus linguistics. As such, the researchers have deployed a corpus-based approach in collecting, encoding, and processing 30 presidential speeches over the stated period (23,411 words and 25,541 tokens in total). Further, semantic fields and collocational networkzs are identified and compared statistically. Results have shown a significant propensity of adopting peace, including its relevant collocation network, textually and therefore, ideationally, at the expense of war concept which in most cases surfaces euphemistically through the noun conflict. The president has not justified the action of war with an honorable cause or a valid reason. Such results, so far, have indicated a positive sociopolitical mindset the Egyptian president possesses and moreover, reveal national and international fair dealing on arising issues.

Keywords: CADS, collocation network, corpus linguistics, critical discourse analysis

Procedia PDF Downloads 155
13910 Performance Enhancement of Hybrid Racing Car by Design Optimization

Authors: Tarang Varmora, Krupa Shah, Karan Patel

Abstract:

Environmental pollution and shortage of conventional fuel are the main concerns in the transportation sector. Most of the vehicles use an internal combustion engine (ICE), powered by gasoline fuels. This results into emission of toxic gases. Hybrid electric vehicle (HEV) powered by electric machine and ICE is capable of reducing emission of toxic gases and fuel consumption. However to build HEV, it is required to accommodate motor and batteries in the vehicle along with engine and fuel tank. Thus, overall weight of the vehicle increases. To improve the fuel economy and acceleration, the weight of the HEV can be minimized. In this paper, the design methodology to reduce the weight of the hybrid racing car is proposed. To this end, the chassis design is optimized. Further, attempt is made to obtain the maximum strength with minimum material weight. The best configuration out of the three main configurations such as series, parallel and the dual-mode (series-parallel) is chosen. Moreover, the most suitable type of motor, battery, braking system, steering system and suspension system are identified. The racing car is designed and analyzed in the simulating software. The safety of the vehicle is assured by performing static and dynamic analysis on the chassis frame. From the results, it is observed that, the weight of the racing car is reduced by 11 % without compromising on safety and cost. It is believed that the proposed design and specifications can be implemented practically for manufacturing hybrid racing car.

Keywords: design optimization, hybrid racing car, simulation, vehicle, weight reduction

Procedia PDF Downloads 295
13909 Effects of Earthquake Induced Debris to Pedestrian and Community Street Network Resilience

Authors: Al-Amin, Huanjun Jiang, Anayat Ali

Abstract:

Reinforced concrete frames (RC), especially Ordinary RC frames, are prone to structural failures/collapse during seismic events, leading to a large proportion of debris from the structures, which obstructs adjacent areas, including streets. These blocked areas severely impede post-earthquake resilience. This study uses computational simulation (FEM) to investigate the amount of debris generated by the seismic collapse of an ordinary reinforced concrete moment frame building and its effects on the adjacent pedestrian and road network. A three-story ordinary reinforced concrete frame building, primarily designed for gravity load and earthquake resistance, was selected for analysis. Sixteen different ground motions were applied and scaled up until the total collapse of the tested building to evaluate the failure mode under various seismic events. Four types of collapse direction were identified through the analysis, namely aligned (positive and negative) and skewed (positive and negative), with aligned collapse being more predominant than skewed cases. The amount and distribution of debris around the collapsed building were assessed to investigate the interaction between collapsed buildings and adjacent street networks. An interaction was established between a building that collapsed in an aligned direction and the adjacent pedestrian walkway and narrow street located in an unplanned old city. The FEM model was validated against an existing shaking table test. The presented results can be utilized to simulate the interdependency between the debris generated from the collapse of seismic-prone buildings and the resilience of street networks. These findings provide insights for better disaster planning and resilient infrastructure development in earthquake-prone regions.

Keywords: building collapse, earthquake-induced debris, ORC moment resisting frame, street network

Procedia PDF Downloads 85
13908 Improvement of Fixed Offshore Structures' Boat Landing Performance Using Practicable Design Criteria

Authors: A. Hamadelnil, Z. Razak, E. Matsoom

Abstract:

Boat landings on fixed offshore structure are designed to absorb the impact energy from the boats approaching the platform for crew transfer. As the size and speed of operating boats vary, the design and maintenance of the boat landings become more challenging. Different oil and gas operators adopting different design criteria for the boat landing design in the region of South East Asia. Rubber strip is used to increase the capacity of the boat landing in absorbing bigger impact energy. Recently, it has been reported that all the rubber strips peel off the boat landing frame within one to two years, and replacement is required to avoid puncturing of the boat’s hull by the exposed sharp edges and bolts used to secure the rubber strip. The capacity of the boat landing in absorbing the impact energy is reduced after the failure of the rubber strip and results in failure of the steel members. The replacement of the rubber strip is costly as it requires a diving spread. The objective of this study is to propose the most practicable criteria to be adopted by oil and gas operators in the design of the boat landings in the region of South East Asia to improve the performance of the boat landing and assure safe operation and cheaper maintenance. This study explores the current design and maintenance challenges of boat landing and compares between the criteria adopted by different operators. In addition, this study explains the reasons behind the denting of many of the boat landing. It also evaluates the effect of grout and rubber strip in the capacity of the boat landing and jacket legs and highlight. Boat landing model and analysis using USFOS and SACS software are carried out and presented in this study considering different design criteria. This study proposes the most practicable criteria to be used in designing the boat landing in South East Asia region to save cost and achieve better performance, safe operation and less cost and maintenance.

Keywords: boat landing, grout, plastic hinge, rubber strip

Procedia PDF Downloads 301
13907 The Co-Simulation Interface SystemC/Matlab Applied in JPEG and SDR Application

Authors: Walid Hassairi, Moncef Bousselmi, Mohamed Abid

Abstract:

Functional verification is a major part of today’s system design task. Several approaches are available for verification on a high abstraction level, where designs are often modeled using MATLAB/Simulink. However, different approaches are a barrier to a unified verification flow. In this paper, we propose a co-simulation interface between SystemC and MATLAB and Simulink to enable functional verification of multi-abstraction levels designs. The resulting verification flow is tested on JPEG compression algorithm. The required synchronization of both simulation environments, as well as data type conversion is solved using the proposed co-simulation flow. We divided into two encoder jpeg parts. First implemented in SystemC which is the DCT is representing the HW part. Second, consisted of quantization and entropy encoding which is implemented in Matlab is the SW part. For communication and synchronization between these two parts we use S-Function and engine in Simulink matlab. With this research premise, this study introduces a new implementation of a Hardware SystemC of DCT. We compare the result of our simulation compared to SW / SW. We observe a reduction in simulation time you have 88.15% in JPEG and the design efficiency of the supply design is 90% in SDR.

Keywords: hardware/software, co-design, co-simulation, systemc, matlab, s-function, communication, synchronization

Procedia PDF Downloads 405
13906 Study on Practice of Improving Water Quality in Urban Rivers by Diverting Clean Water

Authors: Manjie Li, Xiangju Cheng, Yongcan Chen

Abstract:

With rapid development of industrialization and urbanization, water environmental deterioration is widespread in majority of urban rivers, which seriously affects city image and life satisfaction of residents. As an emergency measure to improve water quality, clean water diversion is introduced for water environmental management. Lubao River and Southwest River, two urban rivers in typical plain tidal river network, are identified as technically and economically feasible for the application of clean water diversion. One-dimensional hydrodynamic-water quality model is developed to simulate temporal and spatial variations of water level and water quality, with satisfactory accuracy. The mathematical model after calibration is applied to investigate hydrodynamic and water quality variations in rivers as well as determine the optimum operation scheme of water diversion. Assessment system is developed for evaluation of positive and negative effects of water diversion, demonstrating the effectiveness of clean water diversion and the necessity of pollution reduction.

Keywords: assessment system, clean water diversion, hydrodynamic-water quality model, tidal river network, urban rivers, water environment improvement

Procedia PDF Downloads 276
13905 Pressure Surge Analysis for Al Gardabiya Pump Station Phase III of the Man-Made River Project

Authors: Ahmed Bensreti, Mohamed Gouarsha

Abstract:

This paper presents a review of the pressure surge simulations carried out for Phase III of the Man Made River project in Libya with particular emphasis on the transient generated by simultaneous pump trips at Al Gardabiya Pump Station. The omission of the surge vessel check valve and bypass system on the grounds of cost, ease of design, and construction will result in, as expected, increased surge fluctuations as the damping effect in the form was removed. From the hydraulic and control requirements, it is recommended for Al Gardabiya Pump station that the check valve and check valve bypass be included in the final surge vessel design.

Keywords: computational fluid dynamics, surge vessel design, transient surge analysis, water pipe hydraulics

Procedia PDF Downloads 74
13904 A Unified Deep Framework for Joint 3d Pose Estimation and Action Recognition from a Single Color Camera

Authors: Huy Hieu Pham, Houssam Salmane, Louahdi Khoudour, Alain Crouzil, Pablo Zegers, Sergio Velastin

Abstract:

We present a deep learning-based multitask framework for joint 3D human pose estimation and action recognition from color video sequences. Our approach proceeds along two stages. In the first, we run a real-time 2D pose detector to determine the precise pixel location of important key points of the body. A two-stream neural network is then designed and trained to map detected 2D keypoints into 3D poses. In the second, we deploy the Efficient Neural Architecture Search (ENAS) algorithm to find an optimal network architecture that is used for modeling the Spatio-temporal evolution of the estimated 3D poses via an image-based intermediate representation and performing action recognition. Experiments on Human3.6M, Microsoft Research Redmond (MSR) Action3D, and Stony Brook University (SBU) Kinect Interaction datasets verify the effectiveness of the proposed method on the targeted tasks. Moreover, we show that our method requires a low computational budget for training and inference.

Keywords: human action recognition, pose estimation, D-CNN, deep learning

Procedia PDF Downloads 146