Search results for: cross-validation support vector machine
6539 Human Factors Considerations in New Generation Fighter Planes to Enhance Combat Effectiveness
Authors: Chitra Rajagopal, Indra Deo Kumar, Ruchi Joshi, Binoy Bhargavan
Abstract:
Role of fighter planes in modern network centric military warfare scenarios has changed significantly in the recent past. New generation fighter planes have multirole capability of engaging both air and ground targets with high precision. Multirole aircraft undertakes missions such as Air to Air combat, Air defense, Air to Surface role (including Air interdiction, Close air support, Maritime attack, Suppression and Destruction of enemy air defense), Reconnaissance, Electronic warfare missions, etc. Designers have primarily focused on development of technologies to enhance the combat performance of the fighter planes and very little attention is given to human factor aspects of technologies. Unique physical and psychological challenges are imposed on the pilots to meet operational requirements during these missions. Newly evolved technologies have enhanced aircraft performance in terms of its speed, firepower, stealth, electronic warfare, situational awareness, and vulnerability reduction capabilities. This paper highlights the impact of emerging technologies on human factors for various military operations and missions. Technologies such as ‘cooperative knowledge-based systems’ to aid pilot’s decision making in military conflict scenarios as well as simulation technologies to enhance human performance is also studied as a part of research work. Current and emerging pilot protection technologies and systems which form part of the integrated life support systems in new generation fighter planes is discussed. System safety analysis application to quantify the human reliability in military operations is also studied.Keywords: combat effectiveness, emerging technologies, human factors, systems safety analysis
Procedia PDF Downloads 1416538 A Review of Fractal Dimension Computing Methods Applied to Wear Particles
Authors: Manish Kumar Thakur, Subrata Kumar Ghosh
Abstract:
Various types of particles found in lubricant may be characterized by their fractal dimension. Some of the available methods are: yard-stick method or structured walk method, box-counting method. This paper presents a review of the developments and progress in fractal dimension computing methods as applied to characteristics the surface of wear particles. An overview of these methods, their implementation, their advantages and their limits is also present here. It has been accepted that wear particles contain major information about wear and friction of materials. Morphological analysis of wear particles from a lubricant is a very effective way for machine condition monitoring. Fractal dimension methods are used to characterize the morphology of the found particles. It is very useful in the analysis of complexity of irregular substance. The aim of this review is to bring together the fractal methods applicable for wear particles.Keywords: fractal dimension, morphological analysis, wear, wear particles
Procedia PDF Downloads 4876537 Comparison of Machine Learning and Deep Learning Algorithms for Automatic Classification of 80 Different Pollen Species
Authors: Endrick Barnacin, Jean-Luc Henry, Jimmy Nagau, Jack Molinie
Abstract:
Palynology is a field of interest in many disciplines due to its multiple applications: chronological dating, climatology, allergy treatment, and honey characterization. Unfortunately, the analysis of a pollen slide is a complicated and time consuming task that requires the intervention of experts in the field, which are becoming increasingly rare due to economic and social conditions. That is why the need for automation of this task is urgent. A lot of studies have investigated the subject using different standard image processing descriptors and sometimes hand-crafted ones.In this work, we make a comparative study between classical feature extraction methods (Shape, GLCM, LBP, and others) and Deep Learning (CNN, Autoencoders, Transfer Learning) to perform a recognition task over 80 regional pollen species. It has been found that the use of Transfer Learning seems to be more precise than the other approachesKeywords: pollens identification, features extraction, pollens classification, automated palynology
Procedia PDF Downloads 1356536 An Affordability Evaluation of Computer-Based Social-Emotional Skills Interventions for School-Aged Children with Autism Spectrum Disorder
Authors: Ezra N. S. Lockhart
Abstract:
The number of children diagnosed with autism spectrum disorder (ASD) has increased approximately 173% during the last decade making ASD the fastest growing developmental disability in the United States. This rise in prevalence rates indeed has an effect on schools. ASD is overwhelmingly the most reported primary special education eligibility category for students accessing special education, at a national average of 61.3%. ASD is regarded as an urgent public health concern at an estimated annual per capita cost of $3.2 million. Furthermore, considering that ASD is a lifelong disorder estimated lifetime per capita cost reach $35 billion. The resources available to special education programs are insufficient to meet the educational needs of the 6.4 million students receiving special educational services. This is especially true given that there has been and continues to be a chronic shortage of fully certified special education teachers for decades. Reports indicate that 81.1% of students with special needs spend 40% or more in general education classrooms. Regardless of whether support is implemented in the special education or general education classroom the resource demand is obvious. Schools are actively seeking to implement low-cost alternatives and budget saving measures in response to this demand. In public school settings, programs such as Applied Behavior Analysis are challenging to implement and fund at $40,000 per student per year. As an alternative, computer-based interventions are inexpensive, less time-consuming to implement, and require minimal teacher or paraprofessional training to administer. Affordability, pricing schemes, availability, and compatibility of computer-based interventions that support social and emotional skill development in individuals with ASD are discussed.Keywords: affordability, autism spectrum disorder, computer-based intervention, emotional skills, social skills
Procedia PDF Downloads 1646535 Method for Requirements Analysis and Decision Making for Restructuring Projects in Factories
Authors: Rene Hellmuth
Abstract:
The requirements for the factory planning and the building concerned have changed in the last years. Factory planning has the task of designing products, plants, processes, organization, areas, and the building of a factory. Regular restructuring gains more importance in order to maintain the competitiveness of a factory. Restrictions regarding new areas, shorter life cycles of product and production technology as well as a VUCA (volatility, uncertainty, complexity and ambiguity) world cause more frequently occurring rebuilding measures within a factory. Restructuring of factories is the most common planning case today. Restructuring is more common than new construction, revitalization and dismantling of factories. The increasing importance of restructuring processes shows that the ability to change was and is a promising concept for the reaction of companies to permanently changing conditions. The factory building is the basis for most changes within a factory. If an adaptation of a construction project (factory) is necessary, the inventory documents must be checked and often time-consuming planning of the adaptation must take place to define the relevant components to be adapted, in order to be able to finally evaluate them. The different requirements of the planning participants from the disciplines of factory planning (production planner, logistics planner, automation planner) and industrial construction planning (architect, civil engineer) come together during reconstruction and must be structured. This raises the research question: Which requirements do the disciplines involved in the reconstruction planning place on a digital factory model? A subordinate research question is: How can model-based decision support be provided for a more efficient design of the conversion within a factory? Because of the high adaptation rate of factories and its building described above, a methodology for rescheduling factories based on the requirements engineering method from software development is conceived and designed for practical application in factory restructuring projects. The explorative research procedure according to Kubicek is applied. Explorative research is suitable if the practical usability of the research results has priority. Furthermore, it will be shown how to best use a digital factory model in practice. The focus will be on mobile applications to meet the needs of factory planners on site. An augmented reality (AR) application will be designed and created to provide decision support for planning variants. The aim is to contribute to a shortening of the planning process and model-based decision support for more efficient change management. This requires the application of a methodology that reduces the deficits of the existing approaches. The time and cost expenditure are represented in the AR tablet solution based on a building information model (BIM). Overall, the requirements of those involved in the planning process for a digital factory model in the case of restructuring within a factory are thus first determined in a structured manner. The results are then applied and transferred to a construction site solution based on augmented reality.Keywords: augmented reality, digital factory model, factory planning, restructuring
Procedia PDF Downloads 1326534 Mixing Enhancement with 3D Acoustic Streaming Flow Patterns Induced by Trapezoidal Triangular Structure Micromixer Using Different Mixing Fluids
Authors: Ayalew Yimam Ali
Abstract:
The T-shaped microchannel is used to mix both miscible or immiscible fluids with different viscosities. However, mixing at the entrance of the T-junction microchannel can be difficult mixing phenomena due to micro-scale laminar flow aspects with the two miscible high-viscosity water-glycerol fluids. One of the most promising methods to improve mixing performance and diffusion mass transfer in laminar flow phenomena is acoustic streaming (AS), which is a time-averaged, second-order steady streaming that can produce rolling motion in the microchannel by oscillating a low-frequency range acoustic transducer and inducing an acoustic wave in the flow field. The newly developed 3D trapezoidal, triangular structure spine used in this study was created using sophisticated CNC machine cutting tools used to create microchannel mold with a 3D trapezoidal triangular structure spine alone the T-junction longitudinal mixing region. In order to create the molds for the 3D trapezoidal structure with the 3D sharp edge tip angles of 30° and 0.3mm trapezoidal, triangular sharp edge tip depth from PMMA glass (Polymethylmethacrylate) with advanced CNC machine and the channel manufactured using PDMS (Polydimethylsiloxane) which is grown up longitudinally on the top surface of the Y-junction microchannel using soft lithography nanofabrication strategies. Flow visualization of 3D rolling steady acoustic streaming and mixing enhancement with high-viscosity miscible fluids with different trapezoidal, triangular structure longitudinal length, channel width, high volume flow rate, oscillation frequency, and amplitude using micro-particle image velocimetry (μPIV) techniques were used to study the 3D acoustic streaming flow patterns and mixing enhancement. The streaming velocity fields and vorticity flow fields show 16 times more high vorticity maps than in the absence of acoustic streaming, and mixing performance has been evaluated at various amplitudes, flow rates, and frequencies using the grayscale value of pixel intensity with MATLAB software. Mixing experiments were performed using fluorescent green dye solution with de-ionized water in one inlet side of the channel, and the de-ionized water-glycerol mixture on the other inlet side of the T-channel and degree of mixing was found to have greatly improved from 67.42% without acoustic streaming to 0.96.83% with acoustic streaming. The results show that the creation of a new 3D steady streaming rolling motion with a high volume flowrate around the entrance was enhanced by the formation of a new, three-dimensional, intense streaming rolling motion with a high-volume flowrate around the entrance junction mixing zone with the two miscible high-viscous fluids which are influenced by laminar flow fluid transport phenomena.Keywords: micro fabrication, 3d acoustic streaming flow visualization, micro-particle image velocimetry, mixing enhancement.
Procedia PDF Downloads 196533 Implementation of a Preventive Maintenance Plan to Improve the Availability of the “DRUM” Line at SAMHA (Brandt) Setif, Algeria
Authors: Fahem Belkacemi, Lyes Ouali
Abstract:
Maintenance strategies and assessments continue to be a major concern for companies today. The socio-economic bets of their competitiveness are closely linked to the activities and quality of maintenance. This work deals with a study of a preventive maintenance plan to improve the availability of the production line within SAMSUNG HOME APPLIANCE “SAMHA”, Setif, Algeria. First, we applied the method of analysis of failure modes, their impact, and criticality to reduce downtime and identification of the most critical elements. Finally, to improve the availability of the production line, we carried out a study of the current preventive maintenance plan in the production line workshop at the company level and according to the history sheet of machine failures. We proposed a preventive maintenance plan to improve the availability of the production line.Keywords: preventive maintenance, DRUM line, AMDEC, availability
Procedia PDF Downloads 686532 Using Combination of Sets of Features of Molecules for Aqueous Solubility Prediction: A Random Forest Model
Authors: Muhammet Baldan, Emel Timuçin
Abstract:
Generally, absorption and bioavailability increase if solubility increases; therefore, it is crucial to predict them in drug discovery applications. Molecular descriptors and Molecular properties are traditionally used for the prediction of water solubility. There are various key descriptors that are used for this purpose, namely Drogan Descriptors, Morgan Descriptors, Maccs keys, etc., and each has different prediction capabilities with differentiating successes between different data sets. Another source for the prediction of solubility is structural features; they are commonly used for the prediction of solubility. However, there are little to no studies that combine three or more properties or descriptors for prediction to produce a more powerful prediction model. Unlike available models, we used a combination of those features in a random forest machine learning model for improved solubility prediction to better predict and, therefore, contribute to drug discovery systems.Keywords: solubility, random forest, molecular descriptors, maccs keys
Procedia PDF Downloads 456531 Fuzzy Expert Systems Applied to Intelligent Design of Data Centers
Authors: Mario M. Figueroa de la Cruz, Claudia I. Solorzano, Raul Acosta, Ignacio Funes
Abstract:
This technological development project seeks to create a tool that allows companies, in need of implementing a Data Center, intelligently determining factors for allocating resources support cooling and power supply (UPS) in its conception. The results should show clearly the speed, robustness and reliability of a system designed for deployment in environments where they must manage and protect large volumes of data.Keywords: telecommunications, data center, fuzzy logic, expert systems
Procedia PDF Downloads 3436530 Establishing Multi-Leveled Computability as a Living-System Evolutionary Context
Authors: Ron Cottam, Nils Langloh, Willy Ranson, Roger Vounckx
Abstract:
We start by formally describing the requirements for environmental-reaction survival computation in a natural temporally-demanding medium, and develop this into a more general model of the evolutionary context as a computational machine. The effect of this development is to replace deterministic logic by a modified form which exhibits a continuous range of dimensional fractal diffuseness between the isolation of perfectly ordered localization and the extended communication associated with nonlocality as represented by pure causal chaos. We investigate the appearance of life and consciousness in the derived general model, and propose a representation of Nature within which all localizations have the character of quasi-quantal entities. We compare our conclusions with Heisenberg’s uncertainty principle and nonlocal teleportation, and maintain that computability is the principal influence on evolution in the model we propose.Keywords: computability, evolution, life, localization, modeling, nonlocality
Procedia PDF Downloads 3976529 A Systematic Review on Lifelong Learning Programs for Community-Dwelling Older Adults
Authors: Xi Vivien Wu, Emily Neo Kim Ang, Yi Jung Tung, Wenru Wang
Abstract:
Background and Objective: The increase in life expectancy and emphasis on self-reliance for the older adults are global phenomena. As such, lifelong learning in the community is considered a viable means of promoting successful and active aging. This systematic review aims to examine various lifelong learning programs for community-dwelling older adults and to synthesize the contents and outcomes of these lifelong learning programs. Methods: A systematic search was conducted in July to December 2016. Two reviewers were engaged in the process to ensure creditability of the selection process. Narrative description and analysis were applied with the support of a tabulation of key data including study design, interventions, and outcomes. Results: Eleven articles, which consisted of five randomized controlled trials and six quasi-experimental studies, were included in this review. Interventions included e-health literacy programs with the aid of computers and the Internet (n=4), computer and Internet training (n=3), physical fitness programs (n=2), music program (n=1), and intergenerational program (n=1). All studies used objective measurement tools to evaluate the outcomes of the study. Conclusion: The systematic review indicated lifelong learning programs resulted in positive outcomes in terms of physical health, mental health, social behavior, social support, self-efficacy and confidence in computer usage, and increased e-health literacy efficacy. However, the lifelong learning programs face challenges such as funding shortages, program cuts, and increasing costs. A comprehensive lifelong learning program could be developed to enhance the well-being of the older adults at a more holistic level. Empirical research can be done to explore the effectiveness of this comprehensive lifelong learning program.Keywords: community-dwelling older adults, e-health literacy program, lifelong learning program, the wellbeing of the older adults
Procedia PDF Downloads 1626528 A Comparative Analysis of Body Idioms in Two Romance Languages and in English Aiming at Vocabulary Teaching and Learning
Authors: Marilei Amadeu Sabino
Abstract:
Before the advent of Cognitive Linguistics, metaphor was considered a stylistic issue, but now it is viewed as a critical component of everyday language and a fundamental mechanism of human conceptualizations of the world. It means that human beings' conceptual system (the way we think and act) is metaphorical in nature. Another interesting hypothesis in Cognitive Linguistics is that cognition is embodied, that is, our cognition is influenced by our experiences in the physical world: the mind is connected to the body and the body influences the mind. In this sense, it is believed that many conceptual metaphors appear to be potentially universal or near-universal, because people across the world share certain bodily experiences. In these terms, many metaphors may be identical or very similar in several languages. Thus, in this study, we analyzed some somatic (also called body) idioms of Italian and Portuguese languages, in order to investigate the proportion in which their metaphors are the same, similar or different in both languages. It was selected hundreds of Italian idioms in dictionaries and indicated their corresponding idioms in Portuguese. The analysis allowed to conclude that much of the studied expressions are really structurally, semantically and metaphorically identical or similar in both languages. We also contrasted some Portuguese and Italian somatic expressions to their corresponding English idioms to have a multilingual perspective of the issue, and it also led to the conclusion that the most common idioms based on metaphors are probably those that have to do with the human body. Although this is mere speculation and needs more study, the results found incite relevant discussions on issues that matter Foreign and Second Language Teaching and Learning, including the retention of vocabulary. The teaching of the metaphorically different body idioms also plays an important role in language learning and teaching as it will be shown in this paper. Acknowledgments: FAPESP – São Paulo State Research Support Foundation –the financial support offered (proc. n° 2017/02064-7).Keywords: body idioms, cognitive linguistics, metaphor, vocabulary teaching and learning
Procedia PDF Downloads 3346527 Deep-Learning Based Approach to Facial Emotion Recognition through Convolutional Neural Network
Authors: Nouha Khediri, Mohammed Ben Ammar, Monji Kherallah
Abstract:
Recently, facial emotion recognition (FER) has become increasingly essential to understand the state of the human mind. Accurately classifying emotion from the face is a challenging task. In this paper, we present a facial emotion recognition approach named CV-FER, benefiting from deep learning, especially CNN and VGG16. First, the data is pre-processed with data cleaning and data rotation. Then, we augment the data and proceed to our FER model, which contains five convolutions layers and five pooling layers. Finally, a softmax classifier is used in the output layer to recognize emotions. Based on the above contents, this paper reviews the works of facial emotion recognition based on deep learning. Experiments show that our model outperforms the other methods using the same FER2013 database and yields a recognition rate of 92%. We also put forward some suggestions for future work.Keywords: CNN, deep-learning, facial emotion recognition, machine learning
Procedia PDF Downloads 936526 Optimization of the Control Scheme for Human Extremity Exoskeleton
Authors: Yang Li, Xiaorong Guan, Cheng Xu
Abstract:
In order to design a suitable control scheme for human extremity exoskeleton, the interaction force control scheme with traditional PI controller was presented, and the simulation study of the electromechanical system of the human extremity exoskeleton was carried out by using a MATLAB/Simulink module. By analyzing the simulation calculation results, it was shown that the traditional PI controller is not very suitable for every movement speed of human body. So, at last the fuzzy self-adaptive PI controller was presented to solve this problem. Eventually, the superiority and feasibility of the fuzzy self-adaptive PI controller was proved by the simulation results and experimental results.Keywords: human extremity exoskeleton, interaction force control scheme, simulation study, fuzzy self-adaptive pi controller, man-machine coordinated walking, bear payload
Procedia PDF Downloads 3616525 A Thematic Analysis on the Drivers of Community Participation for River Restoration Projects, the Case of Kerala, India
Authors: Alvin Manuel Vazhayil, Chaozhong Tan, Karl M. Wantzen
Abstract:
As local community participation in river restoration projects is increasingly recognized to be crucial for sustainable outcomes, researchers are exploring factors that motivate community participation globally. In India, while there is consensus in literature on the importance of community engagement in river restoration projects, research on what drives local communities to participate is limited, especially given the societal and economic challenges common in the Global South. This study addresses this gap by exploring the drivers of community participation in the local river restoration initiatives of the "Now Let Me Flow" campaign in Kerala, India. The project aimed to restore 87,000 kilometers of streams through the middle-ground governance approach that integrated bottom-up community efforts with top-down governmental support. The fieldwork involved interviews with 26 key agents, including local leaders, policy practitioners, politicians, and environmental activists associated with the project, and the collection of secondary data from 12 documents including project reports and news articles. The data was analyzed in NVivo (NVivo 11 Plus for Windows, version 11.3.0.773) using thematic analysis which included two cycles of systematic coding. The findings reveal two main drivers influencing community participation: top-down actions from local governments, and bottom-up drivers within the community. The study highlights the importance of local stakeholder collaboration, support of local governments, and local community engagement in successful river restoration projects. These findings are consistent with other empirical studies on participatory environmental problem-solving globally. The results offer crucial insights for policymakers and governments to better design and implement effective and sustainable participatory river restoration projects.Keywords: community initiatives, drivers of participation, environmental governance, river restoration
Procedia PDF Downloads 246524 An Artificial Intelligence Framework to Forecast Air Quality
Authors: Richard Ren
Abstract:
Air pollution is a serious danger to international well-being and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Keywords: air quality prediction, air pollution, artificial intelligence, machine learning algorithms
Procedia PDF Downloads 1246523 Investigation of the Cooling and Uniformity Effectiveness in a Sinter Packed Bed
Authors: Uzu-Kuei Hsu, Chang-Hsien Tai, Kai-Wun Jin
Abstract:
When sinters are filled into the cooler from the sintering machine, and the non-uniform distribution of the sinters leads to uneven cooling. This causes the temperature difference of the sinters leaving the cooler to be so large that it results in the conveyors being deformed by the heat. The present work applies CFD method to investigate the thermo flowfield phenomena in a sinter cooler by the Porous Media Model. Using the obtained experimental data to simulate porosity (Ε), permeability (κ), inertial coefficient (F), specific heat (Cp) and effective thermal conductivity (keff) of the sinter packed beds. The physical model is a similar geometry whose Darcy numbers (Da) are similar to the sinter cooler. Using the Cooling Index (CI) and Uniformity Index (UI) to analyze the thermo flowfield in the sinter packed bed obtains the cooling performance of the sinter cooler.Keywords: porous media, sinter, cooling index (CI), uniformity index (UI), CFD
Procedia PDF Downloads 4006522 Study on Developmental and Pathogenesis Related Genes Expression Deregulation in Brassica compestris Infected with 16Sr-IX Associated Phytoplasma
Authors: Samina Jam Nazeer Ahmad, Samia Yasin, Ijaz Ahmad, Muhammad Tahir, Jam Nazeer Ahmad
Abstract:
Phytoplasmas are phloem-inhibited plant pathogenic bacteria that are transferred by insect vectors. Among biotic factors, Phytoplasma infection induces abnormality influencing the physiology as well as morphology of plants. In 16Sr-IX group phytoplasma-infected brassica compestris, flower abnormalities have been associated with changes in the expression of floral development genes. To determine whether methylation was involved in down-regulation of flower development, the process of DNA methylation and Demethylation was investigated as a possible mechanism for regulation of floral gene expression in phytoplasma infected Brassica transmitted by Orosious orientalis vector by using RT-PCR, MSRE-PCR, Southern blotting, Bisulfite Sequencing, etc. Transcriptional expression of methylated genes was found to be globally down-regulated in plants infected with phytoplasma, but not severely in those infested by insect vectors and variation in expression was found in genes involved in methylation. These results also showed that genes particularly orthologous to Arabidopsis APETALA3 involved in petal formation and flower development was down-regulated severely in phytoplasma-infected brassica and with the fact that phytoplasma and insect induce variation in developmental gene expression. The DNA methylation status of flower developmental gene in phytoplasma infected plants with 5-azacytidine restored gene expression strongly suggesting that DNA methylation was involved in down-regulation of floral development genes in phytoplasma infected brassica.Keywords: genes expression, phytoplasma, DNA methylation, flower development
Procedia PDF Downloads 3716521 An Improvement Study for Mattress Manufacturing Line with a Simulation Model
Authors: Murat Sarı, Emin Gundogar, Mumtaz Ipek
Abstract:
Nowadays, in a furniture sector, competition of market share (portion) and production variety and changeability enforce the firm to reengineer operations on manufacturing line to increase the productivity. In this study, spring mattress manufacturing line of the furniture manufacturing firm is analyzed analytically. It’s intended to search and find the bottlenecks of production to balance the semi-finished material flow. There are four base points required to investigate in bottleneck elimination process. These are bottlenecks of Method, Material, Machine and Man (work force) resources, respectively. Mentioned bottlenecks are investigated and varied scenarios are created for recruitment of manufacturing system. Probable near optimal alternatives are determined by system models built in Arena simulation software.Keywords: bottleneck search, buffer stock, furniture sector, simulation
Procedia PDF Downloads 3566520 Using Discrete Event Simulation Approach to Reduce Waiting Times in Computed Tomography Radiology Department
Authors: Mwafak Shakoor
Abstract:
The purpose of this study was to reduce patient waiting times, improve system throughput and improve resources utilization in radiology department. A discrete event simulation model was developed using Arena simulation software to investigate different alternatives to improve the overall system delivery based on adding resource scenarios due to the linkage between patient waiting times and resource availability. The study revealed that there is no addition investment need to procure additional scanner but hospital management deploy managerial tactics to enhance machine utilization and reduce the long waiting time in the department.Keywords: discrete event simulation, radiology department, arena, waiting time, healthcare modeling, computed tomography
Procedia PDF Downloads 5916519 Impact of Water Storage Structures on Groundwater Recharge in Jeloula Basin, Central Tunisia
Abstract:
An attempt has been made to examine the effect of water storage structures on groundwater recharge in a semi-arid agroclimatic setting in Jeloula Basin (Central Tunisia). In this area, surface water in rivers is seasonal, and therefore groundwater is the perennial source of water supply for domestic and agricultural purposes. Three pumped storage water power plants (PSWPP) have been built to increase the overall water availability in the basin and support agricultural livelihoods of rural smallholders. The scale and geographical dispersion of these multiple lakes restrict the understanding of these coupled human-water systems and the identification of adequate strategies to support riparian farmers. In the present review, hydrochemistry and isotopic tools were combined to get an insight into the processes controlling mineralization and recharge conditions in the investigated aquifer system. This study showed a slight increase in the groundwater level, especially after the artificial recharge operations and a decline when the water volume moves down during drought periods. Chemical data indicate that the main sources of salinity in the waters are related to water-rock interactions. Data inferred from stable isotopes in groundwater samples indicated recharge with modern rainfall. The investigated surface water samples collected from the PSWPP are affected by a significant evaporation and reveal large seasonal variations, which could be controlled by the water volume changes in the open surface reservoirs and the meteorological conditions during evaporation, condensation, and precipitation. The geochemical information is comparable to the isotopic results and illustrates that the chemical and isotopic signatures of reservoir waters differ clearly from those of groundwaters. These data confirm that the contribution of the artificial recharge operations from the PSWPP is very limited.Keywords: Jeloula basin, recharge, hydrochemistry, isotopes
Procedia PDF Downloads 1506518 A Continuous Real-Time Analytic for Predicting Instability in Acute Care Rapid Response Team Activations
Authors: Ashwin Belle, Bryce Benson, Mark Salamango, Fadi Islim, Rodney Daniels, Kevin Ward
Abstract:
A reliable, real-time, and non-invasive system that can identify patients at risk for hemodynamic instability is needed to aid clinicians in their efforts to anticipate patient deterioration and initiate early interventions. The purpose of this pilot study was to explore the clinical capabilities of a real-time analytic from a single lead of an electrocardiograph to correctly distinguish between rapid response team (RRT) activations due to hemodynamic (H-RRT) and non-hemodynamic (NH-RRT) causes, as well as predict H-RRT cases with actionable lead times. The study consisted of a single center, retrospective cohort of 21 patients with RRT activations from step-down and telemetry units. Through electronic health record review and blinded to the analytic’s output, each patient was categorized by clinicians into H-RRT and NH-RRT cases. The analytic output and the categorization were compared. The prediction lead time prior to the RRT call was calculated. The analytic correctly distinguished between H-RRT and NH-RRT cases with 100% accuracy, demonstrating 100% positive and negative predictive values, and 100% sensitivity and specificity. In H-RRT cases, the analytic detected hemodynamic deterioration with a median lead time of 9.5 hours prior to the RRT call (range 14 minutes to 52 hours). The study demonstrates that an electrocardiogram (ECG) based analytic has the potential for providing clinical decision and monitoring support for caregivers to identify at risk patients within a clinically relevant timeframe allowing for increased vigilance and early interventional support to reduce the chances of continued patient deterioration.Keywords: critical care, early warning systems, emergency medicine, heart rate variability, hemodynamic instability, rapid response team
Procedia PDF Downloads 1426517 Building Successful Organizational Business Communication and Its Impact on Business Performance: An Intra- and Inter-Organizational Perspective
Authors: Aynura Valiyeva, Basil John Thomas
Abstract:
Intra-firm communication is critical for building synergy amongst internal business units of a firm, where employees from various functional departments and ranks incorporate their decision-making, understanding of organizational objectives, as well as common norms and culture for better organizational effectiveness. This study builds on and assesses a framework of the causes and consequences of effective communication in business interactions between customer and supplier firms, and the path for efficient communication within a firm. The proposed study’s structural equation modeling (SEM) analysis based on 352 sample responses collected from firm representatives at different job positions ranging from marketing to logistics operations, reveals that, in the frame of reference of intra-organizational communication, organization characteristics and shared values, top management support and style of leadership, as well as information technology, are all significantly related to communication effectiveness. Furthermore, the frequency and variety of interactions enhance the outcome of communication, that improves a company’s performance. The results reveal that cultural factors are significantly related to communication effectiveness, as well as the shared beliefs and goals. In terms of organizational factors, leadership style, top management support and information technology are significant determinants of effective communication. Among the contextual factors, interaction frequency and diversity are found to be priority factors. This study also tests the relationship between supplier and supplier firm performance in the context of communication effectiveness, and finds that they are closely related, when trust and commitment is built between business partners. When firms do business in other multicultural contexts, language and shared values with destination country must be considered significant elements of communication process.Keywords: business performance, intra-firm communication, inter-firm communication, structural equation modeling
Procedia PDF Downloads 956516 Multi-Criteria Bid/No Bid Decision Support Framework for General Contractors: A Case of Pakistan
Authors: Nida Iftikhar, Jamaluddin Thaheem, Bilal Iftikhar
Abstract:
In the construction industry, adequate and effective decision-making can mean the difference between success and failure. Bidding is the most important element of the construction business since it is a mean by which contractors obtain work. This is probably the only option for any contractor firm to sustain in the market and achieve its objective of earning the profits by winning tenders. The capability to select most appropriate ventures not only defines the success and wellbeing of contractor firms but also their survival and sustainability in the industry. The construction practitioners are usually on their own when it comes to deciding on bidding for a project or not. Usually, experience-based solutions are offered where a lot of subjectivity is involved. This research has been opted considering the local construction industry of Pakistan in order to examine the critical success factors from contractors’ perspective while making bidding decisions, listing and evaluating critical factors in order of their importance, categorization of these factors into decision support & decision oppose groups and to develop a framework to help contractors in the decision-making process. Literature review, questionnaires, and structured interviews are used for identification and quantification of factors affecting bid/no bid decision-making. Statistical methods of ranking analysis and analytical hierarchy process of multi-criteria decision-making method are used for analysis. It is found that profitability, need for work and financial health of client are the most decisive factors in bid/no bid decision-making while project size, project type, fulfilling the tender conditions imposed by the client and relationship, identity & reputation of the client are least impact factors in bid/no bid decision-making. Further, to verify the developed framework, case studies have been conducted to evaluate the bid/no bid decision-making in building procurement. This is the first of its nature study in the context of the local construction industry and recommends using a holistic decision-making framework for such business-critical deliberations.Keywords: bidding, bid decision-making, construction procurement, contractor
Procedia PDF Downloads 1896515 Using the Clinical Decision Support Platform, Dem DX, to Assess the ‘Urgent Community Care Team’s Notes Regarding Clinical Assessment, Management, and Healthcare Outcomes
Abstract:
Background: Heywood, Middleton & Rochdale Urgent Community Care Team (UCCT)1 is a great example of using a multidisciplinary team to cope with demand. The service reduces unnecessary admissions to hospitals and ensures that patients can leave the hospital quicker by making care more readily available within the community and patient’s homes. The team comprises nurses, community practitioners, and allied health professions, including physiotherapy, occupational therapy, pharmacy, and GPs. The main challenge for a team with a range of experiences and skill sets is to maintain consistency of care, which technology can help address. Allied healthcare professionals (HCPs) are often used in expanded roles with duties mainly involving patient consultations and decision making to ease pressure on doctors. The Clinical Reasoning Platform (CRP) Dem Dx is used to support new as well as experienced professionals in the decision making process. By guiding HCPs through diagnosing patients from an expansive directory of differential diagnoses, patients can receive quality care in the community. Actions on the platform are determined using NICE guidelines along with local guidance influencing the assessment and management of a patient. Objective: To compare the clinical assessment, decisions, and actions taken by the UCCT multidisciplinary team in the community and Dem Dx, using retrospective clinical cases. Methodology: Dem Dx was used to analyse 192 anonymised cases provided by the HMR UCCT. The team’s performance was compared with Dem Dx regarding the quality of the documentation of the clinical assessment and the next steps on the patient’s journey, including the initial management, actions, and any onward referrals made. The cases were audited by two medical doctors. Results: The study found that the actions outlined by the Dem Dx platform were appropriate in almost 87% of cases. When in a direct comparison between DemDX and the actions taken by the clinical team, it was found that the platform was suitable 83% (p<0.001) of the time and could lead to a potential improvement of 66% in the assessment and management of cases. Dem Dx also served to highlight the importance of comprehensive and high quality clinical documentation. The quality of documentation of cases by UCCT can be improved to provide a detailed account of the assessment and management process. By providing step-by-step guidance and documentation at every stage, Dem Dx may ensure that legal accountability has been fulfilled. Conclusion: With the ever expanding workforce in the NHS, technology has become a key component in driving healthcare outcomes. To improve healthcare provision and clinical reasoning, a decision support platform can be integrated into HCPs’ clinical practice. Potential assistance with clinical assessments, the most appropriate next step and actions in a patient’s care, and improvements in the documentation was highlighted by this retrospective study. A further study has been planned to ascertain the effectiveness of improving outcomes using the clinical reasoning platform within the clinical setting by clinicians.Keywords: allied health professional, assessment, clinical reasoning, clinical records, clinical decision-making, ocumentation
Procedia PDF Downloads 1636514 The Musician as the Athlete: Psychological Response to Injury
Authors: Shulamit Sternin
Abstract:
Athletes experience injuries that can have both a physical and psychological impact on the individual. In such instances, athletes are able to rely on the established field of sports psychology to facilitate holistic rehabilitation. Musicians, like athletes rely on their bodies to perform in much the same way athletes do and are also susceptible to injury. Due to the similar performative nature of succeeding as an athletes or a musician, these careers share many of the same primary psychological concerns and therefore it is reasonable that athletes and musicians may require similar rehabilitation post-injury. However, musicians face their own unique psychological challenges and understanding the needs of an injured athlete can serve as a foundation for understanding the injured musician but is not enough to fully rehabilitate an injured musician. The current research surrounding musicians and their injuries is primarily focused on physiological aspects of injury and rehabilitation; the psychological aspects have not yet received adequate attention resulting in poor musician rehabilitation post- injury. This review paper uses current models of psychological response to injury in athletes to draw parallels with the psychological response to injury in musicians. Search engines such as Medline and PsycInfo were systematically searched using specific key words, such as psychological response, injury, athlete, and musician. Studies that focused on post-injury psychology of either the musician or the athlete were included. Within the literature there is evidence to support psychological responses, unique to the musician, that are not accounted for by current models of response in athletes. The models of psychological response to injury in athletes are inadequate tools for application to the musician. Future directions for performance arts research that can fill the gaps in our understanding and modeling of musicians’ response to injury are discussed. A better understanding of the psychological impact of injuries on musicians holds significant implications for health care practitioners working with injured musicians. Understanding the unique barriers musicians face post-injury, and how support for this population must be tailored to properly suit musicians’ needs will aid in more holistic rehabilitation and a higher likelihood of musician’s returning to pre-injury performance levels.Keywords: athlete, injury, musician, psychological response
Procedia PDF Downloads 2046513 Operator Efficiency Study for Assembly Line Optimization at Semiconductor Assembly and Test
Authors: Rohana Abdullah, Md Nizam Abd Rahman, Seri Rahayu Kamat
Abstract:
Operator efficiency aspect is gaining importance in ensuring optimized usage of resources especially in the semi-automated manufacturing environment. This paper addresses a case study done to solve operator efficiency and line balancing issue at a semiconductor assembly and test manufacturing. A Man-to-Machine (M2M) work study technique is used to study operator current utilization and determine the optimum allocation of the operators to the machines. Critical factors such as operator activity, activity frequency and operator competency level are considered to gain insight on the parameters that affects the operator utilization. Equipment standard time and overall equipment efficiency (OEE) information are also gathered and analyzed to achieve a balanced and optimized production.Keywords: operator efficiency, optimized production, line balancing, industrial and manufacturing engineering
Procedia PDF Downloads 7296512 Regulation, Evaluation and Incentives: An Analysis of Management Characteristics of Nonprofit Organizations in China
Authors: Wuqi Yang, Sufeng Li, Linda Zhai, Zhizhong Yuan, Shengli Wang
Abstract:
How to assess and evaluate a not-for-profit (NFP) organisation’s performance should be of concern to all stakeholders because, amongst other things, without correctly evaluating its performance might affect an NFP being not able to continue to meet its service objectives. Given the growing importance of this sector in China, more and more existing and potential donors, governments and others are starting to take an increased interest in the financial conditions and performance of NFPs. However, when these various groups look for ways (methods) to assess the performance of NFPs, they find there has been relatively little research conducted into methods for assessing the performance of NFPs in China. Furthermore, there does not appear to have been any research to date into the performance evaluation of Chinese NFPs. The focus of this paper is to investigate how the Chinese government manages and evaluates not-for-profit (NFP) organisations' performances in China. Through examining and evaluating the NFPs in China from different aspects such as business development, mission fulfillment, financial position and other status, this paper finds some institutional constraints currently facing by the NFPs in China. At the end of this paper, a new regulatory framework is proposed for regulators’ considerations. The research methods are based on a combination of a literature review; using Balanced Scorecard to assess NFPs in China; Case Study method is employed to analyse a charity foundation’s performance in Hebei Province and proposing solutions to resolve the current issues and challenges facing by the NFPs. These solutions include: formulating laws and regulations on NFPs; simplifying management procedures, introducing tax incentives, providing financial support and other incentives to support the development of non-profit organizations in China. This study provides the first step towards a greater understanding of the NFP performance evaluation in China. It is expected that the findings and solutions from this study will be useful to anyone involved with the China NFP sector; particularly CEOs, managers, bankers, independent auditors and government agencies.Keywords: Chinese non-profit organizations, evaluation, management, supervision
Procedia PDF Downloads 1736511 Power Control of DFIG in WECS Using Backstipping and Sliding Mode Controller
Authors: Abdellah Boualouch, Ahmed Essadki, Tamou Nasser, Ali Boukhriss, Abdellatif Frigui
Abstract:
This paper presents a power control for a Doubly Fed Induction Generator (DFIG) using in Wind Energy Conversion System (WECS) connected to the grid. The proposed control strategy employs two nonlinear controllers, Backstipping (BSC) and sliding-mode controller (SMC) scheme to directly calculate the required rotor control voltage so as to eliminate the instantaneous errors of active and reactive powers. In this paper the advantages of BSC and SMC are presented, the performance and robustness of this two controller’s strategy are compared between them. First, we present a model of wind turbine and DFIG machine, then a synthesis of the controllers and their application in the DFIG power control. Simulation results on a 1.5MW grid-connected DFIG system are provided by MATLAB/Simulink.Keywords: backstipping, DFIG, power control, sliding-mode, WESC
Procedia PDF Downloads 5926510 Stress Perception, Social Supports and Family Function among Military Inpatients with Adjustment Disorders in Taiwan
Authors: Huey-Fang Sun, Wei-Kai Weng, Mei-Kuang Chao, Hui-Shan Hsu, Tsai-Yin Shih
Abstract:
Psycho-social stress is important for mental illness and the presence of emotional and behavioral symptoms to an identifiable event is the central feature of adjustment disorders. However, whether patients with adjustment disorders have been raised in family with poor family functions and social supports and have higher stress perception than their peer group when they both experienced a similar stressful environment remains unknown. The specific aims of the study are to investigate the correlation among the family function, social supports and the level of stress perception and to test the hypothesis that military patients with adjustment disorders would have lower family function, lower social supports and higher stress perception than their healthy colleagues recruited in the same cohort for military services given their common exposure to similar stressful environments. Methods: The study was conducted in four hospitals of northern part of Taiwan from July 1, 2015 to June 30, 2017 and a matched case-control study design was used. The inclusion criteria for potential patient participants were psychiatric inpatients that serviced in military during the study period and met the diagnosis of adjustment disorders. Patients who had been admitted to psychiatric ward before or had illiteracy problem were excluded. A healthy military control sample matched by the same military service unit, gender, and recruited cohort was invited to participate the study as well. Totally 74 participants (37 patients and 37 controls) completed the consent forms and filled out the research questionnaires. Questionnaires used in the study included Perceived Stress Scale (PSS) as a measure of stress perception; Family APGAR as a measure of family function, and Multidimensional Scale of Perceived Social Support (MSPSS) as a measure of social supports. Pearson correlation analysis and t-test were applied for statistical analysis. Results: The analysis results showed that PSS level significantly negatively correlated with three social support subscales (family subscale, r= -.37, P < .05; friend subscale, r= -.38, P < .05; significant other subscale, r= -.39, P < .05). A negative correlation between PSS level and Family APGAR only reached a borderline significant level (P= .06). The t-test results for PSS scores, Family APGAR levels, and three subscale scores of MSPSS between patient and control participants were all significantly different (P < .001, P < .05, P < .05, P < .05, P < .05, respectively) and the patient participants had higher stress perception scores, lower social supports and lower family function scores than the healthy control participants. Conclusions: Our study suggested that family function and social supports were negatively correlated with patients’ subjective stress perception. Military patients with adjustment disorders tended to have higher stress perception and lower family function and social supports than those military peers who remained healthy and still provided services in their military units.Keywords: adjustment disorders, family function, social support, stress perception
Procedia PDF Downloads 192