Search results for: alternative%20energy
277 Barriers to Social Entrepreneurship by Refugees: An Explorative Study How Prior Experience Influences Social Orientation
Authors: D. M. Koers, A. J. Groen, P. D. Englis, R. Harms
Abstract:
We are witnessing the largest level of displacement of people since World War II. Refugees want to become independent as quickly as possible and build a new, safe future; however, access to the labor market is difficult and they face many problems that are not easily solved. This makes self-employment including social entrepreneurship a valuable alternative. Our research studied refugee-based entrepreneurship and examined whether prior knowledge, unmet personal needs and contextual factors influence how refugees recognize opportunities and if this influences their social orientation. In addition, we examine the barriers refugees face when starting up a company in the Netherlands. We use a case study design with a mixed-method approach, combining in-depth interviews and survey data. Data was collected from two Dutch entrepreneurial training programs in the Netherlands. We have a sample size of 27 latent refugee entrepreneurs. Our results show that refugees score high on the social entrepreneurial measures. They perceive themselves as having a strong social vision and are determined to defend a social need. They also score high on sustainability and state that their business ideas improve the quality of life on the long run. Based on these findings, we did not expect that only 5 participants had business ideas with a social orientation. In this group, 37,5% started a company before and 77.8% used their personal experience to come up with this business idea. Another 70,3% had the higher professional education or academic education. In the interviews, we found that they often copy and paste their gained experience from a previous profession on their new context and expect that it would work well. The social aspect lies in their cultural values and personal beliefs but is not reflected in their business models. One of the reasons could be that the context in which the refugee operates as a moderator suppressing the social mission and social value creation opportunities. Refugees are first and foremost focused on their survival. They do not want to be on social welfare and feel a strong need to be independent. Since they cannot access the labor market easily and face labor market discrimination they want to start a company. Another factor that explains lack of the social orientation in their business ideas is that social entrepreneurship is not a known concept in their home countries. Their idea of entrepreneurship differs substantially. We found that a huge barrier for refugees is their expectations about setting up a business, which are often not realistic because they have little knowledge about the system, institutions and corresponding red tape. In those instances, can the institutional configuration of a country, cultural differences, and perspective on entrepreneurship hinders social entrepreneurship. In conclusion, there might be latent potential for social entrepreneurship in refugees but there are many barriers to overcome. Overcoming these barriers can enhance local communities and enhance integration. In addition it has a positive financial impact on the host country because it reduces the pressure on the social system and stimulate the economy.Keywords: immigrant entrepreneurship, refugee entrepreneurship, social entrepreneurship, prior experience, opportunity recognition
Procedia PDF Downloads 167276 The Use of Intraarticular Aqueous Sarapin for Treatment of Chronic Knee Pain in Elderly Patients in a Primary Care Setting
Authors: Robert E. Kenney, Richard B. Aguilar, Efrain Antunez, Gregory Schor-Haskin, Rafael Rey, Catie Falcon, Luis Arce
Abstract:
This study sought to explore the effect of Sarapin injections on chronic knee pain (CKP). Many adults suffer from CKP which is most often attributed to osteoarthritis. Current treatment regimens for CKP involve the use NSAIDS medications, injections with steroids/analgesic, platelet rich plasma injections, or orthopedic surgical interventions. Sarapin is a commercially available homeopathic aqueous extract from the pitcher plant. Studies on the use of Sarapin as a treatment for cervical, thoracic, and lumbosacral facet joint nerve blocks have been performed with mixed results. There is little available evidence on the use of Sarapin in CKP. This study examines the effect of a series of 3 weekly injections of aqueous Sarapin in 95 elderly patients with CKP in a primary care setting. Cano Health, a primary care group, identified 95 successive patients with CKP from its multimodal physiotherapy program for chronic pain. Patients underwent evaluation by a clinician, underwent diagnostic Xrays of the knees, and the treatment plan with three weekly Sarapin injections was discussed. A pain and functional limitation survey (a modified Lower Extremity Functional Scale (mLEFS)) was administered prior to initiating treatment (Entry Survey (ES)). Each patient received an intraarticular injection of 2 cc of aqueous Sarapin with 1cc 1% lidocaine during weeks 1, 2 and 3. The mLEFS was administered again at week 4, one week after the third Sarapin injection (Exit Survey (ExS)). Demographics: Mean Age 62 +/- 9.8; 73% female; 89% Hispanic/Latino; mean time between ES and ExS was 27.5 +/-8.2 days. Survey: The mLEFS was based on a published Lower Extremity Functional Scale and each patient rated their pain or functional limitation from 0 (no difficulty) to 5 (severe difficulty) for 10 questions. Answers were summed and compared. Maximum score for severe difficulty would be 50 points. Results: Mean pain/functional scores: ES was 30.3 +/-12.1 and ExS was 19.5 +/- 12.5. This represents a relative improvement of 35.7% (P<0.00001). A total of 81% (77/95) of the patients showed improvement in symptoms at week four as assessed by the mLEFS. There were 11 patients who reported an increase in their survey scores while 7 patients reported no change. When evaluating the cohort that reported improvement, the ES was 30.9 +/-11.4 and ExS was 16.3 +/-9.8 yielding a 47.2% relative improvement (P<0.00001). Injections were well tolerated, and no adverse events were reported. Conclusions: In this cohort of 95 elderly patients with CKP, treatment with 3 weekly injections of Sarapin significantly improved pain and function as assessed by a mLEFS survey. The majority (81%) of patients responded positively to therapy, 12% had worsening symptoms and 7% reported no change. The use of intraarticular injections of Sarapin for CKP was shown to be an effective modality of treatment. Sarapin’s low cost, tolerability, and ease of use make it an attractive alternative to NSAIDS, steroids, PRP or surgical intervention for this common debilitating condition.Keywords: Sarapin, intraarticular, chronic knee pain, osteoarthritis
Procedia PDF Downloads 91275 Comparative Appraisal of Polymeric Matrices Synthesis and Characterization Based on Maleic versus Itaconic Anhydride and 3,9-Divinyl-2,4,8,10-Tetraoxaspiro[5.5]-Undecane
Authors: Iordana Neamtu, Aurica P. Chiriac, Loredana E. Nita, Mihai Asandulesa, Elena Butnaru, Nita Tudorachi, Alina Diaconu
Abstract:
In the last decade, the attention of many researchers is focused on the synthesis of innovative “intelligent” copolymer structures with great potential for different uses. This considerable scientific interest is stimulated by possibility of the significant improvements in physical, mechanical, thermal and other important specific properties of these materials. Functionalization of polymer in synthesis by designing a suitable composition with the desired properties and applications is recognized as a valuable tool. In this work is presented a comparative study of the properties of the new copolymers poly(maleic anhydride maleic-co-3,9-divinyl-2,4,8,10-tetraoxaspiro[5.5]undecane) and poly(itaconic-anhydride-co-3,9-divinyl-2,4,8,10-tetraoxaspiro[5.5]undecane) obtained by radical polymerization in dioxane, using 2,2′-azobis(2-methylpropionitrile) as free-radical initiator. The comonomers are able for generating special effects as for example network formation, biodegradability and biocompatibility, gel formation capacity, binding properties, amphiphilicity, good oxidative and thermal stability, good film formers, and temperature and pH sensitivity. Maleic anhydride (MA) and also the isostructural analog itaconic anhydride (ITA) as polyfunctional monomers are widely used in the synthesis of reactive macromolecules with linear, hyperbranched and self & assembled structures to prepare high performance engineering, bioengineering and nano engineering materials. The incorporation of spiroacetal groups in polymer structures improves the solubility and the adhesive properties, induce good oxidative and thermal stability, are formers of good fiber or films with good flexibility and tensile strength. Also, the spiroacetal rings induce interactions on ether oxygen such as hydrogen bonds or coordinate bonds with other functional groups determining bulkiness and stiffness. The synthesized copolymers are analyzed by DSC, oscillatory and rotational rheological measurements and dielectric spectroscopy with the aim of underlying the heating behavior, solution viscosity as a function of shear rate and temperature and to investigate the relaxation processes and the motion of functional groups present in side chain around the main chain or bonds of the side chain. Acknowledgments This work was financially supported by the grant of the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, project number PN-II-132/2014 “Magnetic biomimetic supports as alternative strategy for bone tissue engineering and repair’’ (MAGBIOTISS).Keywords: Poly(maleic anhydride-co-3, 9-divinyl-2, 4, 8, 10-tetraoxaspiro (5.5)undecane); Poly(itaconic anhydride-co-3, 9-divinyl-2, 4, 8, 10-tetraoxaspiro (5.5)undecane); DSC; oscillatory and rotational rheological analysis; dielectric spectroscopy
Procedia PDF Downloads 230274 Laboratory Assessment of Electrical Vertical Drains in Composite Soils Using Kaolin and Bentonite Clays
Authors: Maher Z. Mohammed, Barry G. Clarke
Abstract:
As an alternative to stone column in fine grained soils, it is possible to create stiffened columns of soils using electroosmosis (electroosmotic piles). This program of this research is to establish the effectiveness and efficiency of the process in different soils. The aim of this study is to assess the capability of electroosmosis treatment in a range of composite soils. The combined electroosmotic and preloading equipment developed by Nizar and Clarke (2013) was used with an octagonal array of anodes surrounding a single cathode in a nominal 250mm diameter 300mm deep cylinder of soil and 80mm anode to cathode distance. Copper coiled springs were used as electrodes to allow the soil to consolidate either due to an external vertical applied load or electroosmosis. The equipment was modified to allow the temperature to be monitored during the test. Electroosmotic tests were performed on China Clay Grade E kaolin and calcium bentonite (Bentonex CB) mixed with sand fraction C (BS 1881 part 131) at different ratios by weight; (0, 23, 33, 50 and 67%) subjected to applied voltages (5, 10, 15 and 20). The soil slurry was prepared by mixing the dry soil with water to 1.5 times the liquid limit of the soil mixture. The mineralogical and geotechnical properties of the tested soils were measured before the electroosmosis treatment began. In the electroosmosis cell tests, the settlement, expelled water, variation of electrical current and applied voltage, and the generated heat was monitored during the test time for 24 osmotic tests. Water content was measured at the end of each test. The electroosmotic tests are divided into three phases. In Phase 1, 15 kPa was applied to simulate a working platform and produce a uniform soil which had been deposited as a slurry. 50 kPa was used in Phase 3 to simulate a surcharge load. The electroosmotic treatment was only performed during Phase 2 where a constant voltage was applied through the electrodes in addition to the 15 kPa pressure. This phase was stopped when no further water was expelled from the cell, indicating the electroosmotic process had stopped due to either the degradation of the anode or the flow due to the hydraulic gradient exactly balanced the electroosmotic flow resulting in no flow. Control tests for each soil mixture were carried out to assess the behaviour of the soil samples subjected to only an increase of vertical pressure, which is 15kPa in Phase 1 and 50kPa in Phase 3. Analysis of the experimental results from this study showed a significant dewatering effect on the soil slurries. The water discharged by the electroosmotic treatment process decreased as the sand content increased. Soil temperature increased significantly when electrical power was applied and drops when applied DC power turned off or when the electrode degraded. The highest increase in temperature was found in pure clays at higher applied voltage after about 8 hours of electroosmosis test.Keywords: electrokinetic treatment, electrical conductivity, electroosmotic consolidation, electroosmosis permeability ratio
Procedia PDF Downloads 170273 Forecasting Thermal Energy Demand in District Heating and Cooling Systems Using Long Short-Term Memory Neural Networks
Authors: Kostas Kouvaris, Anastasia Eleftheriou, Georgios A. Sarantitis, Apostolos Chondronasios
Abstract:
To achieve the objective of almost zero carbon energy solutions by 2050, the EU needs to accelerate the development of integrated, highly efficient and environmentally friendly solutions. In this direction, district heating and cooling (DHC) emerges as a viable and more efficient alternative to conventional, decentralized heating and cooling systems, enabling a combination of more efficient renewable and competitive energy supplies. In this paper, we develop a forecasting tool for near real-time local weather and thermal energy demand predictions for an entire DHC network. In this fashion, we are able to extend the functionality and to improve the energy efficiency of the DHC network by predicting and adjusting the heat load that is distributed from the heat generation plant to the connected buildings by the heat pipe network. Two case-studies are considered; one for Vransko, Slovenia and one for Montpellier, France. The data consists of i) local weather data, such as humidity, temperature, and precipitation, ii) weather forecast data, such as the outdoor temperature and iii) DHC operational parameters, such as the mass flow rate, supply and return temperature. The external temperature is found to be the most important energy-related variable for space conditioning, and thus it is used as an external parameter for the energy demand models. For the development of the forecasting tool, we use state-of-the-art deep neural networks and more specifically, recurrent networks with long-short-term memory cells, which are able to capture complex non-linear relations among temporal variables. Firstly, we develop models to forecast outdoor temperatures for the next 24 hours using local weather data for each case-study. Subsequently, we develop models to forecast thermal demand for the same period, taking under consideration past energy demand values as well as the predicted temperature values from the weather forecasting models. The contributions to the scientific and industrial community are three-fold, and the empirical results are highly encouraging. First, we are able to predict future thermal demand levels for the two locations under consideration with minimal errors. Second, we examine the impact of the outdoor temperature on the predictive ability of the models and how the accuracy of the energy demand forecasts decreases with the forecast horizon. Third, we extend the relevant literature with a new dataset of thermal demand and examine the performance and applicability of machine learning techniques to solve real-world problems. Overall, the solution proposed in this paper is in accordance with EU targets, providing an automated smart energy management system, decreasing human errors and reducing excessive energy production.Keywords: machine learning, LSTMs, district heating and cooling system, thermal demand
Procedia PDF Downloads 147272 Organic Light Emitting Devices Based on Low Symmetry Coordination Structured Lanthanide Complexes
Authors: Zubair Ahmed, Andrea Barbieri
Abstract:
The need to reduce energy consumption has prompted a considerable research effort for developing alternative energy-efficient lighting systems to replace conventional light sources (i.e., incandescent and fluorescent lamps). Organic light emitting device (OLED) technology offers the distinctive possibility to fabricate large area flat devices by vacuum or solution processing. Lanthanide β-diketonates complexes, due to unique photophysical properties of Ln(III) ions, have been explored as emitting layers in OLED displays and in solid-state lighting (SSL) in order to achieve high efficiency and color purity. For such applications, the excellent photoluminescence quantum yield (PLQY) and stability are the two key points that can be achieved simply by selecting the proper organic ligands around the Ln ion in a coordination sphere. Regarding the strategies to enhance the PLQY, the most common is the suppression of the radiationless deactivation pathways due to the presence of high-frequency oscillators (e.g., OH, –CH groups) around the Ln centre. Recently, a different approach to maximize the PLQY of Ln(β-DKs) has been proposed (named 'Escalate Coordination Anisotropy', ECA). It is based on the assumption that coordinating the Ln ion with different ligands will break the centrosymmetry of the molecule leading to less forbidden transitions (loosening the constraints of the Laporte rule). The OLEDs based on such complexes are available, but with low efficiency and stability. In order to get efficient devices, there is a need to develop some new Ln complexes with enhanced PLQYs and stabilities. For this purpose, the Ln complexes, both visible and (NIR) emitting, of variant coordination structures based on the various fluorinated/non-fluorinated β-diketones and O/N-donor neutral ligands were synthesized using a one step in situ method. In this method, the β-diketones, base, LnCl₃.nH₂O and neutral ligands were mixed in a 3:3:1:1 M ratio in ethanol that gave air and moisture stable complexes. Further, they were characterized by means of elemental analysis, NMR spectroscopy and single crystal X-ray diffraction. Thereafter, their photophysical properties were studied to select the best complexes for the fabrication of stable and efficient OLEDs. Finally, the OLEDs were fabricated and investigated using these complexes as emitting layers along with other organic layers like NPB,N,N′-Di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine (hole-transporting layer), BCP, 2,9-Dimethyl-4,7-diphenyl-1,10-phenanthroline (hole-blocker) and Alq3 (electron-transporting layer). The layers were sequentially deposited under high vacuum environment by thermal evaporation onto ITO glass substrates. Moreover, co-deposition techniques were used to improve charge transport in the devices and to avoid quenching phenomena. The devices show strong electroluminescence at 612, 998, 1064 and 1534 nm corresponding to ⁵D₀ →⁷F₂(Eu), ²F₅/₂ → ²F₇/₂ (Yb), ⁴F₃/₂→ ⁴I₉/₂ (Nd) and ⁴I1₃/₂→ ⁴I1₅/₂ (Er). All the devices fabricated show good efficiency as well as stability.Keywords: electroluminescence, lanthanides, paramagnetic NMR, photoluminescence
Procedia PDF Downloads 125271 Test Rig Development for Up-to-Date Experimental Study of Multi-Stage Flash Distillation Process
Authors: Marek Vondra, Petr Bobák
Abstract:
Vacuum evaporation is a reliable and well-proven technology with a wide application range which is frequently used in food, chemical or pharmaceutical industries. Recently, numerous remarkable studies have been carried out to investigate utilization of this technology in the area of wastewater treatment. One of the most successful applications of vacuum evaporation principal is connected with seawater desalination. Since 1950’s, multi-stage flash distillation (MSF) has been the leading technology in this field and it is still irreplaceable in many respects, despite a rapid increase in cheaper reverse-osmosis-based installations in recent decades. MSF plants are conveniently operated in countries with a fluctuating seawater quality and at locations where a sufficient amount of waste heat is available. Nowadays, most of the MSF research is connected with alternative heat sources utilization and with hybridization, i.e. merging of different types of desalination technologies. Some of the studies are concerned with basic principles of the static flash phenomenon, but only few scientists have lately focused on the fundamentals of continuous multi-stage evaporation. Limited measurement possibilities at operating plants and insufficiently equipped experimental facilities may be the reasons. The aim of the presented study was to design, construct and test an up-to-date test rig with an advanced measurement system which will provide real time monitoring options of all the important operational parameters under various conditions. The whole system consists of a conventionally designed MSF unit with 8 evaporation chambers, versatile heating circuit for different kinds of feed water (e.g. seawater, waste water), sophisticated system for acquisition and real-time visualization of all the related quantities (temperature, pressure, flow rate, weight, conductivity, pH, water level, power input), access to a wide spectrum of operational media (salt, fresh and softened water, steam, natural gas, compressed air, electrical energy) and integrated transparent features which enable a direct visual control of selected physical mechanisms (water evaporation in chambers, water level right before brine and distillate pumps). Thanks to the adjustable process parameters, it is possible to operate the test unit at desired operational conditions. This allows researchers to carry out statistical design and analysis of experiments. Valuable results obtained in this manner could be further employed in simulations and process modeling. First experimental tests confirm correctness of the presented approach and promise interesting outputs in the future. The presented experimental apparatus enables flexible and efficient research of the whole MSF process.Keywords: design of experiment, multi-stage flash distillation, test rig, vacuum evaporation
Procedia PDF Downloads 388270 Techno Economic Analysis of CAES Systems Integrated into Gas-Steam Combined Plants
Authors: Coriolano Salvini
Abstract:
The increasing utilization of renewable energy sources for electric power production calls for the introduction of energy storage systems to match the electric demand along the time. Although many countries are pursuing as a final goal a “decarbonized” electrical system, in the next decades the traditional fossil fuel fed power plant still will play a relevant role in fulfilling the electric demand. Presently, such plants provide grid ancillary services (frequency control, grid balance, reserve, etc.) by adapting the output power to the grid requirements. An interesting option is represented by the possibility to use traditional plants to improve the grid storage capabilities. The present paper is addressed to small-medium size systems suited for distributed energy storage. The proposed Energy Storage System (ESS) is based on a Compressed Air Energy Storage (CAES) integrated into a Gas-Steam Combined Cycle (GSCC) or a Gas Turbine based CHP plants. The systems can be incorporated in an ex novo built plant or added to an already existing one. To avoid any geological restriction related to the availability of natural compressed air reservoirs, artificial storage is addressed. During the charging phase, electric power is absorbed from the grid by an electric driven intercooled/aftercooled compressor. In the course of the discharge phase, the compressed stored air is sent to a heat transfer device fed by hot gas taken upstream the Heat Recovery Steam Generator (HRSG) and subsequently expanded for power production. To maximize the output power, a staged reheated expansion process is adopted. The specific power production related to the kilogram per second of exhaust gas used to heat the stored air is two/three times larger than that achieved if the gas were used to produce steam in the HRSG. As a result, a relevant power augmentation is attained with respect to normal GSCC plant operations without additional use of fuel. Therefore, the excess of output power can be considered “fuel free” and the storage system can be compared to “pure” ESSs such as electrochemical, pumped hydro or adiabatic CAES. Representative cases featured by different power absorption, production capability, and storage capacity have been taken into consideration. For each case, a technical optimization aimed at maximizing the storage efficiency has been carried out. On the basis of the resulting storage pressure and volume, number of compression and expansion stages, air heater arrangement and process quantities found for each case, a cost estimation of the storage systems has been performed. Storage efficiencies from 0.6 to 0.7 have been assessed. Capital costs in the range of 400-800 €/kW and 500-1000 €/kWh have been estimated. Such figures are similar or lower to those featuring alternative storage technologies.Keywords: artificial air storage reservoir, compressed air energy storage (CAES), gas steam combined cycle (GSCC), techno-economic analysis
Procedia PDF Downloads 215269 Pedagogy of the Oppressed: Fifty Years Later. Implications for Policy and Reforms
Authors: Mohammad Ibrahim Alladin
Abstract:
The Pedagogy of the Oppressed by Paulo Freire was first published in 1970. Since its publication it has become one of most cited book in the social sciences. Over a million copies have been sold worldwide. The Pedagogy of the Oppressed by Paulo Freire was published in 1970 (New York: Herder and Herder), The book has caused a “revolution” in the education world and his theory has been examined and analysed. It has influenced educational policy, curriculum development and teacher education. The revolution started half a century ago. “Paolo Freire’s Pedagogy of the Oppressed develops a theory of education fitted to the needs of the disenfranchised and marginalized members of capitalist societies. Combining educational and political philosophy, the book offers an analysis of oppression and a theory of liberation. Freire believes that traditional education serves to support the dominance of the powerful within society and thereby maintain the powerful’s social, political, and economic status quo. To overcome the oppression endemic to an exploitative society, education must be remade to inspire and enable the oppressed in their struggle for liberation. This new approach to education focuses on consciousness-raising, dialogue, and collaboration between teacher and student in the effort to achieve greater humanization for all. For Freire, education is political and functions either to preserve the current social order or to transform it. The theories of education and revolutionary action he offers in Pedagogy of the Oppressed are addressed educators committed to the struggle for liberation from oppression. Freire’s own commitment to this struggle developed through years of teaching literacy to Brazilian and Chilean peasants and laborers. His efforts at educational and political reform resulted in a brief period of imprisonment followed exile from his native Brazil for fifteen years. In Pedagogy of the Oppressed begins Freire asserts the importance of consciousness-raising, or conscientização, as the means enabling the oppressed to recognize their oppression and commit to the effort to overcome it, taking full responsibility for themselves in the struggle for liberation. He addresses the “fear of freedom,” which inhibits the oppressed from assuming this responsibility. He also cautions against the dangers of sectarianism, which can undermine the revolutionary purpose as well as serve as a refuge for the committed conservative. Freire provides an alternative view of education by attacking tradition education and knowledge. He is highly critical of how is imparted and how knowledge is structured that limits the learner’s thinking. Hence, education becomes oppressive and school functions as an institution of social control. Since its publication, education has gone through a series of reforms and in some areas total transformation. This paper addresses the following: The role of education in social transformation The teacher/learner relationship :Critical thinking The paper essentially examines what happened in the last fifty years since Freire’s book. It seeks to explain what happened to Freire’s education revolution, and what is the status of the movement that started almost fifty years ago.Keywords: pedagogy, reform, curriculum, teacher education
Procedia PDF Downloads 97268 Hydrogen Production from Auto-Thermal Reforming of Ethanol Catalyzed by Tri-Metallic Catalyst
Authors: Patrizia Frontera, Anastasia Macario, Sebastiano Candamano, Fortunato Crea, Pierluigi Antonucci
Abstract:
The increasing of the world energy demand makes today biomass an attractive energy source, based on the minimizing of CO2 emission and on the global warming reduction purposes. Recently, COP-21, the international meeting on global climate change, defined the roadmap for sustainable worldwide development, based on low-carbon containing fuel. Hydrogen is an energy vector able to substitute the conventional fuels from petroleum. Ethanol for hydrogen production represents a valid alternative to the fossil sources due to its low toxicity, low production costs, high biodegradability, high H2 content and renewability. Ethanol conversion to generate hydrogen by a combination of partial oxidation and steam reforming reactions is generally called auto-thermal reforming (ATR). The ATR process is advantageous due to the low energy requirements and to the reduced carbonaceous deposits formation. Catalyst plays a pivotal role in the ATR process, especially towards the process selectivity and the carbonaceous deposits formation. Bimetallic or trimetallic catalysts, as well as catalysts with doped-promoters supports, may exhibit high activity, selectivity and deactivation resistance with respect to the corresponding monometallic ones. In this work, NiMoCo/GDC, NiMoCu/GDC and NiMoRe/GDC (where GDC is Gadolinia Doped Ceria support and the metal composition is 60:30:10 for all catalyst) have been prepared by impregnation method. The support, Gadolinia 0.2 Doped Ceria 0.8, was impregnated by metal precursors solubilized in aqueous ethanol solution (50%) at room temperature for 6 hours. After this, the catalysts were dried at 100°C for 8 hours and, subsequently, calcined at 600°C in order to have the metal oxides. Finally, active catalysts were obtained by reduction procedure (H2 atmosphere at 500°C for 6 hours). All sample were characterized by different analytical techniques (XRD, SEM-EDX, XPS, CHNS, H2-TPR and Raman Spectorscopy). Catalytic experiments (auto-thermal reforming of ethanol) were carried out in the temperature range 500-800°C under atmospheric pressure, using a continuous fixed-bed microreactor. Effluent gases from the reactor were analyzed by two Varian CP4900 chromarographs with a TCD detector. The analytical investigation focused on the preventing of the coke deposition, the metals sintering effect and the sulfur poisoning. Hydrogen productivity, ethanol conversion and products distribution were measured and analyzed. At 600°C, all tri-metallic catalysts show the best performance: H2 + CO reaching almost the 77 vol.% in the final gases. While NiMoCo/GDC catalyst shows the best selectivity to hydrogen whit respect to the other tri-metallic catalysts (41 vol.% at 600°C). On the other hand, NiMoCu/GDC and NiMoRe/GDC demonstrated high sulfur poisoning resistance (up to 200 cc/min) with respect to the NiMoCo/GDC catalyst. The correlation among catalytic results and surface properties of the catalysts will be discussed.Keywords: catalysts, ceria, ethanol, gadolinia, hydrogen, Nickel
Procedia PDF Downloads 157267 The Effects of Goal Setting and Feedback on Inhibitory Performance
Authors: Mami Miyasaka, Kaichi Yanaoka
Abstract:
Attention Deficit/Hyperactivity Disorder (ADHD) is a neurodevelopmental disorder characterized by inattention, hyperactivity, and impulsivity; symptoms often manifest during childhood. In children with ADHD, the development of inhibitory processes is impaired. Inhibitory control allows people to avoid processing unnecessary stimuli and to behave appropriately in various situations; thus, people with ADHD require interventions to improve inhibitory control. Positive or negative reinforcements (i.e., reward or punishment) help improve the performance of children with such difficulties. However, in order to optimize impact, reward and punishment must be presented immediately following the relevant behavior. In regular elementary school classrooms, such supports are uncommon; hence, an alternative practical intervention method is required. One potential intervention involves setting goals to keep children motivated to perform tasks. This study examined whether goal setting improved inhibitory performances, especially for children with severe ADHD-related symptoms. We also focused on giving feedback on children's task performances. We expected that giving children feedback would help them set reasonable goals and monitor their performance. Feedback can be especially effective for children with severe ADHD-related symptoms because they have difficulty monitoring their own performance, perceiving their errors, and correcting their behavior. Our prediction was that goal setting by itself would be effective for children with mild ADHD-related symptoms, and goal setting based on feedback would be effective for children with severe ADHD-related symptoms. Japanese elementary school children and their parents were the sample for this study. Children performed two kinds of go/no-go tasks, and parents completed a checklist about their children's ADHD symptoms, the ADHD Rating Scale-IV, and the Conners 3rd edition. The go/no-go task is a cognitive task to measure inhibitory performance. Children were asked to press a key on the keyboard when a particular symbol appeared on the screen (go stimulus) and to refrain from doing so when another symbol was displayed (no-go stimulus). Errors obtained in response to a no-go stimulus indicated inhibitory impairment. To examine the effect of goal-setting on inhibitory control, 37 children (Mage = 9.49 ± 0.51) were required to set a performance goal, and 34 children (Mage = 9.44 ± 0.50) were not. Further, to manipulate the presence of feedback, in one go/no-go task, no information about children’s scores was provided; however, scores were revealed for the other type of go/no-go tasks. The results revealed a significant interaction between goal setting and feedback. However, three-way interaction between ADHD-related inattention, feedback, and goal setting was not significant. These results indicated that goal setting was effective for improving the performance of the go/no-go task only with feedback, regardless of ADHD severity. Furthermore, we found an interaction between ADHD-related inattention and feedback, indicating that informing inattentive children of their scores made them unexpectedly more impulsive. Taken together, giving feedback was, unexpectedly, too demanding for children with severe ADHD-related symptoms, but the combination of goal setting with feedback was effective for improving their inhibitory control. We discuss effective interventions for children with ADHD from the perspective of goal setting and feedback. This work was supported by the 14th Hakuho Research Grant for Child Education of the Hakuho Foundation.Keywords: attention deficit disorder with hyperactivity, feedback, goal-setting, go/no-go task, inhibitory control
Procedia PDF Downloads 106266 Environmental Impact of Pallets in the Supply Chain: Including Logistics and Material Durability in a Life Cycle Assessment Approach
Authors: Joana Almeida, Kendall Reid, Jonas Bengtsson
Abstract:
Pallets are devices that are used for moving and storing freight and are nearly omnipresent in supply chains. The market is dominated by timber pallets, with plastic being a common alternative. Either option underpins the use of important resources (oil, land, timber), the emission of greenhouse gases and additional waste generation in most supply chains. This study uses a dynamic approach to the life cycle assessment (LCA) of pallets. It demonstrates that what ultimately defines the environmental burden of pallets in the supply chain is how often the length of its lifespan, which depends on the durability of the material and on how pallets are utilized. This study proposes a life cycle assessment (LCA) of pallets in supply chains supported by an algorithm that estimates pallet durability in function of material resilience and of logistics. The LCA runs from cradle-to-grave, including raw material provision, manufacture, transport and end of life. The scope is representative of timber and plastic pallets in the Australian and South-East Asia markets. The materials included in this analysis are: -tropical mixed hardwood, unsustainably harvested in SE Asia; -certified softwood, sustainably harvested; -conventional plastic, a mix of virgin and scrap plastic; -recycled plastic pallets, 100% mixed plastic scrap, which are being pioneered by Re > Pal. The logistical model purports that more complex supply chains and rougher handling subject pallets to higher stress loads. More stress shortens the lifespan of pallets in function of their composition. Timber pallets can be repaired, extending their lifespan, while plastic pallets cannot. At the factory gate, softwood pallets have the lowest carbon footprint. Re > pal follows closely due to its burden-free feedstock. Tropical mixed hardwood and plastic pallets have the highest footprints. Harvesting tropical mixed hardwood in SE Asia often leads to deforestation, leading to emissions from land use change. The higher footprint of plastic pallets is due to the production of virgin plastic. Our findings show that manufacture alone does not determine the sustainability of pallets. Even though certified softwood pallets have lower carbon footprint and their lifespan can be extended by repair, the need for re-supply of materials and disposal of waste timber offsets this advantage. It also leads to most waste being generated among all pallets. In a supply chain context, Re > Pal pallets have the lowest footprint due to lower replacement and disposal needs. In addition, Re > Pal are nearly ‘waste neutral’, because the waste that is generated throughout their life cycle is almost totally offset by the scrap uptake for production. The absolute results of this study can be confirmed by progressing the logistics model, improving data quality, expanding the range of materials and utilization practices. Still, this LCA demonstrates that considering logistics, raw materials and material durability is central for sustainable decision-making on pallet purchasing, management and disposal.Keywords: carbon footprint, life cycle assessment, recycled plastic, waste
Procedia PDF Downloads 226265 The Messy and Irregular Experience of Entrepreneurial Life
Authors: Hannah Dean
Abstract:
The growth ideology, and its association with progress, is an important construct in the narrative of modernity. This ideology is embedded in neoclassical economic growth theory which conceptualises growth as linear and predictable, and the entrepreneur as a rational economic manager. This conceptualisation has been critiqued for reinforcing the managerial discourse in entrepreneurship studies. Despite these critiques, both the neoclassical growth theory and its adjacent managerial discourse dominate entrepreneurship studies notably the literature on female entrepreneurs. The latter is the focus of this paper. Given this emphasis on growth, female entrepreneurs are portrayed as problematic because their growth lags behind their male counterparts. This image which ignores the complexity and diversity of female entrepreneurs’ experience persists in the literature due to the lack of studies that analyse the process and contextual factors surrounding female entrepreneurs’ experience. This study aims to address the subordination of female entrepreneurs by questioning the hegemonic logic of economic growth and the managerial discourse as a true representation for the entrepreneurial experience. This objective is achieved by drawing on Schumpeter’s theorising and narrative inquiry. This exploratory study undertakes in depth interviews to gain insights into female entrepreneurs’ experience and the impact of the economic growth model and the managerial discourse on their performance. The narratives challenge a number of assumptions about female entrepreneurs. The participants occupied senior positions in the corporate world before setting up their businesses. This is at odds with much writing which assumes that women underperform because they leave their career without gaining managerial experience to achieve work-life balance. In line with Schumpeter, who distinguishes the entrepreneur from the manager, the participants’ main function was innovation. They did not believe that the managerial paradigm governing their corporate careers was applicable to their entrepreneurial experience. Formal planning and managerial rationality can hinder their decision making process. The narratives point to the gap between the two worlds which makes stepping into entrepreneurship a scary move. Schumpeter argues that the entrepreneurial process is evolutionary and that failure is an integral part of it. The participants’ entrepreneurial process was in fact irregular. The performance of new combinations was not always predictable. They therefore relied on their initiative. The inhibition to deploy these traits had an adverse effect on business growth. The narratives also indicate that over-reliance on growth threaten the business survival as it faces competing pressures. The study offers theoretical and empirical contributions to (female) entrepreneurship studies by presenting Schumpeter’s theorising as an alternative theoretical framework to the neoclassical economic growth theory. The study also reduces entrepreneurs’ vulnerability by making them aware of the negative influence that the linear growth model and the managerial discourse hold upon their performance. The study has implications for policy makers as it generates new knowledge that incorporates the current social and economic changes in the context of entrepreneurs that can no longer be sustained by the linear growth models especially in the current economic climate.Keywords: economic growth, female entrepreneurs, managerial discourse, Schumpeter
Procedia PDF Downloads 301264 Interplay of Material and Cycle Design in a Vacuum-Temperature Swing Adsorption Process for Biogas Upgrading
Authors: Federico Capra, Emanuele Martelli, Matteo Gazzani, Marco Mazzotti, Maurizio Notaro
Abstract:
Natural gas is a major energy source in the current global economy, contributing to roughly 21% of the total primary energy consumption. Production of natural gas starting from renewable energy sources is key to limit the related CO2 emissions, especially for those sectors that heavily rely on natural gas use. In this context, biomethane produced via biogas upgrading represents a good candidate for partial substitution of fossil natural gas. The upgrading process of biogas to biomethane consists in (i) the removal of pollutants and impurities (e.g. H2S, siloxanes, ammonia, water), and (ii) the separation of carbon dioxide from methane. Focusing on the CO2 removal process, several technologies can be considered: chemical or physical absorption with solvents (e.g. water, amines), membranes, adsorption-based systems (PSA). However, none emerged as the leading technology, because of (i) the heterogeneity in plant size, ii) the heterogeneity in biogas composition, which is strongly related to the feedstock type (animal manure, sewage treatment, landfill products), (iii) the case-sensitive optimal tradeoff between purity and recovery of biomethane, and iv) the destination of the produced biomethane (grid injection, CHP applications, transportation sector). With this contribution, we explore the use of a technology for biogas upgrading and we compare the resulting performance with benchmark technologies. The proposed technology makes use of a chemical sorbent, which is engineered by RSE and consists of Di-Ethanol-Amine deposited on a solid support made of γ-Alumina, to chemically adsorb the CO2 contained in the gas. The material is packed into fixed beds that cyclically undergo adsorption and regeneration steps. CO2 is adsorbed at low temperature and ambient pressure (or slightly above) while the regeneration is carried out by pulling vacuum and increasing the temperature of the bed (vacuum-temperature swing adsorption - VTSA). Dynamic adsorption tests were performed by RSE and were used to tune the mathematical model of the process, including material and transport parameters (i.e. Langmuir isotherms data and heat and mass transport). Based on this set of data, an optimal VTSA cycle was designed. The results enabled a better understanding of the interplay between material and cycle tuning. As exemplary application, the upgrading of biogas for grid injection, produced by an anaerobic digester (60-70% CO2, 30-40% CH4), for an equivalent size of 1 MWel was selected. A plant configuration is proposed to maximize heat recovery and minimize the energy consumption of the process. The resulting performances are very promising compared to benchmark solutions, which make the VTSA configuration a valuable alternative for biomethane production starting from biogas.Keywords: biogas upgrading, biogas upgrading energetic cost, CO2 adsorption, VTSA process modelling
Procedia PDF Downloads 281263 Optimization of the Jatropha curcas Supply Chain as a Criteria for the Implementation of Future Collection Points in Rural Areas of Manabi-Ecuador
Authors: Boris G. German, Edward Jiménez, Sebastián Espinoza, Andrés G. Chico, Ricardo A. Narváez
Abstract:
The unique flora and fauna of The Galapagos Islands has leveraged a tourism-driven growth in the islands. Nonetheless, such development is energy-intensive and requires thousands of gallons of diesel each year for thermoelectric electricity generation. The needed transport of fossil fuels from the continent has generated oil spillages and affectations to the fragile ecosystem of the islands. The Zero Fossil Fuels initiative for The Galapagos proposed by the Ecuadorian government as an alternative to reduce the use of fossil fuels in the islands, considers the replacement of diesel in thermoelectric generators, by Jatropha curcas vegetable oil. However, the Jatropha oil supply cannot entirely cover yet the demand for electricity generation in Galapagos. Within this context, the present work aims to provide an optimization model that can be used as a selection criterion for approving new Jatropha Curcas collection points in rural areas of Manabi-Ecuador. For this purpose, existing Jatropha collection points in Manabi were grouped under three regions: north (7 collection points), center (4 collection points) and south (9 collection points). Field work was carried out in every region in order to characterize the collection points, to establish local Jatropha supply and to determine transportation costs. Data collection was complemented using GIS software and an objective function was defined in order to determine the profit associated to Jatropha oil production. The market price of both Jatropha oil and residual cake, were considered for the total revenue; whereas Jatropha price, transportation and oil extraction costs were considered for the total cost. The tonnes of Jatropha fruit and seed, transported from collection points to the extraction plant, were considered as variables. The maximum and minimum amount of the collected Jatropha from each region constrained the optimization problem. The supply chain was optimized using linear programming in order to maximize the profits. Finally, a sensitivity analysis was performed in order to find a profit-based criterion for the acceptance of future collection points in Manabi. The maximum profit reached a value of $ 4,616.93 per year, which represented a total Jatropha collection of 62.3 tonnes Jatropha per year. The northern region of Manabi had the biggest collection share (69%), followed by the southern region (17%). The criteria for accepting new Jatropha collection points in the rural areas of Manabi can be defined by the current maximum profit of the zone and by the variation in the profit when collection points are removed one at a time. The definition of new feasible collection points plays a key role in the supply chain associated to Jatropha oil production. Therefore, a mathematical model that assists decision makers in establishing new collection points while assuring profitability, contributes to guarantee a continued Jatropha oil supply for Galapagos and a sustained economic growth in the rural areas of Ecuador.Keywords: collection points, Jatropha curcas, linear programming, supply chain
Procedia PDF Downloads 435262 Decentralized Peak-Shaving Strategies for Integrated Domestic Batteries
Authors: Corentin Jankowiak, Aggelos Zacharopoulos, Caterina Brandoni
Abstract:
In a context of increasing stress put on the electricity network by the decarbonization of many sectors, energy storage is likely to be the key mitigating element, by acting as a buffer between production and demand. In particular, the highest potential for storage is when connected closer to the loads. Yet, low voltage storage struggles to penetrate the market at a large scale due to the novelty and complexity of the solution, and the competitive advantage of fossil fuel-based technologies regarding regulations. Strong and reliable numerical simulations are required to show the benefits of storage located near loads and promote its development. The present study was restrained from excluding aggregated control of storage: it is assumed that the storage units operate independently to one another without exchanging information – as is currently mostly the case. A computationally light battery model is presented in detail and validated by direct comparison with a domestic battery operating in real conditions. This model is then used to develop Peak-Shaving (PS) control strategies as it is the decentralized service from which beneficial impacts are most likely to emerge. The aggregation of flatter, peak- shaved consumption profiles is likely to lead to flatter and arbitraged profile at higher voltage layers. Furthermore, voltage fluctuations can be expected to decrease if spikes of individual consumption are reduced. The crucial part to achieve PS lies in the charging pattern: peaks depend on the switching on and off of appliances in the dwelling by the occupants and are therefore impossible to predict accurately. A performant PS strategy must, therefore, include a smart charge recovery algorithm that can ensure enough energy is present in the battery in case it is needed without generating new peaks by charging the unit. Three categories of PS algorithms are introduced in detail. First, using a constant threshold or power rate for charge recovery, followed by algorithms using the State Of Charge (SOC) as a decision variable. Finally, using a load forecast – of which the impact of the accuracy is discussed – to generate PS. A performance metrics was defined in order to quantitatively evaluate their operating regarding peak reduction, total energy consumption, and self-consumption of domestic photovoltaic generation. The algorithms were tested on load profiles with a 1-minute granularity over a 1-year period, and their performance was assessed regarding these metrics. The results show that constant charging threshold or power are far from optimal: a certain value is not likely to fit the variability of a residential profile. As could be expected, forecast-based algorithms show the highest performance. However, these depend on the accuracy of the forecast. On the other hand, SOC based algorithms also present satisfying performance, making them a strong alternative when the reliable forecast is not available.Keywords: decentralised control, domestic integrated batteries, electricity network performance, peak-shaving algorithm
Procedia PDF Downloads 120261 Rehabilitation of Orthotropic Steel Deck Bridges Using a Modified Ortho-Composite Deck System
Authors: Mozhdeh Shirinzadeh, Richard Stroetmann
Abstract:
Orthotropic steel deck bridge consists of a deck plate, longitudinal stiffeners under the deck plate, cross beams and the main longitudinal girders. Due to the several advantages, Orthotropic Steel Deck (OSD) systems have been utilized in many bridges worldwide. The significant feature of this structural system is its high load-bearing capacity while having relatively low dead weight. In addition, cost efficiency and the ability of rapid field erection have made the orthotropic steel deck a popular type of bridge worldwide. However, OSD bridges are highly susceptible to fatigue damage. A large number of welded joints can be regarded as the main weakness of this system. This problem is, in particular, evident in the bridges which were built before 1994 when the fatigue design criteria had not been introduced in the bridge design codes. Recently, an Orthotropic-composite slab (OCS) for road bridges has been experimentally and numerically evaluated and developed at Technische Universität Dresden as a part of AIF-FOSTA research project P1265. The results of the project have provided a solid foundation for the design and analysis of Orthotropic-composite decks with dowel strips as a durable alternative to conventional steel or reinforced concrete decks. In continuation, while using the achievements of that project, the application of a modified Ortho-composite deck for an existing typical OSD bridge is investigated. Composite action is obtained by using rows of dowel strips in a clothoid (CL) shape. Regarding Eurocode criteria for different fatigue detail categories of an OSD bridge, the effect of the proposed modification approach is assessed. Moreover, a numerical parametric study is carried out utilizing finite element software to determine the impact of different variables, such as the size and arrangement of dowel strips, the application of transverse or longitudinal rows of dowel strips, and local wheel loads. For the verification of the simulation technique, experimental results of a segment of an OCS deck are used conducted in project P1265. Fatigue assessment is performed based on the last draft of Eurocode 1993-2 (2024) for the most probable detail categories (Hot-Spots) that have been reported in the previous statistical studies. Then, an analytical comparison is provided between the typical orthotropic steel deck and the modified Ortho-composite deck bridge in terms of fatigue issues and durability. The load-bearing capacity of the bridge, the critical deflections, and the composite behavior are also evaluated and compared. Results give a comprehensive overview of the efficiency of the rehabilitation method considering the required design service life of the bridge. Moreover, the proposed approach is assessed with regard to the construction method, details and practical aspects, as well as the economic point of view.Keywords: composite action, fatigue, finite element method, steel deck, bridge
Procedia PDF Downloads 86260 Introduction of a New and Efficient Nematicide, Abamectin by Gyah Corporation, Iran, for Root-knot Nematodes Management Planning Programs
Authors: Shiva Mardani, Mehdi Nasr-Esfahani, Majid Olia, Hamid Molahosseini, Hamed Hassanzadeh Khankahdani
Abstract:
Plant-parasitic nematodes cause serious diseases on plants and effectively reduce food production in quality and quantity worldwide, with at least 17 nematode species in the three important and major genera, including Meloidogyne, Heterodera, and Pratylenchus. Root-knot nematodes (RKN), Meloidogyne spp. with the dominant species, Meloidogynejavanica, are considered as the important plant pathogens of agricultural products globally. The hosts range can be vegetables, bedding plants, grasses, shrubs, numerous weeds, and trees, including forests. In this study, chemical management was carried out on RKN, M. javanica, to investigate the efficacy of Iranian Abamectin insecticide product [acaricide Abamectin (Vermectin® 2% EC, Gyah Corp., Iran)] verses imported normal Abamectin available in the Iran markets [acaricide Abamectin (Vermectin® 1.8% EC, Cropstar Chemical Industry Co., Ltd.)] each of which at the rate of 8 L./ha, on Tomatoes, Solanumlycopersicum L., (No. 29-41, Dutch company Siemens) as a test plant, and the controls (infested to RKN and without any chemical pesticides treatments); and (sterile soil without any RKN and chemical pesticides treatments) at the greenhouse in Isfahan, Iran. The trails were repeated thrice. The results indicated a highly significant reduction in RKN population and an increase in biomass parameters at 1% level of significance, respectively. Relatively similar results were obtained in all the three experiments conducted on tomato root-knot nematodes. The treatments of Gyah-Abamectin (51.6%) and external Abamectin (40.4%) had the highest to least effect on reducing the number of larvae in the soil compared to the infected controls, respectively. Gyah-Abamectin by 44.1% and then external one by 31.9% had the highest effect on reducing the number of larvae and eggs in the root and 31.4% and 24.1% reduction in the number of galls compared to the infected controls, respectively. Based on priority, Gyah-Abamectin (47.4 % ) and external Abamectin (31.1 %) treatments had the highest effect on reducing the number of egg- masses in the root compared to the infected controls, with no significant difference between Gyah-Abamectin and external Abamectin. The highest reproduction of larvae and egg in the root was observed in the infected controls (75.5%) and the lowest in the healthy controls (0.0%). The highest reduction in the larval and egg reproduction in the roots compared to the infected controls was observed in Gyah-Abamectin and the lowest in the external one. Based on preference, Gyah-Abamectin (37.6%) and external Abamectin (26.9%) had the highest effect on the reduction of the larvae and egg reproduction in the root compared to the infected controls, respectively. Regarding growth parameters factors, the lowest stem length was observed in external Abamectin (51.9 cm), with nosignificantly different from Gyah-Abamectin and healthy controls. The highest root fresh weight was recorded in the infected controls (19.81 gr.) and the lowest in the healthy ones (9.81 gr.); the highest root length in the healthy controls (22.4 cm), and the lowest in the infected controls and external Abamectin (12.6 and 11.9 cm), respectively. Conclusively, the results of these three tests on tomato plants revealed that Gyah-Abamectin 2% compared to external Abamectin 1.8% is competitive in the chemical management of the root nematodes of these types of products and is a suitable alternative in this regard.Keywords: solanum lycopersicum, vermectin, biomass, tomato
Procedia PDF Downloads 97259 Agroecology Approaches Towards Sustainable Agriculture and Food System: Reviewing and Exploring Selected Policies and Strategic Documents through an Agroecological Lens
Authors: Dereje Regasa
Abstract:
The global food system is at a crossroads, which requires prompt action to minimize the effects of the crises. Agroecology is gaining prominence due to its contributions to sustainable food systems. To support efforts in mitigating the crises, the Food and Agriculture Organization (FAO) established alternative approaches for sustainable agri-food systems. Agroecological elements and principles were developed to guide and support measures that countries need to achieve the Sustainable Development Goals (SDGs). The SDGs require the systemic integration of practices for a smart intensification or adaptation of traditional or industrial agriculture. As one of the countries working towards SDGs, the agricultural practices in Ethiopia need to be guided by these agroecological elements and principles. Aiming at the identification of challenging aspects of a sustainable agri-food system and the characterization of an enabling environment for agroecology, as well as exploring to what extent the existing policies and strategies support the agroecological transition process, five policy and strategy documents were reviewed. These documents are the Rural Development Policy and Strategy, the Environment Policy, the Biodiversity Policy, and the Soil Strategy of the Ministry of Agriculture (MoA). Using the Agroecology Criteria Tool (ACT), the contents were reviewed, focusing on agroecological requirements and the inclusion of sustainable practices. ACT is designed to support a self-assessment of elements supporting agroecology. For each element, binary values were assigned based on the inclusion of the minimum requirements index and then validated through discussion with the document owners. The results showed that the documents were well below the requirements for an agroecological transition of the agri-food system. The Rural Development Policy and Strategy only suffice to 83% in Human and Social Value. It does not support the transition concerning the other elements. The Biodiversity Policy and Soil Strategy suffice regarding the inclusion of Co-creation and Sharing of knowledge (100%), while the remaining elements were not considered sufficiently. In contrast, the Environment Policy supports the transition with three elements accounting for 100%. These are Resilience, Recycling, and Human and Social Care. However, when the four documents were combined, elements such as Synergies, Diversity, Efficiency, Human and Social value, Responsible governance, and Co-creation and Sharing of knowledge were identified as fully supportive (100%). This showed that the policies and strategies complemented one another to a certain extent. However, the evaluation results call for improvements concerning elements like Culture and food traditions, Circular and solidarity economy, Resilience, Recycling, and Regulation and balance since the majority of the elements were not sufficiently observed. Consequently, guidance for the smart intensification of local practices is needed, as well as traditional knowledge enriched with advanced technologies. Ethiopian agricultural and environmental policies and strategies should provide sufficient support and guidance for the intensification of sustainable practices and should provide a framework for an agroecological transition towards a sustainable agri-food system.Keywords: agroecology, diversity, recycling, sustainable food system, transition
Procedia PDF Downloads 89258 Performance Optimization of Polymer Materials Thanks to Sol-Gel Chemistry for Fuel Cells
Authors: Gondrexon, Gonon, Mendil-Jakani, Mareau
Abstract:
Proton Exchange Membrane Fuel Cells (PEMFCs) seems to be a promising device used for converting hydrogen into electricity. PEMFC is made of a Membrane Electrode Assembly (MEA) composed of a Proton Exchange Membrane (PEM) sandwiched by two catalytic layers. Nowadays, specific performances are targeted in order to ensure the long-term expansion of this technology. Current polymers used (perfluorinated as Nafion®) are unsuitable (loss of mechanical properties) for the high-temperature range. To overcome this issue, sulfonated polyaromatic polymers appear to be a good alternative since it has very good thermomechanical properties. However, their proton conductivity and chemical stability (oxidative resistance to H2O2 formed during fuel cell (FC) operating) are very low. In our team, we patented an original concept of hybrid membranes able to fulfill the specific requirements for PEMFC. This idea is based on the improvement of commercialized polymer membrane via an easy and processable stabilization thanks to sol-gel (SG) chemistry with judicious embeded chemical functions. This strategy is thus breaking up with traditional approaches (design of new copolymers, use of inorganic charges/additives). In 2020, we presented the elaboration and functional properties of a 1st generation of hybrid membranes with promising performances and durability. The latter was made by self-condensing a SG phase with 3(mercaptopropyl)trimethoxysilane (MPTMS) inside a commercial sPEEK host membrane. The successful in-situ condensation reactions of the MPTMS was demonstrated by measures of mass uptakes, FTIR spectroscopy (presence of C-Haliphatics) and solid state NMR 29Si (T2 & T3 signals of self-condensation products). The ability of the SG phase to prevent the oxidative degradation of the sPEEK phase (thanks to thiol chemical functions) was then proved with H2O2 accelerating tests and FC operating tests. A 2nd generation made of thiourea functionalized SG precursors (named HTU & TTU) was made after. By analysing in depth the morphologies of these different hybrids by direct space analysis (AFM/SEM/TEM) and reciprocal space analysis (SANS/SAXS/WAXS), we highlighted that both SG phase morphology and its localisation into the host has a huge impact on the PEM functional properties observed. This relationship is also dependent on the chemical function embedded. The hybrids obtained have shown very good chemical resistance during aging test (exposed to H2O2) compared to the commercial sPEEK. But the chemical function used is considered as “sacrificial” and cannot react indefinitely with H2O2. Thus, we are now working on a 3rd generation made of both sacrificial/regenerative chemical functions which are expected to inhibit the chemical aging of sPEEK more efficiently. With this work, we are confident to reach a predictive approach of the key parameters governing the final properties.Keywords: fuel cells, ionomers, membranes, sPEEK, chemical stability
Procedia PDF Downloads 74257 An Adaptive Decomposition for the Variability Analysis of Observation Time Series in Geophysics
Authors: Olivier Delage, Thierry Portafaix, Hassan Bencherif, Guillaume Guimbretiere
Abstract:
Most observation data sequences in geophysics can be interpreted as resulting from the interaction of several physical processes at several time and space scales. As a consequence, measurements time series in geophysics have often characteristics of non-linearity and non-stationarity and thereby exhibit strong fluctuations at all time-scales and require a time-frequency representation to analyze their variability. Empirical Mode Decomposition (EMD) is a relatively new technic as part of a more general signal processing method called the Hilbert-Huang transform. This analysis method turns out to be particularly suitable for non-linear and non-stationary signals and consists in decomposing a signal in an auto adaptive way into a sum of oscillating components named IMFs (Intrinsic Mode Functions), and thereby acts as a bank of bandpass filters. The advantages of the EMD technic are to be entirely data driven and to provide the principal variability modes of the dynamics represented by the original time series. However, the main limiting factor is the frequency resolution that may give rise to the mode mixing phenomenon where the spectral contents of some IMFs overlap each other. To overcome this problem, J. Gilles proposed an alternative entitled “Empirical Wavelet Transform” (EWT) which consists in building from the segmentation of the original signal Fourier spectrum, a bank of filters. The method used is based on the idea utilized in the construction of both Littlewood-Paley and Meyer’s wavelets. The heart of the method lies in the segmentation of the Fourier spectrum based on the local maxima detection in order to obtain a set of non-overlapping segments. Because linked to the Fourier spectrum, the frequency resolution provided by EWT is higher than that provided by EMD and therefore allows to overcome the mode-mixing problem. On the other hand, if the EWT technique is able to detect the frequencies involved in the original time series fluctuations, EWT does not allow to associate the detected frequencies to a specific mode of variability as in the EMD technic. Because EMD is closer to the observation of physical phenomena than EWT, we propose here a new technic called EAWD (Empirical Adaptive Wavelet Decomposition) based on the coupling of the EMD and EWT technics by using the IMFs density spectral content to optimize the segmentation of the Fourier spectrum required by EWT. In this study, EMD and EWT technics are described, then EAWD technic is presented. Comparison of results obtained respectively by EMD, EWT and EAWD technics on time series of ozone total columns recorded at Reunion island over [1978-2019] period is discussed. This study was carried out as part of the SOLSTYCE project dedicated to the characterization and modeling of the underlying dynamics of time series issued from complex systems in atmospheric sciencesKeywords: adaptive filtering, empirical mode decomposition, empirical wavelet transform, filter banks, mode-mixing, non-linear and non-stationary time series, wavelet
Procedia PDF Downloads 140256 Prevalence, Antimicrobial Susceptibility Pattern and Public Health Significance for Staphylococcus Aureus of Isolated from Raw Red Meat at Butchery and Abattoir House in Mekelle, Northern Ethiopia
Authors: Haftay Abraha Tadesse
Abstract:
Background: Staphylococcus is a genus of worldwide distributed bacteria correlated to several infectious of different sites in humans and animals. They are among the most important causes of infection that are associated with the consumption of contaminated food. Objective: The objective of this study was to determine the isolates, antimicrobial susceptibility patterns and Public Health Significance of Staphylococcus aureus in raw meat from butchery and abattoir houses of Mekelle, Northern Ethiopia. Methodology: A cross-sectional study was conducted from April to October 2019. Socio-demographic data and Public Health Significance were collected using a predesigned questionnaire. The raw meat samples were collected aseptically in the butchery and abattoir houses and transported using an ice box to Mekelle University, College of Veterinary Sciences, for isolating and identification of Staphylococcus aureus. Antimicrobial susceptibility tests were determined by the disc diffusion method. Data obtained were cleaned and entered into STATA 22.0 and a logistic regression model with odds ratio was calculated to assess the association of risk factors with bacterial contamination. A P-value < 0.05 was considered statistically significant. Results: In the present study, 88 out of 250 (35.2%) were found to be contaminated with Staphylococcus aureus. Among the raw meat specimens, the positivity rate of Staphylococcus aureus was 37.6% (n=47) and (32.8% (n=41), butchery and abattoir houses, respectively. Among the associated risks, factories not using gloves reduces risk was found to (AOR=0.222; 95% CI: 0.104-0.473), Strict Separation b/n clean & dirty (AOR= 1.37; 95% CI: 0.66-2.86) and poor habit of hand washing (AOR=1.08; 95%CI: 0.35 3.35) was found to be statistically significant and have associated with Staphylococcus aureus contamination. All isolates of thirty-seven of Staphylococcus aureus were checked and displayed (100%) sensitive to doxycycline, trimethoprim, gentamicin, sulphamethoxazole, amikacin, CN, Co trimoxazole and nitrofurantoi. Whereas the showed resistance to cefotaxime (100%), ampicillin (87.5%), Penicillin (75%), B (75%), and nalidixic acid (50%) from butchery houses. On the other hand, all isolates of Staphylococcus aureus isolate 100% (n= 10) showed sensitive chloramphenicol, gentamicin and nitrofurantoin, whereas they showed 100% resistance of Penicillin, B, AMX, ceftriaxone, ampicillin and cefotaxime from abattoirs houses. The overall multi-drug resistance pattern for Staphylococcus aureus was 90% and 100% of butchery and abattoir houses, respectively. Conclusion: 35.3% Staphylococcus aureus isolated were recovered from the raw meat samples collected from the butchery and abattoirs houses. More has to be done in the development of hand washing behavior and availability of safe water in the butchery houses to reduce the burden of bacterial contamination. The results of the present finding highlight the need to implement protective measures against the levels of food contamination and alternative drug options. The development of antimicrobial resistance is nearly always a result of repeated therapeutic and/or indiscriminate use of them. Regular antimicrobial sensitivity testing helps to select effective antibiotics and to reduce the problems of drug resistance development towards commonly used antibiotics.Keywords: abattoir house, AMR, butchery house, S. aureus
Procedia PDF Downloads 101255 Blending Synchronous with Asynchronous Learning Tools: Students’ Experiences and Preferences for Online Learning Environment in a Resource-Constrained Higher Education Situations in Uganda
Authors: Stephen Kyakulumbye, Vivian Kobusingye
Abstract:
Generally, World over, COVID-19 has had adverse effects on all sectors but with more debilitating effects on the education sector. After reactive lockdowns, education institutions that could continue teaching and learning had to go a distance mediated by digital technological tools. In Uganda, the Ministry of Education thereby issued COVID-19 Online Distance E-learning (ODeL) emergent guidelines. Despite such guidelines, academic institutions in Uganda and similar developing contexts with academically constrained resource environments were caught off-guard and ill-prepared to transform from face-to-face learning to online distance learning mode. Most academic institutions that migrated spontaneously did so with no deliberate tools, systems, strategies, or software to cause active, meaningful, and engaging learning for students. By experience, most of these academic institutions shifted to Zoom and WhatsApp and instead conducted online teaching in real-time than blended synchronous and asynchronous tools. This paper provides students’ experiences while blending synchronous and asynchronous content-creating and learning tools within a technological resource-constrained environment to navigate in such a challenging Uganda context. These conceptual case-based findings, using experience from Uganda Christian University (UCU), point at the design of learning activities with two certain characteristics, the enhancement of synchronous learning technologies with asynchronous ones to mitigate the challenge of system breakdown, passive learning to active learning, and enhances the types of presence (social, cognitive and facilitatory). The paper, both empirical and experiential in nature, uses online experiences from third-year students in Bachelor of Business Administration student lectured using asynchronous text, audio, and video created with Open Broadcaster Studio software and compressed with Handbrake, all open-source software to mitigate disk space and bandwidth usage challenges. The synchronous online engagements with students were a blend of zoom or BigBlueButton, to ensure that students had an alternative just in case one failed due to excessive real-time traffic. Generally, students report that compared to their previous face-to-face lectures, the pre-recorded lectures via Youtube provided them an opportunity to reflect on content in a self-paced manner, which later on enabled them to engage actively during the live zoom and/or BigBlueButton real-time discussions and presentations. The major recommendation is that lecturers and teachers in a resource-constrained environment with limited digital resources like the internet and digital devices should harness this approach to offer students access to learning content in a self-paced manner and thereby enabling reflective active learning through reflective and high-order thinking.Keywords: synchronous learning, asynchronous learning, active learning, reflective learning, resource-constrained environment
Procedia PDF Downloads 140254 Distributed Energy Resources in Low-Income Communities: a Public Policy Proposal
Authors: Rodrigo Calili, Anna Carolina Sermarini, João Henrique Azevedo, Vanessa Cardoso de Albuquerque, Felipe Gonçalves, Gilberto Jannuzzi
Abstract:
The diffusion of Distributed Energy Resources (DER) has caused structural changes in the relationship between consumers and electrical systems. The Photovoltaic Distributed Generation (PVDG), in particular, is an essential strategy for achieving the 2030 Agenda goals, especially SDG 7 and SDG 13. However, it is observed that most projects involving this technology in Brazil are restricted to the wealthiest classes of society, not yet reaching the low-income population, aligned with theories of energy justice. Considering the research for energy equality, one of the policies adopted by governments is the social electricity tariff (SET), which provides discounts on energy tariffs/bills. However, just granting this benefit may not be effective, and it is possible to merge it with DER technologies, such as the PVDG. Thus, this work aims to evaluate the economic viability of the policy to replace the social electricity tariff (the current policy aimed at the low-income population in Brazil) by PVDG projects. To this end, a proprietary methodology was developed that included: mapping the stakeholders, identifying critical variables, simulating policy options, and carrying out an analysis in the Brazilian context. The simulation answered two key questions: in which municipalities low-income consumers would have lower bills with PVDG compared to SET; which consumers in a given city would have increased subsidies, which are now provided for solar energy in Brazil and for the social tariff. An economic model was created for verifying the feasibility of the proposed policy in each municipality in the country, considering geographic issues (tariff of a particular distribution utility, radiation from a specific location, etc.). To validate these results, four sensitivity analyzes were performed: variation of the simultaneity factor between generation and consumption, variation of the tariff readjustment rate, zeroing CAPEX, and exemption from state tax. The behind-the-meter modality of generation proved to be more promising than the construction of a shared plant. However, although the behind-the-meter modality presents better results than the shared plant, there is a greater complexity in adopting this modality due to issues related to the infrastructure of the most vulnerable communities (e.g., precarious electrical networks, need to reinforce roofs). Considering the shared power plant modality, many opportunities are still envisaged since the risk of investing in such a policy can be mitigated. Furthermore, this modality can be an alternative due to the mitigation of the risk of default, as it allows greater control of users and facilitates the process of operation and maintenance. Finally, it was also found, that in some regions of Brazil, the continuity of the SET presents more economic benefits than its replacement by PVDG. However, the proposed policy offers many opportunities. For future works, the model may include other parameters, such as cost with low-income populations’ engagement, and business risk. In addition, other renewable sources of distributed generation can be studied for this purpose.Keywords: low income, subsidy policy, distributed energy resources, energy justice
Procedia PDF Downloads 117253 Effects of Exposure to a Language on Perception of Non-Native Phonologically Contrastive Duration
Authors: Chuyu Huang, Itsuki Minemi, Kuanlin Chen, Yuki Hirose
Abstract:
It remains unclear how language speakers are able to perceive phonological contrasts that do not exist on their own. This experiment uses the vowel-length distinction in Japanese, which is phonologically contrastive and co-occurs with tonal change in some cases. For speakers whose first language does not distinguish vowel length, contrastive duration is usually misperceived, e.g., Mandarin speakers. Two alternative hypotheses for how Mandarin speakers would perceive a phonological contrast that does not exist in their language make different predictions. The stress parameter model does not have a clear prediction about the impact of tonal type. Mandarin speakers will likely be not able to perceive vowel length as well as Japanese native speakers do, but the performance might not correlate to tonal type because the prosody of their language is distinctive, which requires users to encode lexical prosody and notice subtle differences in word prosody. By contrast, cue-based phonetic models predict that Mandarin speakers may rely on pitch differences, a secondary cue, to perceive vowel length. Two groups of Mandarin speakers, including naive non-Japanese speakers and beginner learners, were recruited to participate in an AX discrimination task involving two Japanese sound stimuli that contain a phonologically contrastive environment. Participants were asked to indicate whether the two stimuli containing a vowel-length contrast (e.g., maapero vs. mapero) sound the same. The experiment was bifactorial. The first factor contrasted three syllabic positions (syllable position; initial/medial/final), as it would be likely to affect the perceptual difficulty, as seen in previous studies, and the second factor contrasted two pitch types (accent type): one with accentual change that could be distinguished with the lexical tones in Mandarin (the different condition), with the other group having no tonal distinction but only differing in vowel length (the same condition). The overall results showed that a significant main effect of accent type by applying a linear mixed-effects model (β = 1.48, SE = 0.35, p < 0.05), which implies that Mandarin speakers tend to more successfully recognize vowel-length differences when the long vowel counterpart takes on a tone that exists in Mandarin. The interaction between the accent type and the syllabic position is also significant (β = 2.30, SE = 0.91, p < 0.05), showing that vowel lengths in the different conditions are more difficult to recognize in the word-final case relative to the initial condition. The second statistical model, which compares naive speakers to beginners, was conducted with logistic regression to test the effects of the participant group. A significant difference was found between the two groups (β = 1.06, 95% CI = [0.36, 2.03], p < 0.05). This study shows that: (1) Mandarin speakers are likely to use pitch cues to perceive vowel length in a non-native language, which is consistent with the cue-based approaches; (2) an exposure effect was observed: the beginner group achieved a higher accuracy for long vowel perception, which implied the exposure effect despite the short period of language learning experience.Keywords: cue-based perception, exposure effect, prosodic perception, vowel duration
Procedia PDF Downloads 222252 Effects of Bipolar Plate Coating Layer on Performance Degradation of High-Temperature Proton Exchange Membrane Fuel Cell
Authors: Chen-Yu Chen, Ping-Hsueh We, Wei-Mon Yan
Abstract:
Over the past few centuries, human requirements for energy have been met by burning fossil fuels. However, exploiting this resource has led to global warming and innumerable environmental issues. Thus, finding alternative solutions to the growing demands for energy has recently been driving the development of low-carbon and even zero-carbon energy sources. Wind power and solar energy are good options but they have the problem of unstable power output due to unpredictable weather conditions. To overcome this problem, a reliable and efficient energy storage sub-system is required in future distributed-power systems. Among all kinds of energy storage technologies, the fuel cell system with hydrogen storage is a promising option because it is suitable for large-scale and long-term energy storage. The high-temperature proton exchange membrane fuel cell (HT-PEMFC) with metallic bipolar plates is a promising fuel cell system because an HT-PEMFC can tolerate a higher CO concentration and the utilization of metallic bipolar plates can reduce the cost of the fuel cell stack. However, the operating life of metallic bipolar plates is a critical issue because of the corrosion phenomenon. As a result, in this work, we try to apply different coating layer on the metal surface and to investigate the protection performance of the coating layers. The tested bipolar plates include uncoated SS304 bipolar plates, titanium nitride (TiN) coated SS304 bipolar plates and chromium nitride (CrN) coated SS304 bipolar plates. The results show that the TiN coated SS304 bipolar plate has the lowest contact resistance and through-plane resistance and has the best cell performance and operating life among all tested bipolar plates. The long-term in-situ fuel cell tests show that the HT-PEMFC with TiN coated SS304 bipolar plates has the lowest performance decay rate. The second lowest is CrN coated SS304 bipolar plate. The uncoated SS304 bipolar plate has the worst performance decay rate. The performance decay rates with TiN coated SS304, CrN coated SS304 and uncoated SS304 bipolar plates are 5.324×10⁻³ % h⁻¹, 4.513×10⁻² % h⁻¹ and 7.870×10⁻² % h⁻¹, respectively. In addition, the EIS results indicate that the uncoated SS304 bipolar plate has the highest growth rate of ohmic resistance. However, the ohmic resistance with the TiN coated SS304 bipolar plates only increases slightly with time. The growth rate of ohmic resistances with TiN coated SS304, CrN coated SS304 and SS304 bipolar plates are 2.85×10⁻³ h⁻¹, 3.56×10⁻³ h⁻¹, and 4.33×10⁻³ h⁻¹, respectively. On the other hand, the charge transfer resistances with these three bipolar plates all increase with time, but the growth rates are all similar. In addition, the effective catalyst surface areas with all bipolar plates do not change significantly with time. Thus, it is inferred that the major reason for the performance degradation is the elevated ohmic resistance with time, which is associated with the corrosion and oxidation phenomena on the surface of the stainless steel bipolar plates.Keywords: coating layer, high-temperature proton exchange membrane fuel cell, metallic bipolar plate, performance degradation
Procedia PDF Downloads 283251 Sugarcane Trash Biochar: Effect of the Temperature in the Porosity
Authors: Gabriela T. Nakashima, Elias R. D. Padilla, Joao L. Barros, Gabriela B. Belini, Hiroyuki Yamamoto, Fabio M. Yamaji
Abstract:
Biochar can be an alternative to use sugarcane trash. Biochar is a solid material obtained from pyrolysis, that is a biomass thermal degradation with low or no O₂ concentration. Pyrolysis transforms the carbon that is commonly found in other organic structures into a carbon with more stability that can resist microbial decomposition. Biochar has a versatility of uses such as soil fertility, carbon sequestration, energy generation, ecological restoration, and soil remediation. Biochar has a great ability to retain water and nutrients in the soil so that this material can improve the efficiency of irrigation and fertilization. The aim of this study was to characterize biochar produced from sugarcane trash in three different pyrolysis temperatures and determine the lowest temperature with the high yield and carbon content. Physical characterization of this biochar was performed to help the evaluation for the best production conditions. Sugarcane (Saccharum officinarum) trash was collected at Corredeira Farm, located in Ibaté, São Paulo State, Brazil. The farm has 800 hectares of planted area with an average yield of 87 t·ha⁻¹. The sugarcane varieties planted on the farm are: RB 855453, RB 867515, RB 855536, SP 803280, SP 813250. Sugarcane trash was dried and crushed into 50 mm pieces. Crucibles and lids were used to settle the sugarcane trash samples. The higher amount of sugarcane trash was added to the crucible to avoid the O₂ concentration. Biochar production was performed in three different pyrolysis temperatures (200°C, 325°C, 450°C) in 2 hours residence time in the muffle furnace. Gravimetric yield of biochar was obtained. Proximate analysis of biochar was done using ASTM E-872 and ABNT NBR 8112. Volatile matter and ash content were calculated by direct weight loss and fixed carbon content calculated by difference. Porosity measurement was evaluated using an automatic gas adsorption device, Autosorb-1, with CO₂ described by Nakatani. Approximately 0.5 g of biochar in 2 mm particle sizes were used for each measurement. Vacuum outgassing was performed as a pre-treatment in different conditions for each biochar temperature. The pore size distribution of micropores was determined using Horváth-Kawazoe method. Biochar presented different colors for each treatment. Biochar - 200°C presented a higher number of pieces with 10mm or more and did not present the dark black color like other treatments after 2 h residence time in muffle furnace. Also, this treatment had the higher content of volatiles and the lower amount of fixed carbon. In porosity analysis, while the temperature treatments increase, the amount of pores also increase. The increase in temperature resulted in a biochar with a better quality. The pores in biochar can help in the soil aeration, adsorption, water retention. Acknowledgment: This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brazil – PROAP-CAPES, PDSE and CAPES - Finance Code 001.Keywords: proximate analysis, pyrolysis, soil amendment, sugarcane straw
Procedia PDF Downloads 219250 Review of the Nutritional Value of Spirulina as a Potential Replacement of Fishmeal in Aquafeed
Authors: Onada Olawale Ahmed
Abstract:
As the intensification of aquaculture production increases on global scale, the growing concern of fish farmers around the world is related to cost of fish production, where cost of feeding takes substantial percentage. Fishmeal (FM) is one of the most expensive ingredients, and its high dependence in aqua-feed production translates to high cost of feeding of stocked fish. However, to reach a sustainable aquaculture, new alternative protein sources including cheaper plant or animal origin proteins are needed to be introduced for stable aqua-feed production. Spirulina is a cyanobacterium that has good nutrient profile that could be useful in aquaculture. This review therefore emphasizes on the nutritional value of Spirulina as a potential replacement of FM in aqua-feed. Spirulina is a planktonic photosynthetic filamentous cyanobacterium that forms massive populations in tropical and subtropical bodies of water with high levels of carbonate and bicarbonate. Spirulina grows naturally in nutrient rich alkaline lake with water salinity ( > 30 g/l) and high pH (8.5–11.0). Its artificial production requires luminosity (photo-period 12/12, 4 luxes), temperature (30 °C), inoculum, water stirring device, dissolved solids (10–60 g/litre), pH (8.5– 10.5), good water quality, and macro and micronutrient presence (C, N, P, K, S, Mg, Na, Cl, Ca and Fe, Zn, Cu, Ni, Co, Se). Spirulina has also been reported to grow on agro-industrial waste such as sugar mill waste effluent, poultry industry waste, fertilizer factory waste, and urban waste and organic matter. Chemical composition of Spirulina indicates that it has high nutritional value due to its content of 55-70% protein, 14-19% soluble carbohydrate, high amount of polyunsaturated fatty acids (PUFAs), 1.5–2.0 percent of 5–6 percent total lipid, all the essential minerals are available in spirulina which contributes about 7 percent (average range 2.76–3.00 percent of total weight) under laboratory conditions, β-carotene, B-group vitamin, vitamin E, iron, potassium and chlorophyll are also available in spirulina. Spirulina protein has a balanced composition of amino acids with concentration of methionine, tryptophan and other amino acids almost similar to those of casein, although, this depends upon the culture media used. Positive effects of spirulina on growth, feed utilization and stress and disease resistance of cultured fish have been reported in earlier studies. Spirulina was reported to replace up to 40% of fishmeal protein in tilapia (Oreochromis mossambicus) diet and even higher replacement of fishmeal was possible in common carp (Cyprinus carpio), partial replacement of fish meal with spirulina in diets for parrot fish (Oplegnathus fasciatus) and Tilapia (Orechromis niloticus) has also been conducted. Spirulina have considerable potential for development, especially as a small-scale crop for nutritional enhancement and health improvement of fish. It is important therefore that more research needs to be conducted on its production, inclusion level in aqua-feed and its possible potential use of aquaculture.Keywords: aquaculture, spirulina, fish nutrition, fish feed
Procedia PDF Downloads 523249 The Effects of Adding Vibrotactile Feedback to Upper Limb Performance during Dual-Tasking and Response to Misleading Visual Feedback
Authors: Sigal Portnoy, Jason Friedman, Eitan Raveh
Abstract:
Introduction: Sensory substitution is possible due to the capacity of our brain to adapt to information transmitted by a synthetic receptor via an alternative sensory system. Practical sensory substitution systems are being developed in order to increase the functionality of individuals with sensory loss, e.g. amputees. For upper limb prosthetic-users the loss of tactile feedback compels them to allocate visual attention to their prosthesis. The effect of adding vibrotactile feedback (VTF) to the applied force has been studied, however its effect on the allocation if visual attention during dual-tasking and the response during misleading visual feedback have not been studied. We hypothesized that VTF will improve the performance and reduce visual attention during dual-task assignments in healthy individuals using a robotic hand and improve the performance in a standardized functional test, despite the presence of misleading visual feedback. Methods: For the dual-task paradigm, twenty healthy subjects were instructed to toggle two keyboard arrow keys with the left hand to retain a moving virtual car on a road on a screen. During the game, instructions for various activities, e.g. mix the sugar in the glass with a spoon, appeared on the screen. The subject performed these tasks with a robotic hand, attached to the right hand. The robotic hand was controlled by the activity of the flexors and extensors of the right wrist, recorded using surface EMG electrodes. Pressure sensors were attached at the tips of the robotic hand and induced VTF using vibrotactile actuators attached to the right arm of the subject. An eye-tracking system tracked to visual attention of the subject during the trials. The trials were repeated twice, with and without the VTF. Additionally, the subjects performed the modified box and blocks, hidden from eyesight, in a motion laboratory. A virtual presentation of a misleading visual feedback was be presented on a screen so that twice during the trial, the virtual block fell while the physical block was still held by the subject. Results: This is an ongoing study, which current results are detailed below. We are continuing these trials with transradial myoelectric prosthesis-users. In the healthy group, the VTF did not reduce the visual attention or improve performance during dual-tasking for the tasks that were typed transfer-to-target, e.g. place the eraser on the shelf. An improvement was observed for other tasks. For example, the average±standard deviation of time to complete the sugar-mixing task was 13.7±17.2s and 19.3±9.1s with and without the VTF, respectively. Also, the number of gaze shifts from the screen to the hand during this task were 15.5±23.7 and 20.0±11.6, with and without the VTF, respectively. The response of the subjects to the misleading visual feedback did not differ between the two conditions, i.e. with and without VTF. Conclusions: Our interim results suggest that the performance of certain activities of daily living may be improved by VTF. The substitution of visual sensory input by tactile feedback might require a long training period so that brain plasticity can occur and allow adaptation to the new condition.Keywords: prosthetics, rehabilitation, sensory substitution, upper limb amputation
Procedia PDF Downloads 343248 Review of Carbon Materials: Application in Alternative Energy Sources and Catalysis
Authors: Marita Pigłowska, Beata Kurc, Maciej Galiński
Abstract:
The application of carbon materials in the branches of the electrochemical industry shows an increasing tendency each year due to the many interesting properties they possess. These are, among others, a well-developed specific surface, porosity, high sorption capacity, good adsorption properties, low bulk density, electrical conductivity and chemical resistance. All these properties allow for their effective use, among others in supercapacitors, which can store electric charges of the order of 100 F due to carbon electrodes constituting the capacitor plates. Coals (including expanded graphite, carbon black, graphite carbon fibers, activated carbon) are commonly used in electrochemical methods of removing oil derivatives from water after tanker disasters, e.g. phenols and their derivatives by their electrochemical anodic oxidation. Phenol can occupy practically the entire surface of carbon material and leave the water clean of hydrophobic impurities. Regeneration of such electrodes is also not complicated, it is carried out by electrochemical methods consisting in unblocking the pores and reducing resistances, and thus their reactivation for subsequent adsorption processes. Graphite is commonly used as an anode material in lithium-ion cells, while due to the limited capacity it offers (372 mAh g-1), new solutions are sought that meet both capacitive, efficiency and economic criteria. Increasingly, biodegradable materials, green materials, biomass, waste (including agricultural waste) are used in order to reuse them and reduce greenhouse effects and, above all, to meet the biodegradability criterion necessary for the production of lithium-ion cells as chemical power sources. The most common of these materials are cellulose, starch, wheat, rice, and corn waste, e.g. from agricultural, paper and pharmaceutical production. Such products are subjected to appropriate treatments depending on the desired application (including chemical, thermal, electrochemical). Starch is a biodegradable polysaccharide that consists of polymeric units such as amylose and amylopectin that build an ordered (linear) and amorphous (branched) structure of the polymer. Carbon is also used as a catalyst. Elemental carbon has become available in many nano-structured forms representing the hybridization combinations found in the primary carbon allotropes, and the materials can be enriched with a large number of surface functional groups. There are many examples of catalytic applications of coal in the literature, but the development of this field has been hampered by the lack of a conceptual approach combining structure and function and a lack of understanding of material synthesis. In the context of catalytic applications, the integrity of carbon environmental management properties and parameters such as metal conductivity range and bond sequence management should be characterized. Such data, along with surface and textured information, can form the basis for the provision of network support services.Keywords: carbon materials, catalysis, BET, capacitors, lithium ion cell
Procedia PDF Downloads 175