Search results for: traditional coal mining
2810 Control of an SIR Model for Basic Reproduction Number Regulation
Authors: Enrique Barbieri
Abstract:
The basic disease-spread model described by three states denoting the susceptible (S), infectious (I), and removed (recovered and deceased) (R) sub-groups of the total population N, or SIR model, has been considered. Heuristic mitigating action profiles of the pharmaceutical and non-pharmaceutical types may be developed in a control design setting for the purpose of reducing the transmission rate or improving the recovery rate parameters in the model. Even though the transmission and recovery rates are not control inputs in the traditional sense, a linear observer and feedback controller can be tuned to generate an asymptotic estimate of the transmission rate for a linearized, discrete-time version of the SIR model. Then, a set of mitigating actions is suggested to steer the basic reproduction number toward unity, in which case the disease does not spread, and the infected population state does not suffer from multiple waves. The special case of piecewise constant transmission rate is described and applied to a seventh-order SEIQRDP model, which segments the population into four additional states. The offline simulations in discrete time may be used to produce heuristic policies implemented by public health and government organizations.Keywords: control of SIR, observer, SEIQRDP, disease spread
Procedia PDF Downloads 1152809 Utilization of Chrysanthemum Flowers in Textile Dyeing: Chemical and Phenolic Analysis of Dyes and Fabrics
Authors: Muhammad Ahmad
Abstract:
In this research, Chrysanthemum (morifolium) flowers are used as a natural dye to reduce synthetic dyes and take a step toward sustainability in the fashion industry. The aqueous extraction method is utilized for natural dye extraction and then applied to silk and cotton fabric samples. The color of the dye extracted from dried chrysanthemum flowers is originally a shade of rich green, but after being washed with detergent, it turns to a shade of yellow. Traditional salt and vinegar are used as a natural mordant to fix the dye color. This study also includes a phenolic and chemical analysis of the natural dye (Chrysanthemum flowers) and the textiles (cotton and silk). Compared to cotton fabric, silk fabric has far superior chemical qualities to use in natural dyeing. The results of this study show that the Chrysanthemum flower offers a variety of colors when treated with detergent, without detergent, and with mordants. Chrysanthemum flowers have long been used in other fields, such as medicine; therefore, it is time to start using them in the fashion industry as a natural dye to lessen the harm that synthetic dyes cause.Keywords: natural dyes, Chrysanthemum flower, sustainability, textile fabrics, chemical and phenolic analysis
Procedia PDF Downloads 292808 Modified Form of Margin Based Angular Softmax Loss for Speaker Verification
Authors: Jamshaid ul Rahman, Akhter Ali, Adnan Manzoor
Abstract:
Learning-based systems have received increasing interest in recent years; recognition structures, including end-to-end speak recognition, are one of the hot topics in this area. A famous work on end-to-end speaker verification by using Angular Softmax Loss gained significant importance and is considered useful to directly trains a discriminative model instead of the traditional adopted i-vector approach. The margin-based strategy in angular softmax is beneficial to learn discriminative speaker embeddings where the random selection of margin values is a big issue in additive angular margin and multiplicative angular margin. As a better solution in this matter, we present an alternative approach by introducing a bit similar form of an additive parameter that was originally introduced for face recognition, and it has a capacity to adjust automatically with the corresponding margin values and is applicable to learn more discriminative features than the Softmax. Experiments are conducted on the part of Fisher dataset, where it observed that the additive parameter with angular softmax to train the front-end and probabilistic linear discriminant analysis (PLDA) in the back-end boosts the performance of the structure.Keywords: additive parameter, angular softmax, speaker verification, PLDA
Procedia PDF Downloads 1092807 Towards Value-Based Healthcare through a Nursing Sector Management Approach
Authors: Hadeer Hegazy, Wael Ewieda, Ranin Soliman, Samah Elway, Asmaa Tawfik, Ragaa Sayed, Sahar Mousa
Abstract:
The current healthcare system is facing major challenges in terms of cost, quality of care, and access to services. In response, the concept of value-based healthcare has emerged as a new approach to healthcare delivery. This concept puts the focus on patient values rather than on the traditional medical model of care. To achieve this, healthcare organizations must be agile and able to anticipate and respond quickly to changing needs. Agile management is essential for healthcare organizations to achieve value-based care, as it allows them to rapidly adjust their strategies to changing circumstances. Additionally, it is argued that agile management can help healthcare organizations gain a better understanding of the needs of their patients and develop better care delivery models. Besides, it can help healthcare organizations develop new services, innovate, and become more efficient. The authors provide evidence to support their argument, drawing on examples from successful value-based healthcare initiatives at children’s cancer hospital Egypt-57357. The paper offers insight into how agile management can be used to facilitate the shift towards value-based healthcare and how it can be used to maximize value in the healthcare system.Keywords: value-based healthcare, agility in healthcare, nursing department, patients outcomes
Procedia PDF Downloads 7742806 An Analytical Study on Rotational Capacity of Beam-Column Joints in Unit Modular Frames
Authors: Kyung-Suk Choi, Hyung-Joon Kim
Abstract:
Modular structural systems are constructed using a method that they are assembled with prefabricated unit modular frames on-site. This provides a benefit that can significantly reduce building construction time. Their structural design is usually carried out under the assumption that the load-carrying mechanism is similar to that of a traditional steel moment-resisting system. However, both systems are different in terms of beam-column connection details which may strongly influence the lateral structural behavior. Specially, the presence of access holes in a beam-column joint of a unit modular frame could cause undesirable failure during strong earthquakes. Therefore, this study carried out finite element analyses (FEM) of unit modular frames to investigate the cyclic behavior of beam-column joints with the structural influence of access holes. Analysis results show that the unit modular frames present stable cyclic response with large deformation capacities, and their joints are classified into semi-rigid connections.Keywords: unit modular frame, steel moment connection, nonlinear analytical model, moment-rotation relation
Procedia PDF Downloads 6242805 Impact of Extended Enterprise Resource Planning in the Context of Cloud Computing on Industries and Organizations
Authors: Gholamreza Momenzadeh, Forough Nematolahi
Abstract:
The Extended Enterprise Resource Planning (ERPII) system usually requires massive amounts of storage space, powerful servers, and large upfront and ongoing investments to purchase and manage the software and the related hardware which are not affordable for organizations. In recent decades, organizations prefer to adapt their business structures with new technologies for remaining competitive in the world economy. Therefore, cloud computing (which is one of the tools of information technology (IT)) is a modern system that reveals the next-generation application architecture. Also, cloud computing has had some advantages that reduce costs in many ways such as: lower upfront costs for all computing infrastructure and lower cost of maintaining and supporting. On the other hand, traditional ERPII is not responding for huge amounts of data and relations between the organizations. In this study, based on a literature study, ERPII is investigated in the context of cloud computing where the organizations operate more efficiently. Also, ERPII conditions have a response to needs of organizations in large amounts of data and relations between the organizations.Keywords: extended enterprise resource planning, cloud computing, business process, enterprise information integration
Procedia PDF Downloads 2242804 Intelligent Staff Scheduling: Optimizing the Solver with Tabu Search
Authors: Yu-Ping Chiu, Dung-Ying Lin
Abstract:
Traditional staff scheduling methods, relying on employee experience, often lead to inefficiencies and resource waste. The challenges of transferring scheduling expertise and adapting to changing labor regulations further complicate this process. Manual approaches become increasingly impractical as companies accumulate complex scheduling rules over time. This study proposes an algorithmic optimization approach to address these issues, aiming to expedite scheduling while ensuring strict compliance with labor regulations and company policies. The method focuses on generating optimal schedules that minimize weighted company objectives within a compressed timeframe. Recognizing the limitations of conventional commercial software in modeling and solving complex real-world scheduling problems efficiently, this research employs Tabu Search with both long-term and short-term memory structures. The study will present numerical results and managerial insights to demonstrate the effectiveness of this approach in achieving intelligent and efficient staff scheduling.Keywords: intelligent memory structures, mixed integer programming, meta-heuristics, staff scheduling problem, tabu search
Procedia PDF Downloads 312803 Application of Agile Project Management to Construction Projects: Case Study
Authors: Ran Etgar, Sarit Freund
Abstract:
Agile project management (APM) has been developed originally for software development project. Construction projects seemed to be more apt to traditional water-fall approach than to APM. However, Construction project suffers from similar problems that necessitated the invention of APM, mainly the need to break down the project structure to small increments, thus minimizing the needed managerial planning and design. Since the classical structure of APM is not applicable the way it is to construction project, a modified version of APM was devised. This method, nicknamed 'The anchor method', exploits the fundamentals of APM (i.e., iterations, or sprints of short time frames or timeboxes, cross-functional teams, risk reduction and adaptation to changes) and adjust them to the construction world. The projects had to be structured appropriately to proactively and quickly adapt to change. The method aims to encompass human behavior and lean towards adaptivity rather than predictability. To enable smooth application of the method, a special project management software was developed, so as to provide solid administrational help and accurate data. The method is tested on a bunch of construction projects and some key performance indicators (KPIs) are collected. According to preliminary results the method is indeed very advantageous and with proper assimilation can radically change the construction project management paradigm.Keywords: agile project management, construction, information systems, project management
Procedia PDF Downloads 1362802 Exploring Dynamics of Regional Creative Economy
Authors: Ari Lindeman, Melina Maunula, Jani Kiviranta, Ronja Pölkki
Abstract:
The aim of this paper is to build a vision of the utilization of creative industry competences in industrial and services firms connected to Kymenlaakso region, Finland, smart specialization focus areas. Research indicates that creativity and the use of creative industry’s inputs can enhance innovation and competitiveness. Currently creative methods and services are underutilized in regional businesses and the added value they provide is not well grasped. Methodologically, the research adopts a qualitative exploratory approach. Data is collected in multiple ways including a survey, focus groups, and interviews. Theoretically, the paper contributes to the discussion about the use creative industry competences in regional development, and argues for building regional creative economy ecosystems in close co-operation with regional strategies and traditional industries rather than as treating regional creative industry ecosystem initiatives separate from them. The practical contribution of the paper is the creative vision for the use of regional authorities in updating smart specialization strategy as well as boosting industrial and creative & cultural sectors’ competitiveness. The paper also illustrates a research-based model of vision building.Keywords: business, cooperation, creative economy, regional development, vision
Procedia PDF Downloads 1372801 The Changes of Functions of Leishan Miao New-Year in Southeast Guizhou
Authors: Lanyan Peng, Ling Chen
Abstract:
Leishan Miao New-Year is one of the grandest festivals in the southeastern of Guizhou Province in China. It was officially listed in the National Intangible Cultural Heritage List in 2008, as a traditional folk cultural activity organized by the local Miao people. With the rise of cultural tourism, after 19 years of exploration, the local government has successfully built Miao New-Year into a cultural card that is well-known at home and abroad. During the Miao New-Year period, it has attracted 3.8 million tourists and achieves a win-win situation in the economy and culture. However, tourism development has changed the living environment and living state of the local people. And it is accompanied by changes in the form of the festival, the content of the festival, and the local people’s needs and attitudes to the festival. This paper uses the field investigation method to achieve 410 questionnaires and 35 interviews, exploring the process and the reasons for changes of Leishan Miao New-Year’s cultural function. Among all the functions, the economic function, identity function, and entertainment function have been enhanced, and the marriage and love function has been extended. In the meanwhile, sacrificial function has been weakened. There are some trends in functions. The function of commemorating ancestor and self-entertainment has been changed to entertaining people and economic pursuit.Keywords: Miao New-Year, Miao nationality, festival function, changes
Procedia PDF Downloads 1242800 Effects of Medium Composition on the Production of Biomass and a Carbohydrate Isomerase by a Novel Strain of Lactobacillus
Authors: M. Miriam Hernández-Arroyo, Ivonne Caro-Gonzales, Miguel Ángel Plascencia-Espinosa, Sergio R. Trejo-Estrada
Abstract:
A large biodiversity of Lactobacillus strains has been detected in traditional foods and beverages from Mexico. A selected strain of Lactobacillus sp - PODI-20, used for the obtained from an artisanal fermented beverage was cultivated in different carbon sources in a complex medium, in order to define which carbon sourced induced more effectively the isomerization of arabinose by cell fractions obtained by fermentation. Four different carbon sources were tested in a medium containing peptone and yeast extract and mineral salts. Glucose, galactose, arabinose, and lactose were tested individually at three different concentrations: 3.5, 6, and 10% w/v. The biomass yield ranged from 1.72 to 17.6 g/L. The cell pellet was processed by mechanical homogenization. Both fractions, the cellular debris, and the lysis supernatant were tested for their ability to isomerize arabinose into ribulose. The highest yield of isomer was 12 % of isomerization in the supernatant fractions; whereas up to 9.3% was obtained by the use of cell debris. The isomerization of arabinose has great significance in the production of lactic acid by fermentation of complex carbohydrate hydrolysates.Keywords: isomerase, tagatose, aguamiel, isomerization
Procedia PDF Downloads 3492799 Oxygen and Sulfur Isotope Composition of Gold Bearing Granite Gneiss and Quartz Veins of Megele Area, Western Ethiopia: Implication for Fluid Source
Authors: Temesgen Oljira, Olugbenga Akindeji Okunlola, Akinade Shadrach Olatunji, Dereje Ayalew, Bekele A. Bedada, Tasin Godlove Bafon
Abstract:
The Megele area gold-bearing Neoproterozoic rocks in the Western Ethiopian Shield has been under exploration for the last few decades. The geochemical and ore petrological characterization of the gold-bearing granite gneiss and associated quartz vein is crucial in understanding the gold's genesis. The present study concerns the ore petrological, geochemical, and stable O2 and S characterization of the gold-bearing granite gneiss and associated quartz vein. This area is known for its long history of placer gold mining. The presence of quartz veins of different generations and orientations, visible sulfide mineralization, and oxidation suggests that the Megele area is geologically fertile for mineralization. The Au and base metals analysis also indicate that Megele area rocks are characterized by Cu (2-22 ppm av. 7.83 ppm), Zn (2-53 ppm av. 29.33 ppm), Co (1-27 ppm av. 13.33 ppm), Ni (2-16 ppm av. 10 ppm), Pb (5-10 ppm av. 8.33 ppm), Au (1-5 ppb av. 2.11 ppb), Ag (0.5 ppm), As (5-12 ppm av. 7.83 ppm), Cd (0.5ppm), Li (0.5 ppm), Mo (1-4 ppm av. 1.6 ppm), Sc (5-13 ppm av. 9.3 ppm), and Tl (10 ppm). The oxygen isotope (δ18O) values of gold-bearing granite gneiss and associated quartz veins range from +8.6 to +11.5 ‰, suggesting the mixing of metamorphic water with magmatic water within the ore-forming fluid. The Sulfur isotope (δ34S) values of gold-bearing granite gneiss range from -1.92 to -0.45 ‰ (mean value of -1.13 ‰) indicating the narrow range of value. This suggests that the sulfides have been precipitated from the fluid system originating from a single source of the magmatic component under sulfur isotopic fractionation equilibrium condition. The tectonic setting of the host rocks, the occurrence of ore bodies, mineral assemblages of the host rocks and proposed ore-forming fluids of the Megele area gold prospects have similarities with features of orogenic gold deposit. The δ18O and δ34S isotopic values also suggested a metamorphic origin with the magmatic components. Thus, the Megele gold prospect could be related to an orogenic gold deposit related to metamorphism and associated intrusions.Keywords: fluid source, gold mineralization, oxygen isotope, stable isotope, sulfur isotope
Procedia PDF Downloads 822798 Acute Intraperitoneal Toxicity of Sesbania grandiflora (Katuray) Methanolic Flower Extract in Swiss Albino Mice
Authors: Levylee Bautista, Dawn Grace Santos, Aishwarya Veluchamy, Jesusa Santos, Ghafoor Haque, Jr. I, Rodolfo Rafael
Abstract:
Sesbania grandiflora is widely used in traditional medicine to treat a wide range of ailments. Assessment of its toxic properties is hence crucial when considering public health protection because exposure to plant extracts may pose adverse effects on consumers. This study aimed to investigate the acute intraperitoneal toxicity of S. grandiflora flower methanolic extract (SGFME) in Swiss albino mice. Four different concentrations (11.25, 22.5, 40, and 90 mg/kg) of SGFME were administered intraperitoneally and immediate behavioral and clinical signs were observed. All concentrations of SGFME-treated mice exhibited gasping and faster respiratory rate, writhing, reddening and fanning of the ears, paralysis of the hind leg, and mortality. Such reactions may be attributed to the histamine and saponin content of S. grandiflora. Results of this study suggests that intraperitoneal administration of SGFME produced significant adverse effect in mice, therefore, caution should be exercised in using it as herbal remedy since there is little control over its quality.Keywords: acute toxicity test, histamine, medicinal plants, Sesbania grandiflora
Procedia PDF Downloads 1732797 Water Detection in Aerial Images Using Fuzzy Sets
Authors: Caio Marcelo Nunes, Anderson da Silva Soares, Gustavo Teodoro Laureano, Clarimar Jose Coelho
Abstract:
This paper presents a methodology to pixel recognition in aerial images using fuzzy $c$-means algorithm. This algorithm is a alternative to recognize areas considering uncertainties and inaccuracies. Traditional clustering technics are used in recognizing of multispectral images of earth's surface. This technics recognize well-defined borders that can be easily discretized. However, in the real world there are many areas with uncertainties and inaccuracies which can be mapped by clustering algorithms that use fuzzy sets. The methodology presents in this work is applied to multispectral images obtained from Landsat-5/TM satellite. The pixels are joined using the $c$-means algorithm. After, a classification process identify the types of surface according the patterns obtained from spectral response of image surface. The classes considered are, exposed soil, moist soil, vegetation, turbid water and clean water. The results obtained shows that the fuzzy clustering identify the real type of the earth's surface.Keywords: aerial images, fuzzy clustering, image processing, pattern recognition
Procedia PDF Downloads 4862796 The Role of Gender Ideology in the Legality of Same-Sex Marriage: A Cross-National Analysis
Authors: Amber Salamanca-Blazek
Abstract:
This paper explores the connection between gender ideology and the legality of same-sex marriage cross-nationally. The author questions what role gender ideology plays in the cultural shift concerning same-sex marriage currently underway around the world and the variations in the legal treatment of same-sex marriage at the national level. Existing literature on gender, gender ideology, the role of gender ideology in traditional and same-sex marriage, and the extent to which this connection has previously been examined is explored. Also, the author explores the relationship between gender ideology and the legality of same-sex marriage in three countries with the differing legality of same-sex marriage - The United States, where same-sex marriage was legalized in 2015, Australia, where same-sex marriage was legalized in 2017, and Iran, where the death penalty for homosexuality still exists. A comparison of gender ideology frameworks and an analysis of the political rhetoric surrounding same-sex marriage in each country are performed. It is argued that the important role of gender ideology in the legality of same-sex marriage has been greatly ignored and is in need of increased attention to assist gay rights activists in their framework. The link of gender ideology and patriarchal authority between the gay rights movement and the women’s rights movement are subsequently discussed. The author argues that because of this linkage between movements, there is a necessity for joint frameworks. Suggestions for future research are also provided.Keywords: gender ideology, same-sex marriage, same-sex marriage legality, women's rights movement
Procedia PDF Downloads 2482795 Career Guidance System Using Machine Learning
Authors: Mane Darbinyan, Lusine Hayrapetyan, Elen Matevosyan
Abstract:
Artificial Intelligence in Education (AIED) has been created to help students get ready for the workforce, and over the past 25 years, it has grown significantly, offering a variety of technologies to support academic, institutional, and administrative services. However, this is still challenging, especially considering the labor market's rapid change. While choosing a career, people face various obstacles because they do not take into consideration their own preferences, which might lead to many other problems like shifting jobs, work stress, occupational infirmity, reduced productivity, and manual error. Besides preferences, people should properly evaluate their technical and non-technical skills, as well as their personalities. Professional counseling has become a difficult undertaking for counselors due to the wide range of career choices brought on by changing technological trends. It is necessary to close this gap by utilizing technology that makes sophisticated predictions about a person's career goals based on their personality. Hence, there is a need to create an automated model that would help in decision-making based on user inputs. Improving career guidance can be achieved by embedding machine learning into the career consulting ecosystem. There are various systems of career guidance that work based on the same logic, such as the classification of applicants, matching applications with appropriate departments or jobs, making predictions, and providing suitable recommendations. Methodologies like KNN, Neural Networks, K-means clustering, D-Tree, and many other advanced algorithms are applied in the fields of data and compute some data, which is helpful to predict the right careers. Besides helping users with their career choice, these systems provide numerous opportunities which are very useful while making this hard decision. They help the candidate to recognize where he/she specifically lacks sufficient skills so that the candidate can improve those skills. They are also capable to offer an e-learning platform, taking into account the user's lack of knowledge. Furthermore, users can be provided with details on a particular job, such as the abilities required to excel in that industry.Keywords: career guidance system, machine learning, career prediction, predictive decision, data mining, technical and non-technical skills
Procedia PDF Downloads 832794 Socioeconomic Benefits in Agroforestry Practices by Rural Community: Case Study in Paitan District, Sabah, Malaysia
Authors: J. Kodoh, H. L. Dumil, M. Maid
Abstract:
Agroforestry system has been widely documented that provide benefits to rural livelihoods and improved socioeconomic status. This study concerns on agroforestry practices in generating local socioeconomic livelihoods. The general approach is to survey local community involvement in the agroforestry activities at four selected rural villages in Paitan district, using a structured questionnaire through personal interview technique. A total of 200 respondents were interviewed where the largest age group of the respondents was more than 50 years old (31%). Almost all respondents had former education (76%), and majority of them were employed (97%) either in the government and private sectors or self-employed. All respondents (100%) were involved in agroforestry activities where agroforestry products as their source of income (Hevea brasiliensis, Durio zibethinus, Elaeis guinensis) and foods (Manihot esculenta, Mangifera sp., Musa sp.) The mean monthly income from selling agroforestry products contributed 16.6% (USD130.37) of the mean total monthly income of the respondents (r=0.407, r²=0.166, p < 0.01). This study also showed that the main driven factor for the respondents (93%) to adopt and sustain the agroforestry practices is their traditional ways of farming that transferred from generation to generation.Keywords: agroforestry, Paitan district, rural community, socioeconomic
Procedia PDF Downloads 2312793 A Dynamic Ensemble Learning Approach for Online Anomaly Detection in Alibaba Datacenters
Authors: Wanyi Zhu, Xia Ming, Huafeng Wang, Junda Chen, Lu Liu, Jiangwei Jiang, Guohua Liu
Abstract:
Anomaly detection is a first and imperative step needed to respond to unexpected problems and to assure high performance and security in large data center management. This paper presents an online anomaly detection system through an innovative approach of ensemble machine learning and adaptive differentiation algorithms, and applies them to performance data collected from a continuous monitoring system for multi-tier web applications running in Alibaba data centers. We evaluate the effectiveness and efficiency of this algorithm with production traffic data and compare with the traditional anomaly detection approaches such as a static threshold and other deviation-based detection techniques. The experiment results show that our algorithm correctly identifies the unexpected performance variances of any running application, with an acceptable false positive rate. This proposed approach has already been deployed in real-time production environments to enhance the efficiency and stability in daily data center operations.Keywords: Alibaba data centers, anomaly detection, big data computation, dynamic ensemble learning
Procedia PDF Downloads 2062792 Classification of Forest Types Using Remote Sensing and Self-Organizing Maps
Authors: Wanderson Goncalves e Goncalves, José Alberto Silva de Sá
Abstract:
Human actions are a threat to the balance and conservation of the Amazon forest. Therefore the environmental monitoring services play an important role as the preservation and maintenance of this environment. This study classified forest types using data from a forest inventory provided by the 'Florestal e da Biodiversidade do Estado do Pará' (IDEFLOR-BIO), located between the municipalities of Santarém, Juruti and Aveiro, in the state of Pará, Brazil, covering an area approximately of 600,000 hectares, Bands 3, 4 and 5 of the TM-Landsat satellite image, and Self - Organizing Maps. The information from the satellite images was extracted using QGIS software 2.8.1 Wien and was used as a database for training the neural network. The midpoints of each sample of forest inventory have been linked to images. Later the Digital Numbers of the pixels have been extracted, composing the database that fed the training process and testing of the classifier. The neural network was trained to classify two forest types: Rain Forest of Lowland Emerging Canopy (Dbe) and Rain Forest of Lowland Emerging Canopy plus Open with palm trees (Dbe + Abp) in the Mamuru Arapiuns glebes of Pará State, and the number of examples in the training data set was 400, 200 examples for each class (Dbe and Dbe + Abp), and the size of the test data set was 100, with 50 examples for each class (Dbe and Dbe + Abp). Therefore, total mass of data consisted of 500 examples. The classifier was compiled in Orange Data Mining 2.7 Software and was evaluated in terms of the confusion matrix indicators. The results of the classifier were considered satisfactory, and being obtained values of the global accuracy equal to 89% and Kappa coefficient equal to 78% and F1 score equal to 0,88. It evaluated also the efficiency of the classifier by the ROC plot (receiver operating characteristics), obtaining results close to ideal ratings, showing it to be a very good classifier, and demonstrating the potential of this methodology to provide ecosystem services, particularly in anthropogenic areas in the Amazon.Keywords: artificial neural network, computational intelligence, pattern recognition, unsupervised learning
Procedia PDF Downloads 3682791 A Novel Solution Methodology for Transit Route Network Design Problem
Authors: Ghada Moussa, Mamoud Owais
Abstract:
Transit Route Network Design Problem (TrNDP) is the most important component in Transit planning, in which the overall cost of the public transportation system highly depends on it. The main purpose of this study is to develop a novel solution methodology for the TrNDP, which goes beyond pervious traditional sophisticated approaches. The novelty of the solution methodology, adopted in this paper, stands on the deterministic operators which are tackled to construct bus routes. The deterministic manner of the TrNDP solution relies on using linear and integer mathematical formulations that can be solved exactly with their standard solvers. The solution methodology has been tested through Mandl’s benchmark network problem. The test results showed that the methodology developed in this research is able to improve the given network solution in terms of number of constructed routes, direct transit service coverage, transfer directness and solution reliability. Although the set of routes resulted from the methodology would stand alone as a final efficient solution for TrNDP, it could be used as an initial solution for meta-heuristic procedures to approach global optimal. Based on the presented methodology, a more robust network optimization tool would be produced for public transportation planning purposes.Keywords: integer programming, transit route design, transportation, urban planning
Procedia PDF Downloads 2812790 Human Trafficking in Your Backyard: Know the Signs and How to Help
Authors: Jessie Fazel, Kristen Smith
Abstract:
Human trafficking is a multi-billion-dollar criminal industry that affects 24.9 million people around the world. There are several different types of trafficking, the most common being sex trafficking, labor trafficking, and domestic servitude. Survival sex is common in the pediatric population, as they engage in sex for food, a place to sleep, or other basic needs. Statistics show that health care workers are at a unique advantage to help identify victims and get them the help they need, as 88% of trafficked victims encounter a health care worker while being trafficked. Unfortunately, victims don’t usually self-identify that they are being trafficked and the situations they face can vary dramatically. It is imperative to remember that traditional red flags are not always present in the pediatric population. Risk factors and red flags with their history and physical exam are one of the best indicators that health care providers need to be vigilant in looking at. There are numerous barriers for disclosure in the healthcare setting. Periods of time before and after disclosure are often emotionally difficult and could be dangerous for the victim. It is extremely important to have a plan in place for intervention if the victim does disclose trafficking. A trauma informed approach to medical and mental health interventions, that focus on safety, are vital in this population. This is happening where you live and you can make a difference in their lives.Keywords: human trafficking, public health, emergency medicine, sexual health
Procedia PDF Downloads 402789 Career Guidance System Using Machine Learning
Authors: Mane Darbinyan, Lusine Hayrapetyan, Elen Matevosyan
Abstract:
Artificial Intelligence in Education (AIED) has been created to help students get ready for the workforce, and over the past 25 years, it has grown significantly, offering a variety of technologies to support academic, institutional, and administrative services. However, this is still challenging, especially considering the labor market's rapid change. While choosing a career, people face various obstacles because they do not take into consideration their own preferences, which might lead to many other problems like shifting jobs, work stress, occupational infirmity, reduced productivity, and manual error. Besides preferences, people should evaluate properly their technical and non-technical skills, as well as their personalities. Professional counseling has become a difficult undertaking for counselors due to the wide range of career choices brought on by changing technological trends. It is necessary to close this gap by utilizing technology that makes sophisticated predictions about a person's career goals based on their personality. Hence, there is a need to create an automated model that would help in decision-making based on user inputs. Improving career guidance can be achieved by embedding machine learning into the career consulting ecosystem. There are various systems of career guidance that work based on the same logic, such as the classification of applicants, matching applications with appropriate departments or jobs, making predictions, and providing suitable recommendations. Methodologies like KNN, neural networks, K-means clustering, D-Tree, and many other advanced algorithms are applied in the fields of data and compute some data, which is helpful to predict the right careers. Besides helping users with their career choice, these systems provide numerous opportunities which are very useful while making this hard decision. They help the candidate to recognize where he/she specifically lacks sufficient skills so that the candidate can improve those skills. They are also capable of offering an e-learning platform, taking into account the user's lack of knowledge. Furthermore, users can be provided with details on a particular job, such as the abilities required to excel in that industry.Keywords: career guidance system, machine learning, career prediction, predictive decision, data mining, technical and non-technical skills
Procedia PDF Downloads 732788 A Particle Filter-Based Data Assimilation Method for Discrete Event Simulation
Authors: Zhi Zhu, Boquan Zhang, Tian Jing, Jingjing Li, Tao Wang
Abstract:
Data assimilation is a model and data hybrid-driven method that dynamically fuses new observation data with a numerical model to iteratively approach the real system state. It is widely used in state prediction and parameter inference of continuous systems. Because of the discrete event system’s non-linearity and non-Gaussianity, traditional Kalman Filter based on linear and Gaussian assumptions cannot perform data assimilation for such systems, so particle filter has gradually become a technical approach for discrete event simulation data assimilation. Hence, we proposed a particle filter-based discrete event simulation data assimilation method and took the unmanned aerial vehicle (UAV) maintenance service system as a proof of concept to conduct simulation experiments. The experimental results showed that the filtered state data is closer to the real state of the system, which verifies the effectiveness of the proposed method. This research can provide a reference framework for the data assimilation process of other complex nonlinear systems, such as discrete-time and agent simulation.Keywords: discrete event simulation, data assimilation, particle filter, model and data-driven
Procedia PDF Downloads 252787 An Exploratory Study of the Student’s Learning Experience by Applying Different Tools for e-Learning and e-Teaching
Authors: Angel Daniel Muñoz Guzmán
Abstract:
E-learning is becoming more and more common every day. For online, hybrid or traditional face-to-face programs, there are some e-teaching platforms like Google classroom, Blackboard, Moodle and Canvas, and there are platforms for full e-learning like Coursera, edX or Udemy. These tools are changing the way students acquire knowledge at schools; however, in today’s changing world that is not enough. As students’ needs and skills change and become more complex, new tools will need to be added to keep them engaged and potentialize their learning. This is especially important in the current global situation that is changing everything: the Covid-19 pandemic. Due to Covid-19, education had to make an unexpected switch from face-to-face courses to digital courses. In this study, the students’ learning experience is analyzed by applying different e-tools and following the Tec21 Model and a flexible and digital model, both developed by the Tecnologico de Monterrey University. The evaluation of the students’ learning experience has been made by the quantitative PrEmo method of emotions. Findings suggest that the quantity of e-tools used during a course does not affect the students’ learning experience as much as how a teacher links every available tool and makes them work as one in order to keep the student engaged and motivated.Keywords: student, experience, e-learning, e-teaching, e-tools, technology, education
Procedia PDF Downloads 1132786 Shuffled Structure for 4.225 GHz Antireflective Plates: A Proposal Proven by Numerical Simulation
Authors: Shin-Ku Lee, Ming-Tsu Ho
Abstract:
A newly proposed antireflective selector with shuffled structure is reported in this paper. The proposed idea is made of two different quarter wavelength (QW) slabs and numerically supported by the one-dimensional simulation results provided by the method of characteristics (MOC) to function as an antireflective selector. These two QW slabs are characterized by dielectric constants εᵣA and εᵣB, uniformly divided into N and N+1 pieces respectively which are then shuffled to form an antireflective plate with B(AB)N structure such that there is always one εᵣA piece between two εᵣB pieces. Another is A(BA)N structure where every εᵣB piece is sandwiched by two εᵣA pieces. Both proposed structures are numerically proved to function as QW plates. In order to allow maximum transmission through the proposed structures, the two dielectric constants are chosen to have the relation of (εᵣA)² = εᵣB > 1. The advantages of the proposed structures over the traditional anti-reflection coating techniques are two components with two thicknesses and to shuffle to form new QW structures. The design wavelength used to validate the proposed idea is 71 mm corresponding to a frequency about 4.225 GHz. The computational results are shown in both time and frequency domains revealing that the proposed structures produce minimum reflections around the frequency of interest.Keywords: method of characteristics, quarter wavelength, anti-reflective plate, propagation of electromagnetic fields
Procedia PDF Downloads 1482785 An Automatic Model Transformation Methodology Based on Semantic and Syntactic Comparisons and the Granularity Issue Involved
Authors: Tiexin Wang, Sebastien Truptil, Frederick Benaben
Abstract:
Model transformation, as a pivotal aspect of Model-driven engineering, attracts more and more attentions both from researchers and practitioners. Many domains (enterprise engineering, software engineering, knowledge engineering, etc.) use model transformation principles and practices to serve to their domain specific problems; furthermore, model transformation could also be used to fulfill the gap between different domains: by sharing and exchanging knowledge. Since model transformation has been widely used, there comes new requirement on it: effectively and efficiently define the transformation process and reduce manual effort that involved in. This paper presents an automatic model transformation methodology based on semantic and syntactic comparisons, and focuses particularly on granularity issue that existed in transformation process. Comparing to the traditional model transformation methodologies, this methodology serves to a general purpose: cross-domain methodology. Semantic and syntactic checking measurements are combined into a refined transformation process, which solves the granularity issue. Moreover, semantic and syntactic comparisons are supported by software tool; manual effort is replaced in this way.Keywords: automatic model transformation, granularity issue, model-driven engineering, semantic and syntactic comparisons
Procedia PDF Downloads 4012784 Subfamilial Relationships within Solanaceae as Inferred from atpB-rbcL Intergenic Spacer
Authors: Syeda Qamarunnisa, Ishrat Jamil, Abid Azhar, Zabta K. Shinwari, Syed Irtifaq Ali
Abstract:
A phylogenetic analysis of family Solanaceae was conducted using sequence data from the chloroplast intergenic atpB-rbcL spacer. Sequence data was generated from 17 species representing 09 out of 14 genera of Solanaceae from Pakistan. Cladogram was constructed using maximum parsimony method and results indicate that Solanaceae is mainly divided into two subfamilies; Solanoideae and Cestroideae. Four major clades within Solanoideae represent tribes; Physaleae, Capsiceae, Datureae and Solaneae are supported by high bootstrap value and the relationships among them are not corroborating with the previous studies. The findings established that subfamily Cestroideae comprised of three genera; Cestrum, Lycium, and Nicotiana with high bootstrap support. Position of Nicotiana inferred with atpB-rbcL sequence is congruent with traditional classification, which placed the taxa in Cestroideae. In the current study Lycium unexpectedly nested with Nicotiana with 100% bootstrap support and identified as a member of tribe Nicotianeae. Expanded sampling of other genera from Pakistan could be valuable towards improving our understanding of intrafamilial relationships within Solanaceae.Keywords: systematics, solanaceae, phylogenetics, intergenic spacer, tribes
Procedia PDF Downloads 4732783 Rebuilding Beyond Bricks: The Environmental Psychological Foundations of Community Healing After the Lytton Creek Fire
Authors: Tugba Altin
Abstract:
In a time characterized by escalating climate change impacts, communities globally face extreme events with deep-reaching tangible and intangible consequences. At the intersection of these phenomena lies the profound impact on the cultural and emotional connections that individuals forge with their environments. This study casts a spotlight on the Lytton Creek Fire of 2021, showcasing it as an exemplar of both the visible destruction brought by such events and the more covert yet deeply impactful disturbances to place attachment (PA). Defined as the emotional and cognitive bond individuals form with their surroundings, PA is critical in comprehending how such catastrophic events reshape cultural identity and the bond with the land. Against the stark backdrop of the Lytton Creek Fire's devastation, the research seeks to unpack the multilayered dynamics of PA amidst the tangible wreckage and the intangible repercussions such as emotional distress and disrupted cultural landscapes. Delving deeper, it examines how affected populations renegotiate their affiliations with these drastically altered environments, grappling with both the tangible loss of their homes and the intangible challenges to solace, identity, and community cohesion. This exploration is instrumental in the broader climate change narrative, as it offers crucial insights into how these personal-place relationships can influence and shape climate adaptation and recovery strategies. Departing from traditional data collection methodologies, this study adopts an interpretive phenomenological approach enriched by hermeneutic insights and places the experiences of the Lytton community and its co-researchers at its core. Instead of conventional interviews, innovative methods like walking audio sessions and photo elicitation are employed. These techniques allow participants to immerse themselves back into the environment, reviving and voicing their memories and emotions in real-time. Walking audio captures reflections on spatial narratives after the trauma, whereas photo voices encapsulate the intangible emotions, presenting a visual representation of place-based experiences. Key findings emphasize the indispensability of addressing both the tangible and intangible traumas in community recovery efforts post-disaster. The profound changes to the cultural landscape and the subsequent shifts in PA underscore the need for holistic, culturally attuned, and emotionally insightful adaptation strategies. These strategies, rooted in the lived experiences and testimonies of the affected individuals, promise more resonant and effective recovery efforts. The research further contributes to climate change discourse, highlighting the intertwined pathways of tangible reconstruction and the essentiality of emotional and cultural rejuvenation. Furthermore, the use of participatory methodologies in this inquiry challenges traditional research paradigms, pointing to potential evolutionary shifts in qualitative research norms. Ultimately, this study underscores the need for a more integrative approach in addressing the aftermath of environmental disasters, ensuring that both physical and emotional rebuilding are given equal emphasis.Keywords: place attachment, community recovery, disaster reponse, sensory responses, intangible traumas, visual methodologies
Procedia PDF Downloads 682782 Machine Learning in Momentum Strategies
Authors: Yi-Min Lan, Hung-Wen Cheng, Hsuan-Ling Chang, Jou-Ping Yu
Abstract:
The study applies machine learning models to construct momentum strategies and utilizes the information coefficient as an indicator for selecting stocks with strong and weak momentum characteristics. Through this approach, the study has built investment portfolios capable of generating superior returns and conducted a thorough analysis. Compared to existing research on momentum strategies, machine learning is incorporated to capture non-linear interactions. This approach enhances the conventional stock selection process, which is often impeded by difficulties associated with timeliness, accuracy, and efficiency due to market risk factors. The study finds that implementing bidirectional momentum strategies outperforms unidirectional ones, and momentum factors with longer observation periods exhibit stronger correlations with returns. Optimizing the number of stocks in the portfolio while staying within a certain threshold leads to the highest level of excess returns. The study presents a novel framework for momentum strategies that enhances and improves the operational aspects of asset management. By introducing innovative financial technology applications to traditional investment strategies, this paper can demonstrate significant effectiveness.Keywords: information coefficient, machine learning, momentum, portfolio, return prediction
Procedia PDF Downloads 592781 Lessons-Learned in a Post-Alliance Framework
Authors: Olubukola Olumuyiwa Tokede, Dominic D. Ahiaga-Dagbui, John Morrison
Abstract:
The project environment in construction has been widely criticised for its inability to learn from experience effectively. As each project is bespoke, learning is ephemeral, as it is often confined within its bounds and seldom assimilated with others that are being delivered in the project environment. To engender learning across construction projects, collaborative contractual arrangements, such as alliancing and partnering, have been embraced to aid the transferability of lessons across projects. These cooperative arrangements, however, tend to be costly, and hence construction organisations could revert to less expensive traditional procurement approaches after successful collaborative project delivery. This research, therefore, seeks to assess the lessons-learned in a post-alliance contractual framework. Using a case-study approach, we examine the experiences of a public sector authority who engaged a project facilitator to foster learning during the delivery of a significant piece of critical infrastructure. It was found that the facilitator enabled optimal learning outcomes in post-alliance contractual frameworks by attenuating the otherwise adversarial relationship between clients and contractors. Further research will seek to assess the effectiveness of different knowledge-brokering agencies in construction projects.Keywords: facilitation, knowledge-brokering, learning, projects
Procedia PDF Downloads 142