Search results for: decision making loop
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7531

Search results for: decision making loop

4111 Connectomic Correlates of Cerebral Microhemorrhages in Mild Traumatic Brain Injury Victims with Neural and Cognitive Deficits

Authors: Kenneth A. Rostowsky, Alexander S. Maher, Nahian F. Chowdhury, Andrei Irimia

Abstract:

The clinical significance of cerebral microbleeds (CMBs) due to mild traumatic brain injury (mTBI) remains unclear. Here we use magnetic resonance imaging (MRI), diffusion tensor imaging (DTI) and connectomic analysis to investigate the statistical association between mTBI-related CMBs, post-TBI changes to the human connectome and neurological/cognitive deficits. This study was undertaken in agreement with US federal law (45 CFR 46) and was approved by the Institutional Review Board (IRB) of the University of Southern California (USC). Two groups, one consisting of 26 (13 females) mTBI victims and another comprising 26 (13 females) healthy control (HC) volunteers were recruited through IRB-approved procedures. The acute Glasgow Coma Scale (GCS) score was available for each mTBI victim (mean µ = 13.2; standard deviation σ = 0.4). Each HC volunteer was assigned a GCS of 15 to indicate the absence of head trauma at the time of enrollment in our study. Volunteers in the HC and mTBI groups were matched according to their sex and age (HC: µ = 67.2 years, σ = 5.62 years; mTBI: µ = 66.8 years, σ = 5.93 years). MRI [including T1- and T2-weighted volumes, gradient recalled echo (GRE)/susceptibility weighted imaging (SWI)] and gradient echo (GE) DWI volumes were acquired using the same MRI scanner type (Trio TIM, Siemens Corp.). Skull-stripping and eddy current correction were implemented. DWI volumes were processed in TrackVis (http://trackvis.org) and 3D Slicer (http://www.slicer.org). Tensors were fit to DWI data to perform DTI, and tractography streamlines were then reconstructed using deterministic tractography. A voxel classifier was used to identify image features as CMB candidates using Microbleed Anatomic Rating Scale (MARS) guidelines. For each peri-lesional DTI streamline bundle, the null hypothesis was formulated as the statement that there was no neurological or cognitive deficit associated with between-scan differences in the mean FA of DTI streamlines within each bundle. The statistical significance of each hypothesis test was calculated at the α = 0.05 level, subject to the family-wise error rate (FWER) correction for multiple comparisons. Results: In HC volunteers, the along-track analysis failed to identify statistically significant differences in the mean FA of DTI streamline bundles. In the mTBI group, significant differences in the mean FA of peri-lesional streamline bundles were found in 21 out of 26 volunteers. In those volunteers where significant differences had been found, these differences were associated with an average of ~47% of all identified CMBs (σ = 21%). In 12 out of the 21 volunteers exhibiting significant FA changes, cognitive functions (memory acquisition and retrieval, top-down control of attention, planning, judgment, cognitive aspects of decision-making) were found to have deteriorated over the six months following injury (r = -0.32, p < 0.001). Our preliminary results suggest that acute post-TBI CMBs may be associated with cognitive decline in some mTBI patients. Future research should attempt to identify mTBI patients at high risk for cognitive sequelae.

Keywords: traumatic brain injury, magnetic resonance imaging, diffusion tensor imaging, connectomics

Procedia PDF Downloads 173
4110 Escalation of Commitment and Turnover in Top Management Teams

Authors: Dmitriy V. Chulkov

Abstract:

Escalation of commitment is defined as continuation of a project after receiving negative information about it. While literature in management and psychology identified various factors contributing to escalation behavior, this phenomenon has received little analysis in economics, potentially due to the apparent irrationality of escalation. In this study, we present an economic model of escalation with asymmetric information in a principal-agent setup where the agents are responsible for a project selection decision and discover the outcome of the project before the principal. Our theoretical model complements the existing literature on several accounts. First, we link the incentive to escalate commitment to a project with the turnover decision by the manager. When a manager learns the outcome of the project and stops it that reveals that a mistake was made. There is an incentive to continue failing projects and avoid admitting the mistake. This incentive is enhanced when the agent may voluntarily resign from the firm before the outcome of the failing project is revealed, and thus not bear the full extent of reputation damage due to project failure. As long as some successful managers leave the firm for extraneous reasons, outside firms find it difficult to link failing projects with certainty to managers that left a firm. Second, we demonstrate that non-CEO managers have reputation concerns separate from those of the CEO, and thus may escalate commitment to projects they oversee, when such escalation can attenuate damage to reputation from impending project failure. Such incentive for escalation will be present for non-CEO managers if the CEO delegates responsibility for a project to a non-CEO executive. If reputation matters for promotion to the CEO, the incentive for a rising executive to escalate in order to protect reputation is distinct from that of a CEO. Third, our theoretical model is supported by empirical analysis of changes in the firm’s operations measured by the presence of discontinued operations at the time of turnover among the top four members of the top management team. Discontinued operations are indicative of termination of failing projects at a firm. The empirical results demonstrate that in a large dataset of over three thousand publicly traded U.S. firms for a period from 1993 to 2014 turnover by top executives significantly increases the likelihood that the firm discontinues operations. Furthermore, the type of turnover matters as this effect is strongest when at least one non-CEO member of the top management team leaves the firm and when the CEO departure is due to a voluntary resignation and not to a retirement or illness. Empirical results are consistent with the predictions of the theoretical model and suggest that escalation of commitment is primarily observed in decisions by non-CEO members of the top management team.

Keywords: discontinued operations, escalation of commitment, executive turnover, top management teams

Procedia PDF Downloads 368
4109 Tea and Its Working Methodology in the Biomass Estimation of Poplar Species

Authors: Pratima Poudel, Austin Himes, Heidi Renninger, Eric McConnel

Abstract:

Populus spp. (poplar) are the fastest-growing trees in North America, making them ideal for a range of applications as they can achieve high yields on short rotations and regenerate by coppice. Furthermore, poplar undergoes biochemical conversion to fuels without complexity, making it one of the most promising, purpose-grown, woody perennial energy sources. Employing wood-based biomass for bioenergy offers numerous benefits, including reducing greenhouse gas (GHG) emissions compared to non-renewable traditional fuels, the preservation of robust forest ecosystems, and creating economic prospects for rural communities.In order to gain a better understanding of the potential use of poplar as a biomass feedstock for biofuel in the southeastern US, the conducted a techno-economic assessment (TEA). This assessment is an analytical approach that integrates technical and economic factors of a production system to evaluate its economic viability. the TEA specifically focused on a short rotation coppice system employing a single-pass cut-and-chip harvesting method for poplar. It encompassed all the costs associated with establishing dedicated poplar plantations, including land rent, site preparation, planting, fertilizers, and herbicides. Additionally, we performed a sensitivity analysis to evaluate how different costs can affect the economic performance of the poplar cropping system. This analysis aimed to determine the minimum average delivered selling price for one metric ton of biomass necessary to achieve a desired rate of return over the cropping period. To inform the TEA, data on the establishment, crop care activities, and crop yields were derived from a field study conducted at the Mississippi Agricultural and Forestry Experiment Station's Bearden Dairy Research Center in Oktibbeha County and Pontotoc Ridge-Flatwood Branch Experiment Station in Pontotoc County.

Keywords: biomass, populus species, sensitivity analysis, technoeconomic analysis

Procedia PDF Downloads 84
4108 Using Neural Networks for Click Prediction of Sponsored Search

Authors: Afroze Ibrahim Baqapuri, Ilya Trofimov

Abstract:

Sponsored search is a multi-billion dollar industry and makes up a major source of revenue for search engines (SE). Click-through-rate (CTR) estimation plays a crucial role for ads selection, and greatly affects the SE revenue, advertiser traffic and user experience. We propose a novel architecture of solving CTR prediction problem by combining artificial neural networks (ANN) with decision trees. First, we compare ANN with respect to other popular machine learning models being used for this task. Then we go on to combine ANN with MatrixNet (proprietary implementation of boosted trees) and evaluate the performance of the system as a whole. The results show that our approach provides a significant improvement over existing models.

Keywords: neural networks, sponsored search, web advertisement, click prediction, click-through rate

Procedia PDF Downloads 574
4107 Job Shop Scheduling: Classification, Constraints and Objective Functions

Authors: Majid Abdolrazzagh-Nezhad, Salwani Abdullah

Abstract:

The job-shop scheduling problem (JSSP) is an important decision facing those involved in the fields of industry, economics and management. This problem is a class of combinational optimization problem known as the NP-hard problem. JSSPs deal with a set of machines and a set of jobs with various predetermined routes through the machines, where the objective is to assemble a schedule of jobs that minimizes certain criteria such as makespan, maximum lateness, and total weighted tardiness. Over the past several decades, interest in meta-heuristic approaches to address JSSPs has increased due to the ability of these approaches to generate solutions which are better than those generated from heuristics alone. This article provides the classification, constraints and objective functions imposed on JSSPs that are available in the literature.

Keywords: job-shop scheduling, classification, constraints, objective functions

Procedia PDF Downloads 448
4106 Towards Natively Context-Aware Web Services

Authors: Hajer Taktak, Faouzi Moussa

Abstract:

With the ubiquitous computing’s emergence and the evolution of enterprises’ needs, one of the main challenges is to build context-aware applications based on Web services. These applications have become particularly relevant in the pervasive computing domain. In this paper, we introduce our approach that optimizes the use of Web services with context notions when dealing with contextual environments. We focus particularly on making Web services autonomous and natively context-aware. We implement and evaluate the proposed approach with a pedagogical example of a context-aware Web service treating temperature values. 

Keywords: context-aware, CXF framework, ubiquitous computing, web service

Procedia PDF Downloads 363
4105 Placenta A Classical Caesarean Section with Peripartum Hysterectomy at 27+3 Weeks Gestation For Placnta Accreta

Authors: Huda Abdelrhman Osman Ahmed, Paul Feyi Waboso

Abstract:

Introduction: Placenta accreta spectrum (PAS) disorders present a significant challenge in obstetric management due to the high risk of hemorrhage and potential complications at delivery. This case describes a 27+3 weeks gestation in a patient with placenta accreta managed with classical cesarean section and peripartum hysterectomy. Case Description: AGravida 4P3 patient presented at 27+3 weeks gestation with painless, unprovoked vaginal bleeding and an estimated blood loss (EBL) of 300 mL. At the 20+5 week anomaly scan, a placenta previa was identified anterior, covering the os anterior uterus and containing lacunae with signs of myometrial thinning. At a 24+1 week scan conducted at a tertiary center, further imaging indicated placenta increta with invasion into the myometrium and potential areas of placenta percreta. The patient’s past obstetric history included three previous cesarean sections, with no significant medical or surgical history. Social history revealed heavy smoking but no alcohol use. No drug allergies were reported. Given the risks associated with PAS, a management plan was formulated, including an MRI at a later stage and cesarean delivery with a possible hysterectomy between 34-36 weeks. However, at 27+3 weeks, the patient experienced another episode of vaginal bleeding EBL 500 ml, necessitating immediate intervention. Management: As the patient was unstable, she was not transferred to the tertiary center. Completed and informed consent was obtained. MDT planning-group and cross-matching 4 units, uterotonics. Tranexamic acid blood products, cryo, cell salvage, 2 obstetric consultants and an anesthetic consultant, blood bank aware and hematologist. HDU bed and ITU availability. This study assisted in performing a classical Caesarean section, Where the urologist inserted JJ ureteric stents. Following this, we also assisted in a total abdominal hysterectomy with the conservation of ovaries. 4 units RBC and 1 unit FFP were transfused. The total blood loss was 2.3 L. Outcome: The procedure successfully achieved hemostasis, and the neonate was delivered with subsequent transfer to a neonatal intensive care unit for management. The patient’s postoperative course was monitored closely with no immediate complications. Discussion: This case highlights the complexity and urgency in managing placenta accreta spectrum disorders, particularly with the added challenges posed by remote location and limited tertiary support. The need for rapid decision-making and interdisciplinary coordination is emphasized in such high-risk obstetric cases. The case also underscores the potential for surgical intervention and the importance of family involvement in emergent care decisions. Conclusion: Placenta accreta spectrum disorders demand meticulous planning and timely intervention. This case contributes to understanding PAS management at earlier gestational ages and provides insights into the challenges posed by access to tertiary care, especially in urgent situations.

Keywords: Accreta, Hysterectomy, 3MDT, prematurity

Procedia PDF Downloads 14
4104 English is Not Going to the Dog (E): Rising Fame of Doge Speak

Authors: Beata, Bury

Abstract:

Doge speak is an Internet variety with its own linguistic patterns and regularities. Doge meme contains some unconventional grammar rules which make it recognizable. With the use of doge corpus, certain characteristics of doge speak as well as reasons for its popularity are analyzed. The study concludes that doge memes can be applied to a variety of situations, for instance advertising or fashion industry. Doge users play with language and create surprising linguistic combinations. To sum up, doge meme making is a multiperson task. Doge users predict and comment on the world with the use of doge memes.

Keywords: dogespeak, internet language, language play, meme

Procedia PDF Downloads 479
4103 An Integrated Mixed-Integer Programming Model to Address Concurrent Project Scheduling and Material Ordering

Authors: Babak H. Tabrizi, Seyed Farid Ghaderi

Abstract:

Concurrent planning of project scheduling and material ordering can provide more flexibility to the project scheduling problem, as the project execution costs can be enhanced. Hence, the issue has been taken into account in this paper. To do so, a mixed-integer mathematical model is developed which considers the aforementioned flexibility, in addition to the materials quantity discount and space availability restrictions. Moreover, the activities duration has been treated as decision variables. Finally, the efficiency of the proposed model is tested by different instances. Additionally, the influence of the aforementioned parameters is investigated on the model performance.

Keywords: material ordering, project scheduling, quantity discount, space availability

Procedia PDF Downloads 369
4102 Learning Analytics in a HiFlex Learning Environment

Authors: Matthew Montebello

Abstract:

Student engagement within a virtual learning environment generates masses of data points that can significantly contribute to the learning analytics that lead to decision support. Ideally, similar data is collected during student interaction with a physical learning space, and as a consequence, data is present at a large scale, even in relatively small classes. In this paper, we report of such an occurrence during classes held in a HiFlex modality as we investigate the advantages of adopting such a methodology. We plan to take full advantage of the learner-generated data in an attempt to further enhance the effectiveness of the adopted learning environment. This could shed crucial light on operating modalities that higher education institutions around the world will switch to in a post-COVID era.

Keywords: HiFlex, big data in higher education, learning analytics, virtual learning environment

Procedia PDF Downloads 202
4101 Effects of the Exit from Budget Support on Good Governance: Findings from Four Sub-Saharan Countries

Authors: Magdalena Orth, Gunnar Gotz

Abstract:

Background: Domestic accountability, budget transparency and public financial management (PFM) are considered vital components of good governance in developing countries. The aid modality budget support (BS) promotes these governance functions in developing countries. BS engages in political decision-making and provides financial and technical support to poverty reduction strategies of the partner countries. Nevertheless, many donors have withdrawn their support from this modality due to cases of corruption, fraud or human rights violations. This exit from BS is leaving a finance and governance vacuum in the countries. The evaluation team analyzed the consequences of terminating the use of this modality and found particularly negative effects for good governance outcomes. Methodology: The evaluation uses a qualitative (theory-based) approach consisting of a comparative case study design, which is complemented by a process-tracing approach. For the case studies, the team conducted over 100 semi-structured interviews in Malawi, Uganda, Rwanda and Zambia and used four country-specific, tailor-made budget analysis. In combination with a previous DEval evaluation synthesis on the effects of BS, the team was able to create a before-and-after comparison that yields causal effects. Main Findings: In all four countries domestic accountability and budget transparency declined if other forms of pressure are not replacing BS´s mutual accountability mechanisms. In Malawi a fraud scandal created pressure from the society and from donors so that accountability was improved. In the other countries, these pressure mechanisms were absent so that domestic accountability declined. BS enables donors to actively participate in political processes of the partner country as donors transfer funds into the treasury of the partner country and conduct a high-level political dialogue. The results confirm that the exit from BS created a governance vacuum that, if not compensated through external/internal pressure, leads to a deterioration of good governance. For example, in the case of highly aid dependent Malawi did the possibility of a relaunch of BS provide sufficient incentives to push for governance reforms. Overall the results show that the three good governance areas are negatively affected by the exit from BS. This stands in contrast to positive effects found before the exit. The team concludes that the relationship is causal, because the before-and-after comparison coherently shows that the presence of BS correlates with positive effects and the absence with negative effects. Conclusion: These findings strongly suggest that BS is an effective modality to promote governance and its abolishment is likely to cause governance disruptions. Donors and partner governments should find ways to re-engage in closely coordinated policy-based aid modalities. In addition, a coordinated and carefully managed exit-strategy should be in place before an exit from similar modalities is considered. Particularly a continued framework of mutual accountability and a high-level political dialogue should be aspired to maintain pressure and oversight that is required to achieve good governance.

Keywords: budget support, domestic accountability, public financial management and budget transparency, Sub-Sahara Africa

Procedia PDF Downloads 157
4100 Towards Sustainable Evolution of Bioeconomy: The Role of Technology and Innovation Management

Authors: Ronald Orth, Johanna Haunschild, Sara Tsog

Abstract:

The bioeconomy is an inter- and cross-disciplinary field covering a large number and wide scope of existing and emerging technologies. It has a great potential to contribute to the transformation process of industry landscape and ultimately drive the economy towards sustainability. However, bioeconomy per se is not necessarily sustainable and technology should be seen as an enabler rather than panacea to all our ecological, social and economic issues. Therefore, to draw and maximize benefits from bioeconomy in terms of sustainability, we propose that innovative activities should encompass not only novel technologies and bio-based new materials but also multifocal innovations. For multifocal innovation endeavors, innovation management plays a substantial role, as any innovation emerges in a complex iterative process where communication and knowledge exchange among relevant stake holders has a pivotal role. The knowledge generation and innovation are although at the core of transition towards a more sustainable bio-based economy, to date, there is a significant lack of concepts and models that approach bioeconomy from the innovation management approach. The aim of this paper is therefore two-fold. First, it inspects the role of transformative approach in the adaptation of bioeconomy that contributes to the environmental, ecological, social and economic sustainability. Second, it elaborates the importance of technology and innovation management as a tool for smooth, prompt and effective transition of firms to the bioeconomy. We conduct a qualitative literature study on the sustainability challenges that bioeconomy entails thus far using Science Citation Index and based on grey literature, as major economies e.g. EU, USA, China and Brazil have pledged to adopt bioeconomy and have released extensive publications on the topic. We will draw an example on the forest based business sector that is transforming towards the new green economy more rapidly as expected, although this sector has a long-established conventional business culture with consolidated and fully fledged industry. Based on our analysis we found that a successful transition to sustainable bioeconomy is conditioned on heterogenous and contested factors in terms of stakeholders , activities and modes of innovation. In addition, multifocal innovations occur when actors from interdisciplinary fields engage in intensive and continuous interaction where the focus of innovation is allocated to a field of mutually evolving socio-technical practices that correspond to the aims of the novel paradigm of transformative innovation policy. By adopting an integrated and systems approach as well as tapping into various innovation networks and joining global innovation clusters, firms have better chance of creating an entire new chain of value added products and services. This requires professionals that have certain capabilities and skills such as: foresight for future markets, ability to deal with complex issues, ability to guide responsible R&D, ability of strategic decision making, manage in-depth innovation systems analysis including value chain analysis. Policy makers, on the other hand, need to acknowledge the essential role of firms in the transformative innovation policy paradigm.

Keywords: bioeconomy, innovation and technology management, multifocal innovation, sustainability, transformative innovation policy

Procedia PDF Downloads 127
4099 A Semi-supervised Classification Approach for Trend Following Investment Strategy

Authors: Rodrigo Arnaldo Scarpel

Abstract:

Trend following is a widely accepted investment strategy that adopts a rule-based trading mechanism that rather than striving to predict market direction or on information gathering to decide when to buy and when to sell a stock. Thus, in trend following one must respond to market’s movements that has recently happen and what is currently happening, rather than on what will happen. Optimally, in trend following strategy, is to catch a bull market at its early stage, ride the trend, and liquidate the position at the first evidence of the subsequent bear market. For applying the trend following strategy one needs to find the trend and identify trade signals. In order to avoid false signals, i.e., identify fluctuations of short, mid and long terms and to separate noise from real changes in the trend, most academic works rely on moving averages and other technical analysis indicators, such as the moving average convergence divergence (MACD) and the relative strength index (RSI) to uncover intelligible stock trading rules following trend following strategy philosophy. Recently, some works has applied machine learning techniques for trade rules discovery. In those works, the process of rule construction is based on evolutionary learning which aims to adapt the rules to the current environment and searches for the global optimum rules in the search space. In this work, instead of focusing on the usage of machine learning techniques for creating trading rules, a time series trend classification employing a semi-supervised approach was used to early identify both the beginning and the end of upward and downward trends. Such classification model can be employed to identify trade signals and the decision-making procedure is that if an up-trend (down-trend) is identified, a buy (sell) signal is generated. Semi-supervised learning is used for model training when only part of the data is labeled and Semi-supervised classification aims to train a classifier from both the labeled and unlabeled data, such that it is better than the supervised classifier trained only on the labeled data. For illustrating the proposed approach, it was employed daily trade information, including the open, high, low and closing values and volume from January 1, 2000 to December 31, 2022, of the São Paulo Exchange Composite index (IBOVESPA). Through this time period it was visually identified consistent changes in price, upwards or downwards, for assigning labels and leaving the rest of the days (when there is not a consistent change in price) unlabeled. For training the classification model, a pseudo-label semi-supervised learning strategy was used employing different technical analysis indicators. In this learning strategy, the core is to use unlabeled data to generate a pseudo-label for supervised training. For evaluating the achieved results, it was considered the annualized return and excess return, the Sortino and the Sharpe indicators. Through the evaluated time period, the obtained results were very consistent and can be considered promising for generating the intended trading signals.

Keywords: evolutionary learning, semi-supervised classification, time series data, trading signals generation

Procedia PDF Downloads 91
4098 An Argument for Agile, Lean, and Hybrid Project Management in Museum Conservation Practice: A Qualitative Evaluation of the Morris Collection Conservation Project at the Sainsbury Centre for Visual Arts

Authors: Maria Ledinskaya

Abstract:

This paper is part case study and part literature review. It seeks to introduce Agile, Lean, and Hybrid project management concepts from business, software development, and manufacturing fields to museum conservation by looking at their practical application on a recent conservation project at the Sainsbury Centre for Visual Arts. The author outlines the advantages of leaner and more agile conservation practices in today’s faster, less certain, and more budget-conscious museum climate where traditional project structures are no longer as relevant or effective. The Morris Collection Conservation Project was carried out in 2019-2021 in Norwich, UK, and concerned the remedial conservation of around 150 Abstract Constructivist artworks bequeathed to the Sainsbury Centre by private collectors Michael and Joyce Morris. It was a medium-sized conservation project of moderate complexity, planned and delivered in an environment with multiple known unknowns – unresearched collection, unknown conditions and materials, unconfirmed budget. The project was later impacted by the COVID-19 pandemic, introducing indeterminate lockdowns, budget cuts, staff changes, and the need to accommodate social distancing and remote communications. The author, then a staff conservator at the Sainsbury Centre who acted as project manager on the Morris Project, presents an incremental, iterative, and value-based approach to managing a conservation project in an uncertain environment. The paper examines the project from the point of view of Traditional, Agile, Lean, and Hybrid project management. The author argues that most academic writing on project management in conservation has focussed on a Traditional plan-driven approach – also known as Waterfall project management – which has significant drawbacks in today’s museum environment due to its over-reliance on prediction-based planning and its low tolerance to change. In the last 20 years, alternative Agile, Lean and Hybrid approaches to project management have been widely adopted in software development, manufacturing, and other industries, although their recognition in the museum sector has been slow. Using examples from the Morris Project, the author introduces key principles and tools of Agile, Lean, and Hybrid project management and presents a series of arguments on the effectiveness of these alternative methodologies in museum conservation, including the ethical and practical challenges to their implementation. These project management approaches are discussed in the context of consequentialist, relativist, and utilitarian developments in contemporary conservation ethics. Although not intentionally planned as such, the Morris Project had a number of Agile and Lean features which were instrumental to its successful delivery. These key features are identified as distributed decision-making, a co-located cross-disciplinary team, servant leadership, focus on value-added work, flexible planning done in shorter sprint cycles, light documentation, and emphasis on reducing procedural, financial, and logistical waste. Overall, the author’s findings point in favour of a hybrid model, which combines traditional and alternative project processes and tools to suit the specific needs of the project.

Keywords: agile project management, conservation, hybrid project management, lean project management, waterfall project management

Procedia PDF Downloads 72
4097 Aerodynamic Effects of Ice and Its Influences on Flight Characteristics of Low Speed Unmanned Aerial Vehicles

Authors: I. McAndrew, K. L. Witcher, E. Navarro

Abstract:

This paper presents the theory and application of low-speed flight for unmanned aerial vehicles when subjected to surface environmental conditions such as ice on the leading edge and upper surface. A model was developed and tested in a wind tunnel to see how theory compares with practice at various speed including take-off, landing and operational applications where head winds substantially alter parameters. Furthermore, a comparison is drawn with maned operations and how that this subject is currently under-supported with accurate theory or knowledge for designers or operators to make informed decision or accommodate individual applications. The effects of ice formation for lift and drag are determined for a range of different angles of attacks.

Keywords: aerodynamics, environmental influences, glide path ratio, unmanned vehicles

Procedia PDF Downloads 332
4096 Segmenting 3D Optical Coherence Tomography Images Using a Kalman Filter

Authors: Deniz Guven, Wil Ward, Jinming Duan, Li Bai

Abstract:

Over the past two decades or so, Optical Coherence Tomography (OCT) has been used to diagnose retina and optic nerve diseases. The retinal nerve fibre layer, for example, is a powerful diagnostic marker for detecting and staging glaucoma. With the advances in optical imaging hardware, the adoption of OCT is now commonplace in clinics. More and more OCT images are being generated, and for these OCT images to have clinical applicability, accurate automated OCT image segmentation software is needed. Oct image segmentation is still an active research area, as OCT images are inherently noisy, with the multiplicative speckling noise. Simple edge detection algorithms are unsuitable for detecting retinal layer boundaries in OCT images. Intensity fluctuation, motion artefact, and the presence of blood vessels also decrease further OCT image quality. In this paper, we introduce a new method for segmenting three-dimensional (3D) OCT images. This involves the use of a Kalman filter, which is commonly used in computer vision for object tracking. The Kalman filter is applied to the 3D OCT image volume to track the retinal layer boundaries through the slices within the volume and thus segmenting the 3D image. Specifically, after some pre-processing of the OCT images, points on the retinal layer boundaries in the first image are identified, and curve fitting is applied to them such that the layer boundaries can be represented by the coefficients of the curve equations. These coefficients then form the state space for the Kalman Filter. The filter then produces an optimal estimate of the current state of the system by updating its previous state using the measurements available in the form of a feedback control loop. The results show that the algorithm can be used to segment the retinal layers in OCT images. One of the limitations of the current algorithm is that the curve representation of the retinal layer boundary does not work well when the layer boundary is split into two, e.g., at the optic nerve, the layer boundary split into two. This maybe resolved by using a different approach to representing the boundaries, such as b-splines or level sets. The use of a Kalman filter shows promise to developing accurate and effective 3D OCT segmentation methods.

Keywords: optical coherence tomography, image segmentation, Kalman filter, object tracking

Procedia PDF Downloads 483
4095 Electricity Market Categorization for Smart Grid Market Testing

Authors: Rebeca Ramirez Acosta, Sebastian Lenhoff

Abstract:

Decision makers worldwide need to determine if the implementation of a new market mechanism will contribute to the sustainability and resilience of the power system. Due to smart grid technologies, new products in the distribution and transmission system can be traded; however, the impact of changing a market rule will differ between several regions. To test systematically those impacts, a market categorization has been compiled and organized in a smart grid market testing toolbox. This toolbox maps all actual energy products and sets the basis for running a co-simulation test with the new rule to be implemented. It will help to measure the impact of the new rule, based on the sustainable and resilience indicators.

Keywords: co-simulation, electricity market, smart grid market, market testing

Procedia PDF Downloads 191
4094 Closest Possible Neighbor of a Different Class: Explaining a Model Using a Neighbor Migrating Generator

Authors: Hassan Eshkiki, Benjamin Mora

Abstract:

The Neighbor Migrating Generator is a simple and efficient approach to finding the closest potential neighbor(s) with a different label for a given instance and so without the need to calibrate any kernel settings at all. This allows determining and explaining the most important features that will influence an AI model. It can be used to either migrate a specific sample to the class decision boundary of the original model within a close neighborhood of that sample or identify global features that can help localising neighbor classes. The proposed technique works by minimizing a loss function that is divided into two components which are independently weighted according to three parameters α, β, and ω, α being self-adjusting. Results show that this approach is superior to past techniques when detecting the smallest changes in the feature space and may also point out issues in models like over-fitting.

Keywords: explainable AI, EX AI, feature importance, counterfactual explanations

Procedia PDF Downloads 196
4093 Production of High Purity Cellulose Products from Sawdust Waste Material

Authors: Simiksha Balkissoon, Jerome Andrew, Bruce Sithole

Abstract:

Approximately half of the wood processed in the Forestry, Timber, Pulp and Paper (FTPP) sector is accumulated as waste. The concept of a “green economy” encourages industries to employ revolutionary, transformative technologies to eliminate waste generation by exploring the development of new value chains. The transition towards an almost paperless world driven by the rise of digital media has resulted in a decline in traditional paper markets, prompting the FTTP sector to reposition itself and expand its product offerings by unlocking the potential of value-adding opportunities from renewable resources such as wood to generate revenue and mitigate its environmental impact. The production of valuable products from wood waste such as sawdust has been extensively explored in recent years. Wood components such as lignin, cellulose and hemicelluloses, which can be extracted selectively by chemical processing, are suitable candidates for producing numerous high-value products. In this study, a novel approach to produce high-value cellulose products, such as dissolving wood pulp (DWP), from sawdust was developed. DWP is a high purity cellulose product used in several applications such as pharmaceutical, textile, food, paint and coatings industries. The proposed approach demonstrates the potential to eliminate several complex processing stages, such as pulping and bleaching, which are associated with traditional commercial processes to produce high purity cellulose products such as DWP, making it less chemically energy and water-intensive. The developed process followed the path of experimentally designed lab tests evaluating typical processing conditions such as residence time, chemical concentrations, liquid-to-solid ratios and temperature, followed by the application of suitable purification steps. Characterization of the product from the initial stage was conducted using commercially available DWP grades as reference materials. The chemical characteristics of the products thus far have shown similar properties to commercial products, making the proposed process a promising and viable option for the production of DWP from sawdust.

Keywords: biomass, cellulose, chemical treatment, dissolving wood pulp

Procedia PDF Downloads 189
4092 A System Dynamics Approach for Assessing Policy Impacts on Closed-Loop Supply Chain Efficiency: A Case Study on Electric Vehicle Batteries

Authors: Guannan Ren, Thomas Mazzuchi, Shahram Sarkani

Abstract:

Electric vehicle battery recycling has emerged as a critical process in the transition toward sustainable transportation. As the demand for electric vehicles continues to rise, so does the need to address the end-of-life management of their batteries. Electric vehicle battery recycling benefits resource recovery and supply chain stability by reclaiming valuable metals like lithium, cobalt, nickel, and graphite. The reclaimed materials can then be reintroduced into the battery manufacturing process, reducing the reliance on raw material extraction and the environmental impacts of waste. Current battery recycling rates are insufficient to meet the growing demands for raw materials. While significant progress has been made in electric vehicle battery recycling, many areas can still improve. Standardization of battery designs, increased collection and recycling infrastructures, and improved efficiency in recycling processes are essential for scaling up recycling efforts and maximizing material recovery. This work delves into key factors, such as regulatory frameworks, economic incentives, and technological processes, that influence the cost-effectiveness and efficiency of battery recycling systems. A system dynamics model that considers variables such as battery production rates, demand and price fluctuations, recycling infrastructure capacity, and the effectiveness of recycling processes is created to study how these variables are interconnected, forming feedback loops that affect the overall supply chain efficiency. Such a model can also help simulate the effects of stricter regulations on battery disposal, incentives for recycling, or investments in research and development for battery designs and advanced recycling technologies. By using the developed model, policymakers, industry stakeholders, and researchers may gain insights into the effects of applying different policies or process updates on electric vehicle battery recycling rates.

Keywords: environmental engineering, modeling and simulation, circular economy, sustainability, transportation science, policy

Procedia PDF Downloads 94
4091 Circular Tool and Dynamic Approach to Grow the Entrepreneurship of Macroeconomic Metabolism

Authors: Maria Areias, Diogo Simões, Ana Figueiredo, Anishur Rahman, Filipa Figueiredo, João Nunes

Abstract:

It is expected that close to 7 billion people will live in urban areas by 2050. In order to improve the sustainability of the territories and its transition towards circular economy, it’s necessary to understand its metabolism and promote and guide the entrepreneurship answer. The study of a macroeconomic metabolism involves the quantification of the inputs, outputs and storage of energy, water, materials and wastes for an urban region. This quantification and analysis representing one opportunity for the promotion of green entrepreneurship. There are several methods to assess the environmental impacts of an urban territory, such as human and environmental risk assessment (HERA), life cycle assessment (LCA), ecological footprint assessment (EF), material flow analysis (MFA), physical input-output table (PIOT), ecological network analysis (ENA), multicriteria decision analysis (MCDA) among others. However, no consensus exists about which of those assessment methods are best to analyze the sustainability of these complex systems. Taking into account the weaknesses and needs identified, the CiiM - Circular Innovation Inter-Municipality project aims to define an uniform and globally accepted methodology through the integration of various methodologies and dynamic approaches to increase the efficiency of macroeconomic metabolisms and promoting entrepreneurship in a circular economy. The pilot territory considered in CiiM project has a total area of 969,428 ha, comprising a total of 897,256 inhabitants (about 41% of the population of the Center Region). The main economic activities in the pilot territory, which contribute to a gross domestic product of 14.4 billion euros, are: social support activities for the elderly; construction of buildings; road transport of goods, retailing in supermarkets and hypermarkets; mass production of other garments; inpatient health facilities; and the manufacture of other components and accessories for motor vehicles. The region's business network is mostly constituted of micro and small companies (similar to the Central Region of Portugal), with a total of 53,708 companies identified in the CIM Region of Coimbra (39 large companies), 28,146 in the CIM Viseu Dão Lafões (22 large companies) and 24,953 in CIM Beiras and Serra da Estrela (13 large companies). For the construction of the database was taking into account data available at the National Institute of Statistics (INE), General Directorate of Energy and Geology (DGEG), Eurostat, Pordata, Strategy and Planning Office (GEP), Portuguese Environment Agency (APA), Commission for Coordination and Regional Development (CCDR) and Inter-municipal Community (CIM), as well as dedicated databases. In addition to the collection of statistical data, it was necessary to identify and characterize the different stakeholder groups in the pilot territory that are relevant to the different metabolism components under analysis. The CIIM project also adds the potential of a Geographic Information System (GIS) so that it is be possible to obtain geospatial results of the territorial metabolisms (rural and urban) of the pilot region. This platform will be a powerful visualization tool of flows of products/services that occur within the region and will support the stakeholders, improving their circular performance and identifying new business ideas and symbiotic partnerships.

Keywords: circular economy tools, life cycle assessment macroeconomic metabolism, multicriteria decision analysis, decision support tools, circular entrepreneurship, industrial and regional symbiosis

Procedia PDF Downloads 103
4090 A Contribution to Human Activities Recognition Using Expert System Techniques

Authors: Malika Yaici, Soraya Aloui, Sara Semchaoui

Abstract:

This paper deals with human activity recognition from sensor data. It is an active research area, and the main objective is to obtain a high recognition rate. In this work, a recognition system based on expert systems is proposed; the recognition is performed using the objects, object states, and gestures and taking into account the context (the location of the objects and of the person performing the activity, the duration of the elementary actions and the activity). The system recognizes complex activities after decomposing them into simple, easy-to-recognize activities. The proposed method can be applied to any type of activity. The simulation results show the robustness of our system and its speed of decision.

Keywords: human activity recognition, ubiquitous computing, context-awareness, expert system

Procedia PDF Downloads 119
4089 Hygrothermal Interactions and Energy Consumption in Cold Climate Hospitals: Integrating Numerical Analysis and Case Studies to Investigate and Analyze the Impact of Air Leakage and Vapor Retarding

Authors: Amir E. Amirzadeh, Richard K. Strand

Abstract:

Moisture-induced problems are a significant concern for building owners, architects, construction managers, and building engineers, as they can have substantial impacts on building enclosures' durability and performance. Computational analyses, such as hygrothermal and thermal analysis, can provide valuable information and demonstrate the expected relative performance of building enclosure systems but are not grounded in absolute certainty. This paper evaluates the hygrothermal performance of common enclosure systems in hospitals in cold climates. The study aims to investigate the impact of exterior wall systems on hospitals, focusing on factors such as durability, construction deficiencies, and energy performance. The study primarily examines the impact of air leakage and vapor retarding layers relative to energy consumption. While these factors have been studied in residential and commercial buildings, there is a lack of information on their impact on hospitals in a holistic context. The study integrates various research studies and professional experience in hospital building design to achieve its objective. The methodology involves surveying and observing exterior wall assemblies, reviewing common exterior wall assemblies and details used in hospital construction, performing simulations and numerical analyses of various variables, validating the model and mechanism using available data from industry and academia, visualizing the outcomes of the analysis, and developing a mechanism to demonstrate the relative performance of exterior wall systems for hospitals under specific conditions. The data sources include case studies from real-world projects and peer-reviewed articles, industry standards, and practices. This research intends to integrate and analyze the in-situ and as-designed performance and durability of building enclosure assemblies with numerical analysis. The study's primary objective is to provide a clear and precise roadmap to better visualize and comprehend the correlation between the durability and performance of common exterior wall systems used in the construction of hospitals and the energy consumption of these buildings under certain static and dynamic conditions. As the construction of new hospitals and renovation of existing ones have grown over the last few years, it is crucial to understand the effect of poor detailing or construction deficiencies on building enclosure systems' performance and durability in healthcare buildings. This study aims to assist stakeholders involved in hospital design, construction, and maintenance in selecting durable and high-performing wall systems. It highlights the importance of early design evaluation, regular quality control during the construction of hospitals, and understanding the potential impacts of improper and inconsistent maintenance and operation practices on occupants, owner, building enclosure systems, and Heating, Ventilation, and Air Conditioning (HVAC) systems, even if they are designed to meet the project requirements.

Keywords: hygrothermal analysis, building enclosure, hospitals, energy efficiency, optimization and visualization, uncertainty and decision making

Procedia PDF Downloads 71
4088 Law of the River and Indigenous Water Rights: Reassessing the International Legal Frameworks for Indigenous Rights and Water Justice

Authors: Sultana Afrin Nipa

Abstract:

Life on Earth cannot thrive or survive without water. Water is intimately tied with community, culture, spirituality, identity, socio-economic progress, security, self-determination, and livelihood. Thus, access to water is a United Nations recognized human right due to its significance in these realms. However, there is often conflict between those who consider water as the spiritual and cultural value and those who consider it an economic value thus being threatened by economic development, corporate exploitation, government regulation, and increased privatization, highlighting the complex relationship between water and culture. The Colorado River basin is home to over 29 federally recognized tribal nations. To these tribes, it holds cultural, economic, and spiritual significance and often extends to deep human-to-non-human connections frequently precluded by the Westphalian regulations and settler laws. Despite the recognition of access to rivers as a fundamental human right by the United Nations, tribal communities and their water rights have been historically disregarded through inter alia, colonization, and dispossession of their resources. Law of the River such as ‘Winter’s Doctrine’, ‘Bureau of Reclamation (BOR)’ and ‘Colorado River Compact’ have shaped the water governance among the shareholders. However, tribal communities have been systematically excluded from these key agreements. While the Winter’s Doctrine acknowledged that tribes have the right to withdraw water from the rivers that pass through their reservations for self-sufficiency, the establishment of the BOR led to the construction of dams without tribal consultation, denying the ‘Winters’ regulation and violating these rights. The Colorado River Compact, which granted only 20% of the water to the tribes, diminishes the significance of international legal frameworks that prioritize indigenous self-determination and free pursuit of socio-economic and cultural development. Denial of this basic water right is the denial of the ‘recognition’ of their sovereignty and self-determination that questions the effectiveness of the international law. This review assesses the international legal frameworks concerning indigenous rights and water justice and aims to pinpoint gaps hindering the effective recognition and protection of Indigenous water rights in Colorado River Basin. This study draws on a combination of historical and qualitative data sets. The historical data encompasses the case settlements provided by the Bureau of Reclamation (BOR) respectively the notable cases of Native American water rights settlements on lower Colorado basin related to Arizona from 1979-2008. This material serves to substantiate the context of promises made to the Indigenous people and establishes connections between existing entities. The qualitative data consists of the observation of recorded meetings of the Central Arizona Project (CAP) to evaluate how the previously made promises are reflected now. The study finds a significant inconsistency in participation in the decision-making process and the lack of representation of Native American tribes in water resource management discussions. It highlights the ongoing challenges faced by the indigenous people to achieve their self-determination goal despite the legal arrangements.

Keywords: colorado river, indigenous rights, law of the river, water governance, water justice

Procedia PDF Downloads 38
4087 Business Continuity Opportunities in the Cloud a Small to Medium Business Perspective

Authors: Donald Zullick, Cihan Varol

Abstract:

This research paper begins with a look at current work in business continuity as it relates to the cloud and small to medium business (SMB). While cloud services are an emerging paradigm that is quickly making an impact on business, there has been no substantive research applied to SMB. Seeing this lapse, we have taken a fusion of continuity and cloud research with application to the SMB market. It is an initial reflection with base framework guidelines as a starting point for implementation. In this approach, our research ties together existing work and fill the gap with an SMB outlook.

Keywords: business continuity, cloud services, medium size business, risk assessment, small business

Procedia PDF Downloads 404
4086 A Comprehensive Approach to Create ‘Livable Streets’ in the Mixed Land Use of Urban Neighborhoods Applying Urban Design Principles Which Will Achieve Quality of Life for Pedestrians

Authors: K. C. Tanuja, Mamatha P. Raj

Abstract:

Urbanisation is happening rapidly all over the world. As population increasing in the urban settlements, its required to provide quality of life to all the inhabitants who live in. Urban design is a place making strategic planning. Urban design principles promote visualising any place environmentally, socially and economically viable. Urban design strategies include building mass, transit development, economic viability and sustenance and social aspects.

Keywords: livable streets, social interaction, pedestrian use, urban design

Procedia PDF Downloads 235
4085 Practice and Understanding of Fracturing Renovation for Risk Exploration Wells in Xujiahe Formation Tight Sandstone Gas Reservoir

Authors: Fengxia Li, Lufeng Zhang, Haibo Wang

Abstract:

The tight sandstone gas reservoir in the Xujiahe Formation of the Sichuan Basin has huge reserves, but its utilization rate is low. Fracturing and stimulation are indispensable technologies to unlock their potential and achieve commercial exploitation. Slickwater is the most widely used fracturing fluid system in the fracturing and renovation of tight reservoirs. However, its viscosity is low, its sand-carrying performance is poor, and the risk of sand blockage is high. Increasing the sand carrying capacity by increasing the displacement will increase the frictional resistance of the pipe string, affecting the resistance reduction performance. The variable viscosity slickwater can flexibly switch between different viscosities in real-time online, effectively overcoming problems such as sand carrying and resistance reduction. Based on a self-developed indoor loop friction testing system, a visualization device for proppant transport, and a HAAKE MARS III rheometer, a comprehensive evaluation was conducted on the performance of variable viscosity slickwater, including resistance reduction, rheology, and sand carrying. The indoor experimental results show that: 1. by changing the concentration of drag-reducing agents, the viscosity of the slippery water can be changed between 2~30mPa. s; 2. the drag reduction rate of the variable viscosity slickwater is above 80%, and the shear rate will not reduce the drag reduction rate of the liquid; under indoor experimental conditions, 15mPa. s of variable viscosity and slickwater can basically achieve effective carrying and uniform placement of proppant. The layered fracturing effect of the JiangX well in the dense sandstone of the Xujiahe Formation shows that the drag reduction rate of the variable viscosity slickwater is 80.42%, and the daily production of the single layer after fracturing is over 50000 cubic meters. This study provides theoretical support and on-site experience for promoting the application of variable viscosity slickwater in tight sandstone gas reservoirs.

Keywords: slickwater, hydraulic fracturing, dynamic sand laying, drag reduction rate, rheological properties

Procedia PDF Downloads 78
4084 CFD Simulations to Examine Natural Ventilation of a Work Area in a Public Building

Authors: An-Shik Yang, Chiang-Ho Cheng, Jen-Hao Wu, Yu-Hsuan Juan

Abstract:

Natural ventilation has played an important role for many low energy-building designs. It has been also noticed as a essential subject to persistently bring the fresh cool air from the outside into a building. This study carried out the computational fluid dynamics (CFD)-based simulations to examine the natural ventilation development of a work area in a public building. The simulated results can be useful to better understand the indoor microclimate and the interaction of wind with buildings. Besides, this CFD simulation procedure can serve as an effective analysis tool to characterize the airing performance, and thereby optimize the building ventilation for strengthening the architects, planners and other decision makers on improving the natural ventilation design of public buildings.

Keywords: CFD simulations, natural ventilation, microclimate, wind environment

Procedia PDF Downloads 575
4083 150 KVA Multifunction Laboratory Test Unit Based on Power-Frequency Converter

Authors: Bartosz Kedra, Robert Malkowski

Abstract:

This paper provides description and presentation of laboratory test unit built basing on 150 kVA power frequency converter and Simulink RealTime platform. Assumptions, based on criteria which load and generator types may be simulated using discussed device, are presented, as well as control algorithm structure. As laboratory setup contains transformer with thyristor controlled tap changer, a wider scope of setup capabilities is presented. Information about used communication interface, data maintenance, and storage solution as well as used Simulink real-time features is presented. List and description of all measurements are provided. Potential of laboratory setup modifications is evaluated. For purposes of Rapid Control Prototyping, a dedicated environment was used Simulink RealTime. Therefore, load model Functional Unit Controller is based on a PC computer with I/O cards and Simulink RealTime software. Simulink RealTime was used to create real-time applications directly from Simulink models. In the next step, applications were loaded on a target computer connected to physical devices that provided opportunity to perform Hardware in the Loop (HIL) tests, as well as the mentioned Rapid Control Prototyping process. With Simulink RealTime, Simulink models were extended with I/O cards driver blocks that made automatic generation of real-time applications and performing interactive or automated runs on a dedicated target computer equipped with a real-time kernel, multicore CPU, and I/O cards possible. Results of performed laboratory tests are presented. Different load configurations are described and experimental results are presented. This includes simulation of under frequency load shedding, frequency and voltage dependent characteristics of groups of load units, time characteristics of group of different load units in a chosen area and arbitrary active and reactive power regulation basing on defined schedule.

Keywords: MATLAB, power converter, Simulink Real-Time, thyristor-controlled tap changer

Procedia PDF Downloads 325
4082 Thermodynamic Analysis of Surface Seawater under Ocean Warming: An Integrated Approach Combining Experimental Measurements, Theoretical Modeling, Machine Learning Techniques, and Molecular Dynamics Simulation for Climate Change Assessment

Authors: Nishaben Desai Dholakiya, Anirban Roy, Ranjan Dey

Abstract:

Understanding ocean thermodynamics has become increasingly critical as Earth's oceans serve as the primary planetary heat regulator, absorbing approximately 93% of excess heat energy from anthropogenic greenhouse gas emissions. This investigation presents a comprehensive analysis of Arabian Sea surface seawater thermodynamics, focusing specifically on heat capacity (Cp) and thermal expansion coefficient (α) - parameters fundamental to global heat distribution patterns. Through high-precision experimental measurements of ultrasonic velocity and density across varying temperature (293.15-318.15K) and salinity (0.5-35 ppt) conditions, it characterize critical thermophysical parameters including specific heat capacity, thermal expansion, and isobaric and isothermal compressibility coefficients in natural seawater systems. The study employs advanced machine learning frameworks - Random Forest, Gradient Booster, Stacked Ensemble Machine Learning (SEML), and AdaBoost - with SEML achieving exceptional accuracy (R² > 0.99) in heat capacity predictions. the findings reveal significant temperature-dependent molecular restructuring: enhanced thermal energy disrupts hydrogen-bonded networks and ion-water interactions, manifesting as decreased heat capacity with increasing temperature (negative ∂Cp/∂T). This mechanism creates a positive feedback loop where reduced heat absorption capacity potentially accelerates oceanic warming cycles. These quantitative insights into seawater thermodynamics provide crucial parametric inputs for climate models and evidence-based environmental policy formulation, particularly addressing the critical knowledge gap in thermal expansion behavior of seawater under varying temperature-salinity conditions.

Keywords: climate change, arabian sea, thermodynamics, machine learning

Procedia PDF Downloads 19