Search results for: search algorithms
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3766

Search results for: search algorithms

376 Forensic Investigation: The Impact of Biometric-Based Solution in Combatting Mobile Fraud

Authors: Mokopane Charles Marakalala

Abstract:

Research shows that mobile fraud has grown exponentially in South Africa during the lockdown caused by the COVID-19 pandemic. According to the South African Banking Risk Information Centre (SABRIC), fraudulent online banking and transactions resulted in a sharp increase in cybercrime since the beginning of the lockdown, resulting in a huge loss to the banking industry in South Africa. While the Financial Intelligence Centre Act, 38 of 2001, regulate financial transactions, it is evident that criminals are making use of technology to their advantage. Money-laundering ranks among the major crimes, not only in South Africa but worldwide. This paper focuses on the impact of biometric-based solutions in combatting mobile fraud at the South African Risk Information. SABRIC had the challenges of a successful mobile fraud; cybercriminals could hijack a mobile device and use it to gain access to sensitive personal data and accounts. Cybercriminals are constantly looting the depths of cyberspace in search of victims to attack. Millions of people worldwide use online banking to do their regular bank-related transactions quickly and conveniently. This was supported by the SABRIC, who regularly highlighted incidents of mobile fraud, corruption, and maladministration in SABRIC, resulting in a lack of secure their banking online; they are vulnerable to falling prey to fraud scams such as mobile fraud. Criminals have made use of digital platforms since the development of technology. In 2017, 13 438 instances involving banking apps, internet banking, and mobile banking caused the sector to suffer gross losses of more than R250,000,000. The final three parties are forced to point fingers at one another while the fraudster makes off with the money. A non-probability sampling (purposive sampling) was used in selecting these participants. These included telephone calls and virtual interviews. The results indicate that there is a relationship between remote online banking and the increase in money-laundering as the system allows transactions to take place with limited verification processes. This paper highlights the significance of considering the development of prevention mechanisms, capacity development, and strategies for both financial institutions as well as law enforcement agencies in South Africa to reduce crime such as money-laundering. The researcher recommends that strategies to increase awareness for bank staff must be harnessed through the provision of requisite training and to be provided adequate training.

Keywords: biometric-based solution, investigation, cybercrime, forensic investigation, fraud, combatting

Procedia PDF Downloads 101
375 Economic Impact and Benefits of Integrating Augmented Reality Technology in the Healthcare Industry: A Systematic Review

Authors: Brenda Thean I. Lim, Safurah Jaafar

Abstract:

Augmented reality (AR) in the healthcare industry has been gaining popularity in recent years, principally in areas of medical education, patient care and digital health solutions. One of the drivers in deciding to invest in AR technology is the potential economic benefits it could bring for patients and healthcare providers, including the pharmaceutical and medical technology sectors. Works of literature have shown that the benefits and impact of AR technologies have left trails of achievements in improving medical education and patient health outcomes. However, little has been published on the economic impact of AR in healthcare, a very resource-intensive industry. This systematic review was performed on studies focused on the benefits and impact of AR in healthcare to appraise if they meet the founded quality criteria so as to identify relevant publications for an in-depth analysis of the economic impact assessment. The literature search was conducted using multiple databases such as PubMed, Cochrane, Science Direct and Nature. Inclusion criteria include research papers on AR implementation in healthcare, from education to diagnosis and treatment. Only papers written in English language were selected. Studies on AR prototypes were excluded. Although there were many articles that have addressed the benefits of AR in the healthcare industry in the area of medical education, treatment and diagnosis and dental medicine, there were very few publications that identified the specific economic impact of technology within the healthcare industry. There were 13 publications included in the analysis based on the inclusion criteria. Out of the 13 studies, none comprised a systematically comprehensive cost impact evaluation. An outline of the cost-effectiveness and cost-benefit framework was made based on an AR article from another industry as a reference. This systematic review found that while the advancements of AR technology is growing rapidly and industries are starting to adopt them into respective sectors, the technology and its advancements in healthcare were still in their early stages. There are still plenty of room for further advancements and integration of AR into different sectors within the healthcare industry. Future studies will require more comprehensive economic analyses and costing evaluations to enable economic decisions for or against implementing AR technology in healthcare. This systematic review concluded that the current literature lacked detailed examination and conduct of economic impact and benefit analyses. Recommendations for future research would be to include details of the initial investment and operational costs for the AR infrastructure in healthcare settings while comparing the intervention to its conventional counterparts or alternatives so as to provide a comprehensive comparison on impact, benefit and cost differences.

Keywords: augmented reality, benefit, economic impact, healthcare, patient care

Procedia PDF Downloads 207
374 MOVIDA.polis: Physical Activity mHealth Based Platform

Authors: Rui Fonseca-Pinto, Emanuel Silva, Rui Rijo, Ricardo Martinho, Bruno Carreira

Abstract:

The sedentary lifestyle is associated to the development of chronic noncommunicable diseases (obesity, hypertension, Diabetes Mellitus Type 2) and the World Health Organization, given the evidence that physical activity is determinant for individual and collective health, defined the Physical Activity Level (PAL) as a vital signal. Strategies for increasing the practice of physical activity in all age groups have emerged from the various social organizations (municipalities, universities, health organizations, companies, social groups) by increasingly developing innovative strategies to promote motivation strategies and conditions to the practice of physical activity. The adaptation of cities to the new paradigms of sustainable mobility has provided the adaptation of urban training circles and mobilized citizens to combat sedentarism. This adaptation has accompanied the technological evolution and makes possible the use of mobile technology to monitor outdoor training programs and also, through the network connection (IoT), use the training data to make personalized recommendations. This work presents a physical activity counseling platform to be used in the physical maintenance circuits of urban centers, the MOVIDA.polis. The platform consists of a back office for the management of circuits and training stations, and for a mobile application for monitoring the user performance during workouts. Using a QRcode, each training station is recognized by the App and based on the individual performance records (effort perception, heart rate variation) artificial intelligence algorithms are used to make a new personalized recommendation. The results presented in this work were obtained during the proof of concept phase, which was carried out in the PolisLeiria training circuit in the city of Leiria (Portugal). It was possible to verify the increase in adherence to the practice of physical activity, as well as to decrease the interval between training days. Moreover, the AI-based recommendation acts as a partner in the training and an additional challenging factor. The platform is ready to be used by other municipalities in order to reduce the levels of sedentarism and approach the weekly goal of 150 minutes of moderate physical activity. Acknowledgments: This work was supported by Fundação para a Ciência e Tecnologia FCT- Portugal and CENTRO2020 under the scope of MOVIDA project: 02/SAICT/2016 – 23878.

Keywords: physical activity, mHealth, urban training circuits, health promotion

Procedia PDF Downloads 172
373 A Cooperative, Autonomous, and Continuously Operating Drone System Offered to Railway and Bridge Industry: The Business Model Behind

Authors: Paolo Guzzini, Emad Samuel M. Ebeid

Abstract:

Bridges and Railways are critical infrastructures. Ensuring safety for transports using such assets is a primary goal as it directly impacts the lives of people. By the way, improving safety could require increased investments in O&M, and therefore optimizing resource usage for asset maintenance becomes crucial. Drones4Safety (D4S), a European project funded under the H2020 Research and Innovation Action (RIA) program, aims to increase the safety of the European civil transport by building a system that relies on 3 main pillars: • Drones operating autonomously in swarm mode; • Drones able to recharge themselves using inductive phenomena produced by transmission lines in the nearby of bridges and railways assets to be inspected; • Data acquired that are analyzed with AI-empowered algorithms for defect detection This paper describes the business model behind this disruptive project. The Business Model is structured in 2 parts: • The first part is focused on the design of the business model Canvas, to explain the value provided by the Drone4safety project; • The second part aims at defining a detailed financial analysis, with the target of calculating the IRR (Internal Return rate) and the NPV (Net Present Value) of the investment in a 7 years plan (2 years to run the project + 5 years post-implementation). As to the financial analysis 2 different points of view are assumed: • Point of view of the Drones4safety company in charge of designing, producing, and selling the new system; • Point of view of the Utility company that will adopt the new system in its O&M practices; Assuming the point of view of the Drones4safety company 3 scenarios were considered: • Selling the drones > revenues will be produced by the drones’ sales; • Renting the drones > revenues will be produced by the rental of the drones (with a time-based model); • Selling the data acquisition service > revenues will be produced by the sales of pictures acquired by drones; Assuming the point of view of a utility adopting the D4S system, a 4th scenario was analyzed taking into account the decremental costs related to the change of operation and maintenance practices. The paper will show, for both companies, what are the key parameters affecting most of the business model and which are the sustainable scenarios.

Keywords: a swarm of drones, AI, bridges, railways, drones4safety company, utility companies

Procedia PDF Downloads 141
372 Comfort Evaluation of Summer Knitted Clothes of Tencel and Cotton Fabrics

Authors: Mona Mohamed Shawkt Ragab, Heba Mohamed Darwish

Abstract:

Context: Comfort properties of garments are crucial for the wearer, and with the increasing demand for cotton fabric, there is a need to explore alternative fabrics that can offer similar or superior comfort properties. This study focuses on comparing the comfort properties of tencel/cotton single jersey fabric and cotton single jersey fabric, with the aim of identifying fabrics that are more suitable for summer clothes. Research Aim: The aim of this study is to evaluate the comfort properties of tencel/cotton single jersey fabric and cotton single jersey fabric, with the goal of identifying fabrics that can serve as alternatives to cotton, considering their comfort properties for summer clothing. Methodology: An experimental, analytical approach was employed in this study. Two circular knitting machines were used to produce the fabrics, one with a 24 inches gauge and the other with a 28 inches gauge. Both fabrics were knitted with three different loop lengths (3.05 mm, 2.9 mm, and 2.6 mm) to obtain loose, medium, and tight fabrics for evaluation. Various comfort properties, including air permeability, water vapor permeability, wickability, and thermal resistance, were measured for both fabric types. Findings: The study found a significant difference in comfort properties between tencel/cotton single jersey fabric and cotton single jersey fabric. Tencel/cotton fabric exhibited higher air permeability, water vapor permeability, and wickability compared to cotton fabric. These findings suggest that tencel fabric is more suitable for summer clothes due to its superior ventilation and absorption properties. Theoretical Importance: This study contributes to the exploration of alternative fabrics to cotton by evaluating their comfort properties. By identifying fabrics that offer better comfort properties than cotton, particularly in terms of water usage, the study provides valuable insights into sustainable fabric choices for the fashion industry. Data Collection and Analysis Procedures: The comfort properties of the fabrics were measured using appropriate testing methods. Paired comparison t-tests were conducted to determine the significant differences between tencel/cotton fabric and cotton fabric in the measured properties. Correlation coefficients were also calculated to examine the relationships between the factors under study. Question Addressed: The study addresses the question of whether tencel/cotton single jersey fabric can serve as an alternative to cotton fabric for summer clothes, considering their comfort properties. Conclusion: The study concludes that tencel/cotton single jersey fabric offers superior comfort properties compared to cotton single jersey fabric, making it a suitable alternative for summer clothes. The findings also highlight the importance of considering fabric properties, such as air permeability, water vapor permeability, and wickability, when selecting materials for garments to enhance wearer comfort. This research contributes to the search for sustainable alternatives to cotton and provides valuable insights for the fashion industry in making informed fabric choices.

Keywords: comfort properties, cotton fabric, tencel fabric, single jersey

Procedia PDF Downloads 74
371 Initializing E-Classroom in a Multigrade School in the Philippines

Authors: Karl Erickson I. Ebora

Abstract:

Science and technology are two inseparable terms which bring wonders to all aspects of life such as education, medicine, food production and even the environment. In education, technology has become an integral part as it brings many benefits to the teaching-learning process. However, in the Philippines, being one of the developing countries resources are scarce and not all schools enjoy the fruits brought by technology. Much of this ordeal impacts that of multigrade instruction. These schools are often the last priority in resources allocation since these have limited number of students. In fact, it is not surprising that these schools do not have even a single computer unit much more a computer laboratory. This paper sought to present a plan on how public schools would receive its e-classroom. Specifically, this paper sought to answer questions like the level of the school readiness in terms of facilities and equipment; the attitude of the respondents towards the use of e-classroom; level of teacher’s familiarity in using different e-classroom software and the plans of interventions undertaken by the school to make it e-classroom ready. After gathering and analysing the necessary data, this paper came up with the following conclusions that in terms of facilities and equipment, Guisguis Talon Elementary School (Main), though a multigrade school, is ready to receive e-classroom.; that the respondents show positive disposition in technology utilization in teaching after they strongly agree that technology plays essential role in the teaching-learning process. Also, they strongly agree that technology is a good motivator; it makes the teaching and learning more interesting and effective; it makes teaching easy; and that technology enhances student’s learning. Additionally, Teacher-respondents in Guisguis Talon Elementary School (Main) show familiarity in using software. They are very familiar with MS Word; MS Excel; MS PowerPoint; and internet and email. Moreover, they are very familiar with basic e-classroom computer operations and basic application software. They are very familiar with MS office and can do simple editing and formatting; in accessing and saving information from CD/DVD, external hard drives, USB and the like; and in browsing effectively different search engines and educational sites, download and upload files. Likewise respondents strongly agree to the interventions undertaken by the school to make it e-classroom ready. They strongly agree that funding and support are needed by the school; that stakeholders should be encouraged to consider donating of equipment; and that school and community should try to mobilize their resources in order to help the school; that the teachers should be provided with trainings in order for them to be technologically competent; and that principals and administrators should motivate their teachers to undergo continuous professional development.

Keywords: e-classroom, multi-grade school, DCP, classroom computers

Procedia PDF Downloads 199
370 Exploring the Intersection Between the General Data Protection Regulation and the Artificial Intelligence Act

Authors: Maria Jędrzejczak, Patryk Pieniążek

Abstract:

The European legal reality is on the eve of significant change. In European Union law, there is talk of a “fourth industrial revolution”, which is driven by massive data resources linked to powerful algorithms and powerful computing capacity. The above is closely linked to technological developments in the area of artificial intelligence, which has prompted an analysis covering both the legal environment as well as the economic and social impact, also from an ethical perspective. The discussion on the regulation of artificial intelligence is one of the most serious yet widely held at both European Union and Member State level. The literature expects legal solutions to guarantee security for fundamental rights, including privacy, in artificial intelligence systems. There is no doubt that personal data have been increasingly processed in recent years. It would be impossible for artificial intelligence to function without processing large amounts of data (both personal and non-personal). The main driving force behind the current development of artificial intelligence is advances in computing, but also the increasing availability of data. High-quality data are crucial to the effectiveness of many artificial intelligence systems, particularly when using techniques involving model training. The use of computers and artificial intelligence technology allows for an increase in the speed and efficiency of the actions taken, but also creates security risks for the data processed of an unprecedented magnitude. The proposed regulation in the field of artificial intelligence requires analysis in terms of its impact on the regulation on personal data protection. It is necessary to determine what the mutual relationship between these regulations is and what areas are particularly important in the personal data protection regulation for processing personal data in artificial intelligence systems. The adopted axis of considerations is a preliminary assessment of two issues: 1) what principles of data protection should be applied in particular during processing personal data in artificial intelligence systems, 2) what regulation on liability for personal data breaches is in such systems. The need to change the regulations regarding the rights and obligations of data subjects and entities processing personal data cannot be excluded. It is possible that changes will be required in the provisions regarding the assignment of liability for a breach of personal data protection processed in artificial intelligence systems. The research process in this case concerns the identification of areas in the field of personal data protection that are particularly important (and may require re-regulation) due to the introduction of the proposed legal regulation regarding artificial intelligence. The main question that the authors want to answer is how the European Union regulation against data protection breaches in artificial intelligence systems is shaping up. The answer to this question will include examples to illustrate the practical implications of these legal regulations.

Keywords: data protection law, personal data, AI law, personal data breach

Procedia PDF Downloads 65
369 Strategic Interventions to Combat Socio-economic Impacts of Drought in Thar - A Case Study of Nagarparkar

Authors: Anila Hayat

Abstract:

Pakistan is one of those developing countries that are least involved in emissions but has the most vulnerable environmental conditions. Pakistan is ranked 8th in most affected countries by climate change on the climate risk index 1992-2011. Pakistan is facing severe water shortages and flooding as a result of changes in rainfall patterns, specifically in the least developed areas such as Tharparkar. Nagarparkar, once an attractive tourist spot located in Tharparkar because of its tropical desert climate, is now facing severe drought conditions for the last few decades. This study investigates the present socio-economic situation of local communities, major impacts of droughts and their underlying causes and current mitigation strategies adopted by local communities. The study uses both secondary (quantitative in nature) and primary (qualitative in nature) methods to understand the impacts and explore causes on the socio-economic life of local communities of the study area. The relevant data has been collected through household surveys using structured questionnaires, focus groups and in-depth interviews of key personnel from local and international NGOs to explore the sensitivity of impacts and adaptation to droughts in the study area. This investigation is limited to four rural communities of union council Pilu of Nagarparkar district, including Bheel, BhojaBhoon, Mohd Rahan Ji Dhani and Yaqub Ji Dhani villages. The results indicate that drought has caused significant economic and social hardships for the local communities as more than 60% of the overall population is dependent on rainfall which has been disturbed by irregular rainfall patterns. The decline in Crop yields has forced the local community to migrate to nearby areas in search of livelihood opportunities. Communities have not undertaken any appropriate adaptive actions to counteract the adverse effect of drought; they are completely dependent on support from the government and external aid for survival. Respondents also reported that poverty is a major cause of their vulnerability to drought. An increase in population, limited livelihood opportunities, caste system, lack of interest from the government sector, unawareness shaped their vulnerability to drought and other social issues. Based on the findings of this study, it is recommended that the local authorities shall create awareness about drought hazards and improve the resilience of communities against drought. It is further suggested to develop, introduce and implement water harvesting practices at the community level to promote drought-resistant crops.

Keywords: migration, vulnerability, awareness, Drought

Procedia PDF Downloads 132
368 Development of Gully Erosion Prediction Model in Sokoto State, Nigeria, using Remote Sensing and Geographical Information System Techniques

Authors: Nathaniel Bayode Eniolorunda, Murtala Abubakar Gada, Sheikh Danjuma Abubakar

Abstract:

The challenge of erosion in the study area is persistent, suggesting the need for a better understanding of the mechanisms that drive it. Thus, the study evolved a predictive erosion model (RUSLE_Sok), deploying Remote Sensing (RS) and Geographical Information System (GIS) tools. The nature and pattern of the factors of erosion were characterized, while soil losses were quantified. Factors’ impacts were also measured, and the morphometry of gullies was described. Data on the five factors of RUSLE and distances to settlements, rivers and roads (K, R, LS, P, C, DS DRd and DRv) were combined and processed following standard RS and GIS algorithms. Harmonized World Soil Data (HWSD), Shuttle Radar Topographical Mission (SRTM) image, Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS), Sentinel-2 image accessed and processed within the Google Earth Engine, road network and settlements were the data combined and calibrated into the factors for erosion modeling. A gully morphometric study was conducted at some purposively selected sites. Factors of soil erosion showed low, moderate, to high patterns. Soil losses ranged from 0 to 32.81 tons/ha/year, classified into low (97.6%), moderate (0.2%), severe (1.1%) and very severe (1.05%) forms. The multiple regression analysis shows that factors statistically significantly predicted soil loss, F (8, 153) = 55.663, p < .0005. Except for the C-Factor with a negative coefficient, all other factors were positive, with contributions in the order of LS>C>R>P>DRv>K>DS>DRd. Gullies are generally from less than 100m to about 3km in length. Average minimum and maximum depths at gully heads are 0.6 and 1.2m, while those at mid-stream are 1 and 1.9m, respectively. The minimum downstream depth is 1.3m, while that for the maximum is 4.7m. Deeper gullies exist in proximity to rivers. With minimum and maximum gully elevation values ranging between 229 and 338m and an average slope of about 3.2%, the study area is relatively flat. The study concluded that major erosion influencers in the study area are topography and vegetation cover and that the RUSLE_Sok well predicted soil loss more effectively than ordinary RUSLE. The adoption of conservation measures such as tree planting and contour ploughing on sloppy farmlands was recommended.

Keywords: RUSLE_Sok, Sokoto, google earth engine, sentinel-2, erosion

Procedia PDF Downloads 75
367 Microchip-Integrated Computational Models for Studying Gait and Motor Control Deficits in Autism

Authors: Noah Odion, Honest Jimu, Blessing Atinuke Afuape

Abstract:

Introduction: Motor control and gait abnormalities are commonly observed in individuals with autism spectrum disorder (ASD), affecting their mobility and coordination. Understanding the underlying neurological and biomechanical factors is essential for designing effective interventions. This study focuses on developing microchip-integrated wearable devices to capture real-time movement data from individuals with autism. By applying computational models to the collected data, we aim to analyze motor control patterns and gait abnormalities, bridging a crucial knowledge gap in autism-related motor dysfunction. Methods: We designed microchip-enabled wearable devices capable of capturing precise kinematic data, including joint angles, acceleration, and velocity during movement. A cross-sectional study was conducted on individuals with ASD and a control group to collect comparative data. Computational modelling was applied using machine learning algorithms to analyse motor control patterns, focusing on gait variability, balance, and coordination. Finite element models were also used to simulate muscle and joint dynamics. The study employed descriptive and analytical methods to interpret the motor data. Results: The wearable devices effectively captured detailed movement data, revealing significant gait variability in the ASD group. For example, gait cycle time was 25% longer, and stride length was reduced by 15% compared to the control group. Motor control analysis showed a 30% reduction in balance stability in individuals with autism. Computational models successfully predicted movement irregularities and helped identify motor control deficits, particularly in the lower limbs. Conclusions: The integration of microchip-based wearable devices with computational models offers a powerful tool for diagnosing and treating motor control deficits in autism. These results have significant implications for patient care, providing objective data to guide personalized therapeutic interventions. The findings also contribute to the broader field of neuroscience by improving our understanding of the motor dysfunctions associated with ASD and other neurodevelopmental disorders.

Keywords: motor control, gait abnormalities, autism, wearable devices, microchips, computational modeling, kinematic analysis, neurodevelopmental disorders

Procedia PDF Downloads 23
366 Portrayal of Kolkata(the former capital of India) in the ‘Kolkata Trilogy’- A Comparative Study of the Films by Mrinal Sen and Satyajit Ray

Authors: Ronit Chakraborty

Abstract:

Kolkata, formerly known as Calcutta, is the capital of West Bengal state and the former capital of India (1722-1911) of British India. Located at the heart of Hugli river (one of the main channels of Ganges river), the city is the heart of the state, which forms a base for commerce, transport and manufacture. The large and vibrant city thrives amidst the economic, social and political issues arising from the pages of history to the contemporary times. The unique nature, grandeurs, public debates on tea-stalls and obviously the charismatic scenic beauty and heritage keep the city to be criticized in all horizons, across the world. Movies in India are a big source of knowledge, which can be used as a powerful tool for political mobilization and to indirectly communicate with voters since cinema can be used as a tool of propaganda as it has a wide range of public interests. History proves the fact that films produced in India have been apt enough in making public interests be deeply portrayed through their content in a versatile manner. Such is the portrayal of India’s first capital, Kolkata and its ultimate truth being organizingly laid over by the trilogy of two international fame directors-Mrinal Sen and Satyajit Ray, through their ‘magnum opus- the ‘Kolkata trilogy’. Mrinal Sen’s Interview(1971), Calcutta 71(1972), Padatik(The Guerilla Fighter)(1973) and Satyajit Ray’s Pratidwandi (The Adversary)(1970), Seemabaddha(Company Limited)(1971), Jana Aranya(1976). These films picturized the contemporary Kolkata trends, issues and crises arising amidst the political set-up both by the positive and negative variables attributing to the day-to-day happenings of the city. The movies have been set amidst the turmoil that the nation was going through during Indira Gandhi’s declaration of Emergency, resulting from the general sense of disillusionment that prevailed during that time. Ray wasn't affiliated to any political party and his films largely contributed towards the contemporary conditions prevailing in the society. Mrinal Sen, being a Marxist was in constant search of the bitter truth that the society had to offer through his lens under the prevailing darkness through his trilogy. The research paper attempts to widely view and draw a comparative study of the overall description of the city of Kolkata as portrayed by Sen and Ray in their respective trilogies. By the usage of the visual content analysis method, the researcher has explored the six movies; both the trilogies of Mrinal Sen and Satyajit Ray and tried to analyse the differences as well as the similarities pertaining to understand India’s first capital city Kolkata in various dimensions along with its circumference.

Keywords: Kolkata, trilogy, Satyajit Ray, Mrinal Sen, films, comparative study

Procedia PDF Downloads 257
365 Automatic and High Precise Modeling for System Optimization

Authors: Stephanie Chen, Mitja Echim, Christof Büskens

Abstract:

To describe and propagate the behavior of a system mathematical models are formulated. Parameter identification is used to adapt the coefficients of the underlying laws of science. For complex systems this approach can be incomplete and hence imprecise and moreover too slow to be computed efficiently. Therefore, these models might be not applicable for the numerical optimization of real systems, since these techniques require numerous evaluations of the models. Moreover not all quantities necessary for the identification might be available and hence the system must be adapted manually. Therefore, an approach is described that generates models that overcome the before mentioned limitations by not focusing on physical laws, but on measured (sensor) data of real systems. The approach is more general since it generates models for every system detached from the scientific background. Additionally, this approach can be used in a more general sense, since it is able to automatically identify correlations in the data. The method can be classified as a multivariate data regression analysis. In contrast to many other data regression methods this variant is also able to identify correlations of products of variables and not only of single variables. This enables a far more precise and better representation of causal correlations. The basis and the explanation of this method come from an analytical background: the series expansion. Another advantage of this technique is the possibility of real-time adaptation of the generated models during operation. Herewith system changes due to aging, wear or perturbations from the environment can be taken into account, which is indispensable for realistic scenarios. Since these data driven models can be evaluated very efficiently and with high precision, they can be used in mathematical optimization algorithms that minimize a cost function, e.g. time, energy consumption, operational costs or a mixture of them, subject to additional constraints. The proposed method has successfully been tested in several complex applications and with strong industrial requirements. The generated models were able to simulate the given systems with an error in precision less than one percent. Moreover the automatic identification of the correlations was able to discover so far unknown relationships. To summarize the above mentioned approach is able to efficiently compute high precise and real-time-adaptive data-based models in different fields of industry. Combined with an effective mathematical optimization algorithm like WORHP (We Optimize Really Huge Problems) several complex systems can now be represented by a high precision model to be optimized within the user wishes. The proposed methods will be illustrated with different examples.

Keywords: adaptive modeling, automatic identification of correlations, data based modeling, optimization

Procedia PDF Downloads 409
364 Optimization for Autonomous Robotic Construction by Visual Guidance through Machine Learning

Authors: Yangzhi Li

Abstract:

Network transfer of information and performance customization is now a viable method of digital industrial production in the era of Industry 4.0. Robot platforms and network platforms have grown more important in digital design and construction. The pressing need for novel building techniques is driven by the growing labor scarcity problem and increased awareness of construction safety. Robotic approaches in construction research are regarded as an extension of operational and production tools. Several technological theories related to robot autonomous recognition, which include high-performance computing, physical system modeling, extensive sensor coordination, and dataset deep learning, have not been explored using intelligent construction. Relevant transdisciplinary theory and practice research still has specific gaps. Optimizing high-performance computing and autonomous recognition visual guidance technologies improves the robot's grasp of the scene and capacity for autonomous operation. Intelligent vision guidance technology for industrial robots has a serious issue with camera calibration, and the use of intelligent visual guiding and identification technologies for industrial robots in industrial production has strict accuracy requirements. It can be considered that visual recognition systems have challenges with precision issues. In such a situation, it will directly impact the effectiveness and standard of industrial production, necessitating a strengthening of the visual guiding study on positioning precision in recognition technology. To best facilitate the handling of complicated components, an approach for the visual recognition of parts utilizing machine learning algorithms is proposed. This study will identify the position of target components by detecting the information at the boundary and corner of a dense point cloud and determining the aspect ratio in accordance with the guidelines for the modularization of building components. To collect and use components, operational processing systems assign them to the same coordinate system based on their locations and postures. The RGB image's inclination detection and the depth image's verification will be used to determine the component's present posture. Finally, a virtual environment model for the robot's obstacle-avoidance route will be constructed using the point cloud information.

Keywords: robotic construction, robotic assembly, visual guidance, machine learning

Procedia PDF Downloads 86
363 CyberSteer: Cyber-Human Approach for Safely Shaping Autonomous Robotic Behavior to Comply with Human Intention

Authors: Vinicius G. Goecks, Gregory M. Gremillion, William D. Nothwang

Abstract:

Modern approaches to train intelligent agents rely on prolonged training sessions, high amounts of input data, and multiple interactions with the environment. This restricts the application of these learning algorithms in robotics and real-world applications, in which there is low tolerance to inadequate actions, interactions are expensive, and real-time processing and action are required. This paper addresses this issue introducing CyberSteer, a novel approach to efficiently design intrinsic reward functions based on human intention to guide deep reinforcement learning agents with no environment-dependent rewards. CyberSteer uses non-expert human operators for initial demonstration of a given task or desired behavior. The trajectories collected are used to train a behavior cloning deep neural network that asynchronously runs in the background and suggests actions to the deep reinforcement learning module. An intrinsic reward is computed based on the similarity between actions suggested and taken by the deep reinforcement learning algorithm commanding the agent. This intrinsic reward can also be reshaped through additional human demonstration or critique. This approach removes the need for environment-dependent or hand-engineered rewards while still being able to safely shape the behavior of autonomous robotic agents, in this case, based on human intention. CyberSteer is tested in a high-fidelity unmanned aerial vehicle simulation environment, the Microsoft AirSim. The simulated aerial robot performs collision avoidance through a clustered forest environment using forward-looking depth sensing and roll, pitch, and yaw references angle commands to the flight controller. This approach shows that the behavior of robotic systems can be shaped in a reduced amount of time when guided by a non-expert human, who is only aware of the high-level goals of the task. Decreasing the amount of training time required and increasing safety during training maneuvers will allow for faster deployment of intelligent robotic agents in dynamic real-world applications.

Keywords: human-robot interaction, intelligent robots, robot learning, semisupervised learning, unmanned aerial vehicles

Procedia PDF Downloads 259
362 The Antimicrobial Activity of Marjoram Essential Oil Against Some Antibiotic Resistant Microbes Isolated from Hospitals

Authors: R. A. Abdel Rahman, A. E. Abdel Wahab, E. A. Goghneimy, H. F. Mohamed, E. M. Salama

Abstract:

Infectious diseases are a major cause of death worldwide. The treatment of infections continues to be problematic in modern time because of the severe side effects of some drugs and the growing resistance to antimicrobial agents. Hence, the search for newer, safer and more potent antimicrobials is a pressing need. Herbal medicines have received much attention as a source of new antibacterial drugs since they are considered time-tested and comparatively safe both for human use and the environment. In the present study, the antimicrobial activity of marjoram (Origanum majorana L.) essential oil on some gram positive and gram negative reference bacteria, as well as some hospital resistant microbes, was tested. Marjoram oil was extracted and the oil chemical constituents were identified using GC/MS analysis. Staphylococcus aureas ATCC 6923, Pseudomonus auregonosa ATCC 9027, Bacillus subtilis ATCC 6633, E. coli ATCC 8736 and two hospital resistant microbes isolates 16 and 21 were used. The two isolates were identified by biochemical tests and 16s rRNA as proteus spp. and Enterococcus facielus. The effect of different concentrations of essential oils on bacterial growth was tested using agar disk diffusion assay method to determine the minimum inhibitory concentrations and using micro dilution method to determine the minimum bactericidal concentrations. Marjoram oil was found to be effective against both reference and hospital resistance strains. Hospital strains were more resistant to marjoram oil than reference strains. P. auregonosa growth was completely inhibited at a low concentration of oil (4µl/ml). The other reference strains showed sensitivity to marjoram oil at concentrations ranged from 5 to 7µl/ml. The two hospital strains showed sensitivity at media containing 10 and 15µl/ml oil. The major components of oil were terpineol, cis-beta (23.5%), 1,6 – octadien –3-ol,3,7-dimethyl, 2 aminobenzoate (10.9%), alpha terpieol (8.6%) and linalool (6.3%). Scanning electron microscope (SEM) and transmission electron microscope (TEM) analysis were used to determine the difference between treated and untreated hospital strains. SEM results showed that treated cells were smaller in size than control cells. TEM data showed that cell lysis has occurred to treated cells. Treated cells have ruptured cell wall and appeared empty of cytoplasm compared to control cells which shown to be intact with normal volume of cytoplasm. The results indicated that marjoram oil has a positive antimicrobial effect on hospital resistance microbes. Natural crude extracts can be perfect resources for new antimicrobial drugs.

Keywords: antimicrobial activity, essential oil, hospital resistance microbes, marjoram

Procedia PDF Downloads 446
361 Predicting Costs in Construction Projects with Machine Learning: A Detailed Study Based on Activity-Level Data

Authors: Soheila Sadeghi

Abstract:

Construction projects are complex and often subject to significant cost overruns due to the multifaceted nature of the activities involved. Accurate cost estimation is crucial for effective budget planning and resource allocation. Traditional methods for predicting overruns often rely on expert judgment or analysis of historical data, which can be time-consuming, subjective, and may fail to consider important factors. However, with the increasing availability of data from construction projects, machine learning techniques can be leveraged to improve the accuracy of overrun predictions. This study applied machine learning algorithms to enhance the prediction of cost overruns in a case study of a construction project. The methodology involved the development and evaluation of two machine learning models: Random Forest and Neural Networks. Random Forest can handle high-dimensional data, capture complex relationships, and provide feature importance estimates. Neural Networks, particularly Deep Neural Networks (DNNs), are capable of automatically learning and modeling complex, non-linear relationships between input features and the target variable. These models can adapt to new data, reduce human bias, and uncover hidden patterns in the dataset. The findings of this study demonstrate that both Random Forest and Neural Networks can significantly improve the accuracy of cost overrun predictions compared to traditional methods. The Random Forest model also identified key cost drivers and risk factors, such as changes in the scope of work and delays in material delivery, which can inform better project risk management. However, the study acknowledges several limitations. First, the findings are based on a single construction project, which may limit the generalizability of the results to other projects or contexts. Second, the dataset, although comprehensive, may not capture all relevant factors influencing cost overruns, such as external economic conditions or political factors. Third, the study focuses primarily on cost overruns, while schedule overruns are not explicitly addressed. Future research should explore the application of machine learning techniques to a broader range of projects, incorporate additional data sources, and investigate the prediction of both cost and schedule overruns simultaneously.

Keywords: cost prediction, machine learning, project management, random forest, neural networks

Procedia PDF Downloads 54
360 Measurement of Magnetic Properties of Grainoriented Electrical Steels at Low and High Fields Using a Novel Single

Authors: Nkwachukwu Chukwuchekwa, Joy Ulumma Chukwuchekwa

Abstract:

Magnetic characteristics of grain-oriented electrical steel (GOES) are usually measured at high flux densities suitable for its typical applications in power transformers. There are limited magnetic data at low flux densities which are relevant for the characterization of GOES for applications in metering instrument transformers and low frequency magnetic shielding in magnetic resonance imaging medical scanners. Magnetic properties such as coercivity, B-H loop, AC relative permeability and specific power loss of conventional grain oriented (CGO) and high permeability grain oriented (HGO) electrical steels were measured and compared at high and low flux densities at power magnetising frequency. 40 strips comprising 20 CGO and 20 HGO, 305 mm x 30 mm x 0.27 mm from a supplier were tested. The HGO and CGO strips had average grain sizes of 9 mm and 4 mm respectively. Each strip was singly magnetised under sinusoidal peak flux density from 8.0 mT to 1.5 T at a magnetising frequency of 50 Hz. The novel single sheet tester comprises a personal computer in which LabVIEW version 8.5 from National Instruments (NI) was installed, a NI 4461 data acquisition (DAQ) card, an impedance matching transformer, to match the 600  minimum load impedance of the DAQ card with the 5 to 20  low impedance of the magnetising circuit, and a 4.7 Ω shunt resistor. A double vertical yoke made of GOES which is 290 mm long and 32 mm wide is used. A 500-turn secondary winding, about 80 mm in length, was wound around a plastic former, 270 mm x 40 mm, housing the sample, while a 100-turn primary winding, covering the entire length of the plastic former was wound over the secondary winding. A standard Epstein strip to be tested is placed between the yokes. The magnetising voltage was generated by the LabVIEW program through a voltage output from the DAQ card. The voltage drop across the shunt resistor and the secondary voltage were acquired by the card for calculation of magnetic field strength and flux density respectively. A feedback control system implemented in LabVIEW was used to control the flux density and to make the induced secondary voltage waveforms sinusoidal to have repeatable and comparable measurements. The low noise NI4461 card with 24 bit resolution and a sampling rate of 204.8 KHz and 92 KHz bandwidth were chosen to take the measurements to minimize the influence of thermal noise. In order to reduce environmental noise, the yokes, sample and search coil carrier were placed in a noise shielding chamber. HGO was found to have better magnetic properties at both high and low magnetisation regimes. This is because of the higher grain size of HGO and higher grain-grain misorientation of CGO. HGO is better CGO in both low and high magnetic field applications.

Keywords: flux density, electrical steel, LabVIEW, magnetization

Procedia PDF Downloads 291
359 Methodologies for Deriving Semantic Technical Information Using an Unstructured Patent Text Data

Authors: Jaehyung An, Sungjoo Lee

Abstract:

Patent documents constitute an up-to-date and reliable source of knowledge for reflecting technological advance, so patent analysis has been widely used for identification of technological trends and formulation of technology strategies. But, identifying technological information from patent data entails some limitations such as, high cost, complexity, and inconsistency because it rely on the expert’ knowledge. To overcome these limitations, researchers have applied to a quantitative analysis based on the keyword technique. By using this method, you can include a technological implication, particularly patent documents, or extract a keyword that indicates the important contents. However, it only uses the simple-counting method by keyword frequency, so it cannot take into account the sematic relationship with the keywords and sematic information such as, how the technologies are used in their technology area and how the technologies affect the other technologies. To automatically analyze unstructured technological information in patents to extract the semantic information, it should be transformed into an abstracted form that includes the technological key concepts. Specific sentence structure ‘SAO’ (subject, action, object) is newly emerged by representing ‘key concepts’ and can be extracted by NLP (Natural language processor). An SAO structure can be organized in a problem-solution format if the action-object (AO) states that the problem and subject (S) form the solution. In this paper, we propose the new methodology that can extract the SAO structure through technical elements extracting rules. Although sentence structures in the patents text have a unique format, prior studies have depended on general NLP (Natural language processor) applied to the common documents such as newspaper, research paper, and twitter mentions, so it cannot take into account the specific sentence structure types of the patent documents. To overcome this limitation, we identified a unique form of the patent sentences and defined the SAO structures in the patents text data. There are four types of technical elements that consist of technology adoption purpose, application area, tool for technology, and technical components. These four types of sentence structures from patents have their own specific word structure by location or sequence of the part of speech at each sentence. Finally, we developed algorithms for extracting SAOs and this result offer insight for the technology innovation process by providing different perspectives of technology.

Keywords: NLP, patent analysis, SAO, semantic-analysis

Procedia PDF Downloads 262
358 Design and Implementation of Generative Models for Odor Classification Using Electronic Nose

Authors: Kumar Shashvat, Amol P. Bhondekar

Abstract:

In the midst of the five senses, odor is the most reminiscent and least understood. Odor testing has been mysterious and odor data fabled to most practitioners. The delinquent of recognition and classification of odor is important to achieve. The facility to smell and predict whether the artifact is of further use or it has become undesirable for consumption; the imitation of this problem hooked on a model is of consideration. The general industrial standard for this classification is color based anyhow; odor can be improved classifier than color based classification and if incorporated in machine will be awfully constructive. For cataloging of odor for peas, trees and cashews various discriminative approaches have been used Discriminative approaches offer good prognostic performance and have been widely used in many applications but are incapable to make effectual use of the unlabeled information. In such scenarios, generative approaches have better applicability, as they are able to knob glitches, such as in set-ups where variability in the series of possible input vectors is enormous. Generative models are integrated in machine learning for either modeling data directly or as a transitional step to form an indeterminate probability density function. The algorithms or models Linear Discriminant Analysis and Naive Bayes Classifier have been used for classification of the odor of cashews. Linear Discriminant Analysis is a method used in data classification, pattern recognition, and machine learning to discover a linear combination of features that typifies or divides two or more classes of objects or procedures. The Naive Bayes algorithm is a classification approach base on Bayes rule and a set of qualified independence theory. Naive Bayes classifiers are highly scalable, requiring a number of restraints linear in the number of variables (features/predictors) in a learning predicament. The main recompenses of using the generative models are generally a Generative Models make stronger assumptions about the data, specifically, about the distribution of predictors given the response variables. The Electronic instrument which is used for artificial odor sensing and classification is an electronic nose. This device is designed to imitate the anthropological sense of odor by providing an analysis of individual chemicals or chemical mixtures. The experimental results have been evaluated in the form of the performance measures i.e. are accuracy, precision and recall. The investigational results have proven that the overall performance of the Linear Discriminant Analysis was better in assessment to the Naive Bayes Classifier on cashew dataset.

Keywords: odor classification, generative models, naive bayes, linear discriminant analysis

Procedia PDF Downloads 387
357 Concepts of the Covid-19 Pandemic and the Implications of Vaccines for Health Security in Nigeria and Diasporas

Authors: Wisdom Robert Duruji

Abstract:

The outbreak of SARS-CoV-2 serotype infection was recorded in January 2020 in Wuhan City, Hubei Province, China. This study examines the concepts of the COVID-19 pandemic and the implications of vaccines for health security in Nigeria and Diasporas. It challenges the widely accepted assumption that the first case of coronavirus infection in Nigeria was recorded on February 27th, 2020, in Lagos. The study utilizes a range of research methods to achieve its objectives. These include the double-layered culture technique, literature review, website knowledge, Google search, news media information, academic journals, fieldwork, and on-site observations. These diverse methods allow for a comprehensive analysis of the concepts and the implications being studied. The study finds that coronavirus infection can be asymptomatic; it may be the antigenicity of the leukocytes (white blood cells), which produce immunogenic hapten or interferons (α, β and γ) that fight infectious parasites, was an immune response that prevented severe virulence in healthy individuals; the reason healthy patients of coronavirus infection in Nigeria naturally recovered after two to three weeks of on-set of infection and test negative. However, the fatality data from the Nigerian Centre for Disease Control (NCDC) is incorrect in this study’s finding; it perused that the fatalities were primarily due to underlying ailments, hunger, and malnutrition in debilitated, comorbid, or compromised patients. This study concluded that the kits and Polymerase Chain Reaction (PCR) machine currently used by the Nigerian Centre for Disease Control (NCDC) in testing and confirming COVID-19 in Nigeria is not ideal; it is programmed and negates separating the strain to its specific serotypes amongst its genera coronavirus, and family Coronaviridae; and might have confirmed patients with the symptoms of febrile caused by cough, catarrh, typhoid and malaria parasites as Covid-19 positive. Therefore, it is recommended that the coronavirus species infected in Nigeria are opportunistic parasites that thrive in human immuno-suppressed conditions like the herpesvirus; it cannot be eradicated by vaccines; the only virucides are interferons, immunoglobulins, and probably synthetic antiviral guanosine drugs like copegus or ribavirin. The findings emphasized that COVID-19 is not the primary pandemic disease in Nigeria; the lockdown was a mirage and not necessary; but rather, pandemic diseases in Nigeria are corruption, nepotism, hunger, and malnutrition caused by ineptitude in governance, religious dichotomy, and ethnic conflicts.

Keywords: coronavirus, corruption, Covid-19 pandemic, lock-down, Nigeria, vaccine

Procedia PDF Downloads 68
356 Optimized Deep Learning-Based Facial Emotion Recognition System

Authors: Erick C. Valverde, Wansu Lim

Abstract:

Facial emotion recognition (FER) system has been recently developed for more advanced computer vision applications. The ability to identify human emotions would enable smart healthcare facility to diagnose mental health illnesses (e.g., depression and stress) as well as better human social interactions with smart technologies. The FER system involves two steps: 1) face detection task and 2) facial emotion recognition task. It classifies the human expression in various categories such as angry, disgust, fear, happy, sad, surprise, and neutral. This system requires intensive research to address issues with human diversity, various unique human expressions, and variety of human facial features due to age differences. These issues generally affect the ability of the FER system to detect human emotions with high accuracy. Early stage of FER systems used simple supervised classification task algorithms like K-nearest neighbors (KNN) and artificial neural networks (ANN). These conventional FER systems have issues with low accuracy due to its inefficiency to extract significant features of several human emotions. To increase the accuracy of FER systems, deep learning (DL)-based methods, like convolutional neural networks (CNN), are proposed. These methods can find more complex features in the human face by means of the deeper connections within its architectures. However, the inference speed and computational costs of a DL-based FER system is often disregarded in exchange for higher accuracy results. To cope with this drawback, an optimized DL-based FER system is proposed in this study.An extreme version of Inception V3, known as Xception model, is leveraged by applying different network optimization methods. Specifically, network pruning and quantization are used to enable lower computational costs and reduce memory usage, respectively. To support low resource requirements, a 68-landmark face detector from Dlib is used in the early step of the FER system.Furthermore, a DL compiler is utilized to incorporate advanced optimization techniques to the Xception model to improve the inference speed of the FER system. In comparison to VGG-Net and ResNet50, the proposed optimized DL-based FER system experimentally demonstrates the objectives of the network optimization methods used. As a result, the proposed approach can be used to create an efficient and real-time FER system.

Keywords: deep learning, face detection, facial emotion recognition, network optimization methods

Procedia PDF Downloads 118
355 Geochemistry and Petrogenesis of High-K Calc-Alkaline Granitic Rocks of Song, Hawal Massif, N. E. Nigeria

Authors: Ismaila Haruna

Abstract:

The global downfall in fossil energy prices and dwindling oil reserves in Nigeria has ignited interest in the search for alternative sources of foreign income for the country. Solid minerals, particularly Uranium and other base metals like Lead and Zinc have been considered as potentially good options. Several occurrences of this mineral have been discovered in both the sedimentary and granitic rocks of the Hawal and Adamawa Massifs as well as in the adjoining Benue Trough in northeastern Nigeria. However, the paucity of geochemical data and consequent poor petrogenetic knowledge of the granitoids in this region has made exploration works difficult. Song, a small area within the Hawal Massif, was mapped and the collected samples chemically determined in Activation Laboratory, Canada through fusion dissolution technique of Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Field mapping results show that the area is underlain by Granites, diorites with pockets of gneisses and pegmatites and that these rocks consists of microcline, quartz, plagioclase, biotite, hornblende, pyroxene and accessory apatite, zircon, sphene, magnetite and opaques in various proportions. Geochemical data show continous compositional variation from diorite to granites within silica range of 52.69 to 76.04 wt %. Plot of the data on various Harker variation diagrams show distinct evolutionary trends from diorites to granites indicated by decreasing CaO, Fe2O3, MnO, MgO, Ti2O, and increasing K2O with increasing silica. This pattern is reflected in trace elements data which, in general, decrease from diorite to the granites with rising Rb and K. Tectonic, triangular and other diagrams, indicate high-K calc-alkaline trends, syn-collisional granite signatures, I-type characteristics, with CNK/A of less than 1.1 (minimum of 0.58 and maximum of 0.94) and strong potassic character (K2O/Na2O˃1). However, only the granites are slightly peraluminous containing high silica percentage (68.46 to 76.04), K2O (2.71 to 6.16 wt %) with low CaO (1.88 on the average). Chondrite normalised rare earth elements trends indicate strongly fractionated REEs and enriched LREEs with slightly increasing negative Eu anomaly from the diorite to the granite. On the basis of field and geochemical data, the granitoids are interpreted to be high-K calc-alkaline, I-type, formed as a result of hybridization between mantle-derived magma and continental source materials (probably older meta-sediments) in a syn-collisional tectonic setting.

Keywords: geochemistry, granite, Hawal Massif, Nigeria, petrogenesis, song

Procedia PDF Downloads 235
354 Assessment of N₂ Fixation and Water-Use Efficiency in a Soybean-Sorghum Rotation System

Authors: Mmatladi D. Mnguni, Mustapha Mohammed, George Y. Mahama, Alhassan L. Abdulai, Felix D. Dakora

Abstract:

Industrial-based nitrogen (N) fertilizers are justifiably credited for the current state of food production across the globe, but their continued use is not sustainable and has an adverse effect on the environment. The search for greener and sustainable technologies has led to an increase in exploiting biological systems such as legumes and organic amendments for plant growth promotion in cropping systems. Although the benefits of legume rotation with cereal crops have been documented, the full benefits of soybean-sorghum rotation systems have not been properly evaluated in Africa. This study explored the benefits of soybean-sorghum rotation through assessing N₂ fixation and water-use efficiency of soybean in rotation with sorghum with and without organic and inorganic amendments. The field trials were conducted from 2017 to 2020. Sorghum was grown on plots previously cultivated to soybean and vice versa. The succeeding sorghum crop received fertilizer amendments [organic fertilizer (5 tons/ha as poultry litter, OF); inorganic fertilizer (80N-60P-60K) IF; organic + inorganic fertilizer (OF+IF); half organic + inorganic fertilizer (HIF+OF); organic + half inorganic fertilizer (OF+HIF); half organic + half inorganic (HOF+HIF) and control] and was arranged in a randomized complete block design. The soybean crop succeeding fertilized sorghum received a blanket application of triple superphosphate at 26 kg P ha⁻¹. Nitrogen fixation and water-use efficiency were respectively assessed at the flowering stage using the ¹⁵N and ¹³C natural abundance techniques. The results showed that the shoot dry matter of soybean plants supplied with HOF+HIF was much higher (43.20 g plant-1), followed by OF+HIF (36.45 g plant⁻¹), and HOF+IF (33.50 g plant⁻¹). Shoot N concentration ranged from 1.60 to 1.66%, and total N content from 339 to 691 mg N plant⁻¹. The δ¹⁵N values of soybean shoots ranged from -1.17‰ to -0.64‰, with plants growing on plots previously treated to HOF+HIF exhibiting much higher δ¹⁵N values, and hence lower percent N derived from N₂ fixation (%Ndfa). Shoot %Ndfa values varied from 70 to 82%. The high %Ndfa values obtained in this study suggest that the previous year’s organic and inorganic fertilizer amendments to sorghum did not inhibit N₂ fixation in the following soybean crop. The amount of N-fixed by soybean ranged from 106 to 197 kg N ha⁻¹. The treatments showed marked variations in carbon (C) content, with HOF+HIF treatment recording the highest C content. Although water-use efficiency varied from -29.32‰ to -27.85‰, shoot water-use efficiency, C concentration, and C:N ratio were not altered by previous fertilizer application to sorghum. This study provides strong evidence that previous HOF+HIF sorghum residues can enhance N nutrition and water-use efficiency in nodulated soybean.

Keywords: ¹³C and ¹⁵N natural abundance, N-fixed, organic and inorganic fertilizer amendments, shoot %Ndfa

Procedia PDF Downloads 170
353 A Machine Learning Approach for Efficient Resource Management in Construction Projects

Authors: Soheila Sadeghi

Abstract:

Construction projects are complex and often subject to significant cost overruns due to the multifaceted nature of the activities involved. Accurate cost estimation is crucial for effective budget planning and resource allocation. Traditional methods for predicting overruns often rely on expert judgment or analysis of historical data, which can be time-consuming, subjective, and may fail to consider important factors. However, with the increasing availability of data from construction projects, machine learning techniques can be leveraged to improve the accuracy of overrun predictions. This study applied machine learning algorithms to enhance the prediction of cost overruns in a case study of a construction project. The methodology involved the development and evaluation of two machine learning models: Random Forest and Neural Networks. Random Forest can handle high-dimensional data, capture complex relationships, and provide feature importance estimates. Neural Networks, particularly Deep Neural Networks (DNNs), are capable of automatically learning and modeling complex, non-linear relationships between input features and the target variable. These models can adapt to new data, reduce human bias, and uncover hidden patterns in the dataset. The findings of this study demonstrate that both Random Forest and Neural Networks can significantly improve the accuracy of cost overrun predictions compared to traditional methods. The Random Forest model also identified key cost drivers and risk factors, such as changes in the scope of work and delays in material delivery, which can inform better project risk management. However, the study acknowledges several limitations. First, the findings are based on a single construction project, which may limit the generalizability of the results to other projects or contexts. Second, the dataset, although comprehensive, may not capture all relevant factors influencing cost overruns, such as external economic conditions or political factors. Third, the study focuses primarily on cost overruns, while schedule overruns are not explicitly addressed. Future research should explore the application of machine learning techniques to a broader range of projects, incorporate additional data sources, and investigate the prediction of both cost and schedule overruns simultaneously.

Keywords: resource allocation, machine learning, optimization, data-driven decision-making, project management

Procedia PDF Downloads 38
352 Integrating Data Mining with Case-Based Reasoning for Diagnosing Sorghum Anthracnose

Authors: Mariamawit T. Belete

Abstract:

Cereal production and marketing are the means of livelihood for millions of households in Ethiopia. However, cereal production is constrained by technical and socio-economic factors. Among the technical factors, cereal crop diseases are the major contributing factors to the low yield. The aim of this research is to develop an integration of data mining and knowledge based system for sorghum anthracnose disease diagnosis that assists agriculture experts and development agents to make timely decisions. Anthracnose diagnosing systems gather information from Melkassa agricultural research center and attempt to score anthracnose severity scale. Empirical research is designed for data exploration, modeling, and confirmatory procedures for testing hypothesis and prediction to draw a sound conclusion. WEKA (Waikato Environment for Knowledge Analysis) was employed for the modeling. Knowledge based system has come across a variety of approaches based on the knowledge representation method; case-based reasoning (CBR) is one of the popular approaches used in knowledge-based system. CBR is a problem solving strategy that uses previous cases to solve new problems. The system utilizes hidden knowledge extracted by employing clustering algorithms, specifically K-means clustering from sampled anthracnose dataset. Clustered cases with centroid value are mapped to jCOLIBRI, and then the integrator application is created using NetBeans with JDK 8.0.2. The important part of a case based reasoning model includes case retrieval; the similarity measuring stage, reuse; which allows domain expert to transfer retrieval case solution to suit for the current case, revise; to test the solution, and retain to store the confirmed solution to the case base for future use. Evaluation of the system was done for both system performance and user acceptance. For testing the prototype, seven test cases were used. Experimental result shows that the system achieves an average precision and recall values of 70% and 83%, respectively. User acceptance testing also performed by involving five domain experts, and an average of 83% acceptance is achieved. Although the result of this study is promising, however, further study should be done an investigation on hybrid approach such as rule based reasoning, and pictorial retrieval process are recommended.

Keywords: sorghum anthracnose, data mining, case based reasoning, integration

Procedia PDF Downloads 81
351 Examining Kokugaku as a Pattern of Defining Identity in Global Comparison

Authors: Mária Ildikó Farkas

Abstract:

Kokugaku of the Edo period can be seen as a key factor of defining cultural (and national) identity in the 18th and early 19th century based on Japanese cultural heritage. Kokugaku focused on Japanese classics, on exploring, studying and reviving (or even inventing) ancient Japanese language, literature, myths, history and also political ideology. ‘Japanese culture’ as such was distinguished from Chinese (and all other) cultures, ‘Japanese identity’ was thus defined. Meiji scholars used kokugaku conceptions of Japan to construct a modern national identity based on the premodern and culturalist conceptions of community. The Japanese cultural movement of the 18-19th centuries (kokugaku) of defining cultural and national identity before modernization can be compared not to the development of Western Europe (where national identity strongly attached to modern nation states) or other parts of Asia (where these emerged after the Western colonization), but rather with the ‘national awakening’ movements of the peoples of East Central Europe, a comparison which have not been dealt with in the secondary literature yet. The role of a common language, culture, history and myths in the process of defining cultural identity – following mainly Miroslav Hroch’s comparative and interdisciplinary theory of national development – can be examined compared to the movements of defining identity of the peoples of East Central Europe (18th-19th c). In the shadow of a cultural and/or political ‘monolith’ (China for Japan and Germany for Central Europe), before modernity, ethnic groups or communities started to evolve their own identities with cultural movements focusing on their own language and culture, thus creating their cultural identity, and in the end, a new sense of community, the nation. Comparing actual texts (‘narratives’) of the kokugaku scholars and Central European writers of the nation building period (18th and early 19th centuries) can reveal the similarities of the discourses of deliberate searches for identity. Similar motives of argument can be identified in these narratives: ‘language’ as the primary bearer of collective identity, the role of language in culture, ‘culture’ as the main common attribute of the community; and similar aspirations to explore, search and develop native language, ‘genuine’ culture, ‘original’ traditions. This comparative research offering ‘development patterns’ for interpretation can help us understand processes that may be ambiguously considered ‘backward’ or even ‘deleterious’ (e.g. cultural nationalism) or just ‘unique’. ‘Cultural identity’ played a very important role in the formation of national identity during modernization especially in the case of non-Western communities, who had to face the danger of losing their identities in the course of ‘Westernization’ accompanying modernization.

Keywords: cultural identity, Japanese modernization, kokugaku, national awakening

Procedia PDF Downloads 271
350 A Methodology Based on Image Processing and Deep Learning for Automatic Characterization of Graphene Oxide

Authors: Rafael do Amaral Teodoro, Leandro Augusto da Silva

Abstract:

Originated from graphite, graphene is a two-dimensional (2D) material that promises to revolutionize technology in many different areas, such as energy, telecommunications, civil construction, aviation, textile, and medicine. This is possible because its structure, formed by carbon bonds, provides desirable optical, thermal, and mechanical characteristics that are interesting to multiple areas of the market. Thus, several research and development centers are studying different manufacturing methods and material applications of graphene, which are often compromised by the scarcity of more agile and accurate methodologies to characterize the material – that is to determine its composition, shape, size, and the number of layers and crystals. To engage in this search, this study proposes a computational methodology that applies deep learning to identify graphene oxide crystals in order to characterize samples by crystal sizes. To achieve this, a fully convolutional neural network called U-net has been trained to segment SEM graphene oxide images. The segmentation generated by the U-net is fine-tuned with a standard deviation technique by classes, which allows crystals to be distinguished with different labels through an object delimitation algorithm. As a next step, the characteristics of the position, area, perimeter, and lateral measures of each detected crystal are extracted from the images. This information generates a database with the dimensions of the crystals that compose the samples. Finally, graphs are automatically created showing the frequency distributions by area size and perimeter of the crystals. This methodological process resulted in a high capacity of segmentation of graphene oxide crystals, presenting accuracy and F-score equal to 95% and 94%, respectively, over the test set. Such performance demonstrates a high generalization capacity of the method in crystal segmentation, since its performance considers significant changes in image extraction quality. The measurement of non-overlapping crystals presented an average error of 6% for the different measurement metrics, thus suggesting that the model provides a high-performance measurement for non-overlapping segmentations. For overlapping crystals, however, a limitation of the model was identified. To overcome this limitation, it is important to ensure that the samples to be analyzed are properly prepared. This will minimize crystal overlap in the SEM image acquisition and guarantee a lower error in the measurements without greater efforts for data handling. All in all, the method developed is a time optimizer with a high measurement value, considering that it is capable of measuring hundreds of graphene oxide crystals in seconds, saving weeks of manual work.

Keywords: characterization, graphene oxide, nanomaterials, U-net, deep learning

Procedia PDF Downloads 160
349 The Effectiveness of Psychosocial Interventions for Survivors of Natural Disasters: A Systematic Review

Authors: Santhani M. Selveindran

Abstract:

Background: Natural disasters are traumatic global events that are becoming increasing more common, with significant psychosocial impact on survivors. This impact results not only in psychosocial distress but, for many, can lead to psychosocial disorders and chronic psychopathology. While there are currently available interventions that seek to prevent and treat these psychosocial sequelae, their effectiveness is uncertain. The evidence-base is emerging with more primary studies evaluating the effectiveness of various psychosocial interventions for survivors of natural disasters, which remains to be synthesized. Aim of Review: To identify, critically appraise and synthesize the current evidence-base on the effectiveness of psychosocial interventions in preventing or treating Post-Traumatic Stress Disorder (PTSD), Major Depressive Disorder (MDD) and/or Generalized Anxiety Disorder (GAD) in adults and children who are survivors of natural disasters. Methods: A protocol was developed as a guide to carry out this review. A systematic search was conducted in eight international electronic databases, three grey literature databases, one dissertation and thesis repository, websites of six humanitarian and non-governmental organizations renowned for their work on natural disasters, as well as bibliographic and citation searching for eligible articles. Papers meeting the specific inclusion criteria underwent quality assessment using the Downs and Black checklist. Data were extracted from the included papers and analysed by way of narrative synthesis. Results: Database and website searching returned 3777 papers where 31 met the criteria for inclusion. Additional 2 papers were obtained through bibliographic and citation searching. Methodological quality of most papers was fair. Twenty-five studies evaluated psychological interventions, five, social interventions whereas three studies evaluated ‘mixed’ psychological and social interventions. All studies, irrespective of methodological quality, reported post-intervention reductions in symptom scores for PTSD, depression and/or anxiety and where assessed, reduced diagnosis of PTSD and MDD, and produced improvements in self-efficacy and quality of life. Statistically significant results were seen in 27 studies. However, three studies demonstrated that the evaluated interventions may not have been very beneficial. Conclusions: The overall positive results suggest that any psychosocial interventions are favourable and should be delivered to all natural disaster survivors, irrespective of age, country, and phase of disaster. Yet, heterogeneity and methodological shortcomings of the current evidence-base makes it difficult to draw definite conclusions needed to formulate categorical guidance or frameworks. Further, rigorously conducted research is needed in this area, although the feasibility of such, given the context and nature of the problem, is also recognized.

Keywords: psychosocial interventions, natural disasters, survivors, effectiveness

Procedia PDF Downloads 154
348 A Systematic Review of Chronic Neurologic Complications of COVID-19; A Potential Risk Factor for Narcolepsy, Parkinson's Disease, and Multiple Sclerosis.

Authors: Sulemana Saibu, Moses Ikpeme

Abstract:

Background: The severity of the COVID-19 pandemic, brought on by the SARS-CoV-2 coronavirus, has been unprecedented since the 1918 influenza pandemic. SARS-CoV-2 cases of CNS and peripheral nervous system disease, including neurodegenerative disorders and chronic immune-mediated diseases, may be anticipated based on knowledge of past coronaviruses, particularly those that caused the severe acute respiratory syndrome and Middle East respiratory syndrome outbreaks. Although respiratory symptoms are the most common clinical presentation, neurological symptoms are becoming increasingly recognized, raising concerns about their potential role in causing Parkinson's disease, Multiple sclerosis, and Narcolepsy. This systematic review aims to summarize the current evidence by exploring the association between COVID-19 infection and how it may overlap with etiological mechanisms resulting in Narcolepsy, Parkinson's disease, and Multiple sclerosis. Methods: A systematic search was conducted using electronic databases ((PubMed/MedLine, Embase, PsycINFO, ScieLO, Web of Science, ProQuest (Biotechnology, Virology, and AIDS), Scopus, and CINAHL)) to identify studies published between January 2020 and December 2022 that investigated the association between COVID-19 and Parkinson's disease, multiple sclerosis, and Narcolepsy. Per the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, the review was performed and reported. Study quality was assessed using the Critical Appraisal Skills Programme Checklist and the Joanna Briggs Institute Critical appraisal tools. Results: A total of 21 studies out of 1025 met the inclusion criteria, including 8 studies reporting Parkinson's disease, 11 on multiple sclerosis, and 2 on Narcolepsy. In COVID-19 individuals compared to the general population, Narcolepsy, Parkinson's disease, and multiple sclerosis were shown to have a higher incidence. The findings imply that COVID-19 may worsen the signs or induce multiple sclerosis and Parkinson's disease and may raise the risk of developing Narcolepsy. Further research is required to confirm these connections because the available data is insufficient. Conclusion: According to the existing data, COVID-19 may raise the risk of Narcolepsy and have a causative relationship with Parkinson's disease, multiple sclerosis, and other diseases. More study is required to confirm these correlations and pinpoint probable mechanisms behind these interactions. Clinicians should be aware of how COVID-19 may affect various neurological illnesses and should treat patients who are affected accordingly.

Keywords: COVID-19, parkinson’s disease, multiple sclerosis, narcolepsy, neurological disorders, sars-cov-2, neurodegenerative disorders, chronic immune-mediated diseases

Procedia PDF Downloads 84
347 Investigating the Impact of Task Demand and Duration on Passage of Time Judgements and Duration Estimates

Authors: Jesika A. Walker, Mohammed Aswad, Guy Lacroix, Denis Cousineau

Abstract:

There is a fundamental disconnect between the experience of time passing and the chronometric units by which time is quantified. Specifically, there appears to be no relationship between the passage of time judgments (PoTJs) and verbal duration estimates at short durations (e.g., < 2000 milliseconds). When a duration is longer than several minutes, however, evidence suggests that a slower feeling of time passing is predictive of overestimation. Might the length of a task moderate the relation between PoTJs and duration estimates? Similarly, the estimation paradigm (prospective vs. retrospective) and the mental effort demanded of a task (task demand) have both been found to influence duration estimates. However, only a handful of experiments have investigated these effects for tasks of long durations, and the results have been mixed. Thus, might the length of a task also moderate the effects of the estimation paradigm and task demand on duration estimates? To investigate these questions, 273 participants performed either an easy or difficult visual and memory search task for either eight or 58 minutes, under prospective or retrospective instructions. Afterward, participants provided a duration estimate in minutes, followed by a PoTJ on a Likert scale (1 = very slow, 7 = very fast). A 2 (prospective vs. retrospective) × 2 (eight minutes vs. 58 minutes) × 2 (high vs. low difficulty) between-subjects ANOVA revealed a two-way interaction between task demand and task duration on PoTJs, p = .02. Specifically, time felt faster in the more challenging task, but only in the eight-minute condition, p < .01. Duration estimates were transformed into RATIOs (estimate/actual duration) to standardize estimates across durations. An ANOVA revealed a two-way interaction between estimation paradigm and task duration, p = .03. Specifically, participants overestimated the task more if they were given prospective instructions, but only in the eight-minute task. Surprisingly, there was no effect of task difficulty on duration estimates. Thus, the demands of a task may influence ‘feeling of time’ and ‘estimation time’ differently, contributing to the existing theory that these two forms of time judgement rely on separate underlying cognitive mechanisms. Finally, a significant main effect of task duration was found for both PoTJs and duration estimates (ps < .001). Participants underestimated the 58-minute task (m = 42.5 minutes) and overestimated the eight-minute task (m = 10.7 minutes). Yet, they reported the 58-minute task as passing significantly slower on a Likert scale (m = 2.5) compared to the eight-minute task (m = 4.1). In fact, a significant correlation was found between PoTJ and duration estimation (r = .27, p <.001). This experiment thus provides evidence for a compensatory effect at longer durations, in which people underestimate a ‘slow feeling condition and overestimate a ‘fast feeling condition. The results are discussed in relation to heuristics that might alter the relationship between these two variables when conditions range from several minutes up to almost an hour.

Keywords: duration estimates, long durations, passage of time judgements, task demands

Procedia PDF Downloads 130