Search results for: military decision making
4159 The Development of Assessment Criteria Framework for Sustainable Healthcare Buildings in China
Authors: Chenyao Shen, Jie Shen
Abstract:
The rating system provides an effective framework for assessing building environmental performance and integrating sustainable development into building and construction processes; as it can be used as a design tool by developing appropriate sustainable design strategies and determining performance measures to guide the sustainable design and decision-making processes. Healthcare buildings are resource (water, energy, etc.) intensive. To maintain high-cost operations and complex medical facilities, they require a great deal of hazardous and non-hazardous materials, stringent control of environmental parameters, and are responsible for producing polluting emission. Compared with other types of buildings, the impact of healthcare buildings on the full cycle of the environment is particularly large. With broad recognition among designers and operators that energy use can be reduced substantially, many countries have set up their own green rating systems for healthcare buildings. There are four main green healthcare building evaluation systems widely acknowledged in the world - Green Guide for Health Care (GGHC), which was jointly organized by the United States HCWH and CMPBS in 2003; BREEAM Healthcare, issued by the British Academy of Building Research (BRE) in 2008; the Green Star-Healthcare v1 tool, released by the Green Building Council of Australia (GBCA) in 2009; and LEED Healthcare 2009, released by the United States Green Building Council (USGBC) in 2011. In addition, the German Association of Sustainable Building (DGNB) has also been developing the German Sustainable Building Evaluation Criteria (DGNB HC). In China, more and more scholars and policy makers have recognized the importance of assessment of sustainable development, and have adapted some tools and frameworks. China’s first comprehensive assessment standard for green building (the GBTs) was issued in 2006 (lately updated in 2014), promoting sustainability in the built-environment and raise awareness of environmental issues among architects, engineers, contractors as well as the public. However, healthcare building was not involved in the evaluation system of GBTs because of its complex medical procedures, strict requirements of indoor/outdoor environment and energy consumption of various functional rooms. Learn from advanced experience of GGHC, BREEAM, and LEED HC above, China’s first assessment criteria for green hospital/healthcare buildings was finally released in December 2015. Combined with both quantitative and qualitative assessment criteria, the standard highlight the differences between healthcare and other public buildings in meeting the functional needs for medical facilities and special groups. This paper has focused on the assessment criteria framework for sustainable healthcare buildings, for which the comparison of different rating systems is rather essential. Descriptive analysis is conducted together with the cross-matrix analysis to reveal rich information on green assessment criteria in a coherent manner. The research intends to know whether the green elements for healthcare buildings in China are different from those conducted in other countries, and how to improve its assessment criteria framework.Keywords: assessment criteria framework, green building design, healthcare building, building performance rating tool
Procedia PDF Downloads 1504158 Automation of Savitsky's Method for Power Calculation of High Speed Vessel and Generating Empirical Formula
Authors: M. Towhidur Rahman, Nasim Zaman Piyas, M. Sadiqul Baree, Shahnewaz Ahmed
Abstract:
The design of high-speed craft has recently become one of the most active areas of naval architecture. Speed increase makes these vehicles more efficient and useful for military, economic or leisure purpose. The planing hull is designed specifically to achieve relatively high speed on the surface of the water. Speed on the water surface is closely related to the size of the vessel and the installed power. The Savitsky method was first presented in 1964 for application to non-monohedric hulls and for application to stepped hulls. This method is well known as a reliable comparative to CFD analysis of hull resistance. A computer program based on Savitsky’s method has been developed using MATLAB. The power of high-speed vessels has been computed in this research. At first, the program reads some principal parameters such as displacement, LCG, Speed, Deadrise angle, inclination of thrust line with respect to keel line etc. and calculates the resistance of the hull using empirical planning equations of Savitsky. However, some functions used in the empirical equations are available only in the graphical form, which is not suitable for the automatic computation. We use digital plotting system to extract data from nomogram. As a result, value of wetted length-beam ratio and trim angle can be determined directly from the input of initial variables, which makes the power calculation automated without manually plotting of secondary variables such as p/b and other coefficients and the regression equations of those functions are derived by using data from different charts. Finally, the trim angle, mean wetted length-beam ratio, frictional coefficient, resistance, and power are computed and compared with the results of Savitsky and good agreement has been observed.Keywords: nomogram, planing hull, principal parameters, regression
Procedia PDF Downloads 4074157 Deep Learning Based Text to Image Synthesis for Accurate Facial Composites in Criminal Investigations
Authors: Zhao Gao, Eran Edirisinghe
Abstract:
The production of an accurate sketch of a suspect based on a verbal description obtained from a witness is an essential task for most criminal investigations. The criminal investigation system employs specifically trained professional artists to manually draw a facial image of the suspect according to the descriptions of an eyewitness for subsequent identification. Within the advancement of Deep Learning, Recurrent Neural Networks (RNN) have shown great promise in Natural Language Processing (NLP) tasks. Additionally, Generative Adversarial Networks (GAN) have also proven to be very effective in image generation. In this study, a trained GAN conditioned on textual features such as keywords automatically encoded from a verbal description of a human face using an RNN is used to generate photo-realistic facial images for criminal investigations. The intention of the proposed system is to map corresponding features into text generated from verbal descriptions. With this, it becomes possible to generate many reasonably accurate alternatives to which the witness can use to hopefully identify a suspect from. This reduces subjectivity in decision making both by the eyewitness and the artist while giving an opportunity for the witness to evaluate and reconsider decisions. Furthermore, the proposed approach benefits law enforcement agencies by reducing the time taken to physically draw each potential sketch, thus increasing response times and mitigating potentially malicious human intervention. With publically available 'CelebFaces Attributes Dataset' (CelebA) and additionally providing verbal description as training data, the proposed architecture is able to effectively produce facial structures from given text. Word Embeddings are learnt by applying the RNN architecture in order to perform semantic parsing, the output of which is fed into the GAN for synthesizing photo-realistic images. Rather than the grid search method, a metaheuristic search based on genetic algorithms is applied to evolve the network with the intent of achieving optimal hyperparameters in a fraction the time of a typical brute force approach. With the exception of the ‘CelebA’ training database, further novel test cases are supplied to the network for evaluation. Witness reports detailing criminals from Interpol or other law enforcement agencies are sampled on the network. Using the descriptions provided, samples are generated and compared with the ground truth images of a criminal in order to calculate the similarities. Two factors are used for performance evaluation: The Structural Similarity Index (SSIM) and the Peak Signal-to-Noise Ratio (PSNR). A high percentile output from this performance matrix should attribute to demonstrating the accuracy, in hope of proving that the proposed approach can be an effective tool for law enforcement agencies. The proposed approach to criminal facial image generation has potential to increase the ratio of criminal cases that can be ultimately resolved using eyewitness information gathering.Keywords: RNN, GAN, NLP, facial composition, criminal investigation
Procedia PDF Downloads 1674156 Evaluation of Outpatient Management of Proctological Surgery under Saddle Block
Authors: Bouhouf Atef, Beloulou Mohamed Lamine
Abstract:
Introduction: Outpatient surgery is continually developing compared to conventional inpatient surgery; its rate is constantly increasing every year due to global socio-economic pressure. Most hospitals continue to perform proctologic surgery in conventional hospitalization. Purpose: As part of a monocentric prospective descriptive study, we examined the feasibility of proctologic surgery under saddle block on an outpatient basis with the same safety conditions as in traditional hospitalization. Material and methods: This is a monocentric prospective descriptive study spread over a period of 24 months, from December 2018 to December 2020 including 150 patients meeting the medico-surgical and socio-environmental criteria of eligibility for outpatient surgery, operated for proctological pathologies under saddle block in outpatient mode, in the surgery department of the regional military hospital of Constantine Algeria. The data were collected and analyzed by the biomedical statistics software Epi-info and Microsoft Excel, then compared with other related studies. Results: This study involved over a period of two years, 150 male patients with an average age of 32 years (20-64). Most patients (95,33%) were ASA I class, and 4,67% ASA II class. All patients received saddle blocks. The average length of stay of patients was six hours. The quality indicators in outpatient surgery in our study were: zero (0)% of deprogrammings, three (3)% of conversions to full hospitalization, 0,7% of readmissions, an average waiting time before access to the operating room of 83 minutes without delay of discharge, a satisfaction rate of 90,8% and a reduction in the cost compared to conventional inpatient surgery in proportions ranging from – 32,6% and – 48,75%. Conclusions: The outpatient management of proctological surgery under saddle block is very beneficial in terms of safety, efficiency, simplicity, and economy. Our results are in line with those of the literature and our work deserves to be continued to include many patients.Keywords: outpatient surgery, proctological surgery, saddle block, satisfaction, cost
Procedia PDF Downloads 274155 Predicting the Areal Development of the City of Mashhad with the Automaton Fuzzy Cell Method
Authors: Mehran Dizbadi, Daniyal Safarzadeh, Behrooz Arastoo, Ansgar Brunn
Abstract:
Rapid and uncontrolled expansion of cities has led to unplanned aerial development. In this way, modeling and predicting the urban growth of a city helps decision-makers. In this study, the aspect of sustainable urban development has been studied for the city of Mashhad. In general, the prediction of urban aerial development is one of the most important topics of modern town management. In this research, using the Cellular Automaton (CA) model developed for geo data of Geographic Information Systems (GIS) and presenting a simple and powerful model, a simulation of complex urban processes has been done.Keywords: urban modeling, sustainable development, fuzzy cellular automaton, geo-information system
Procedia PDF Downloads 1364154 Connectomic Correlates of Cerebral Microhemorrhages in Mild Traumatic Brain Injury Victims with Neural and Cognitive Deficits
Authors: Kenneth A. Rostowsky, Alexander S. Maher, Nahian F. Chowdhury, Andrei Irimia
Abstract:
The clinical significance of cerebral microbleeds (CMBs) due to mild traumatic brain injury (mTBI) remains unclear. Here we use magnetic resonance imaging (MRI), diffusion tensor imaging (DTI) and connectomic analysis to investigate the statistical association between mTBI-related CMBs, post-TBI changes to the human connectome and neurological/cognitive deficits. This study was undertaken in agreement with US federal law (45 CFR 46) and was approved by the Institutional Review Board (IRB) of the University of Southern California (USC). Two groups, one consisting of 26 (13 females) mTBI victims and another comprising 26 (13 females) healthy control (HC) volunteers were recruited through IRB-approved procedures. The acute Glasgow Coma Scale (GCS) score was available for each mTBI victim (mean µ = 13.2; standard deviation σ = 0.4). Each HC volunteer was assigned a GCS of 15 to indicate the absence of head trauma at the time of enrollment in our study. Volunteers in the HC and mTBI groups were matched according to their sex and age (HC: µ = 67.2 years, σ = 5.62 years; mTBI: µ = 66.8 years, σ = 5.93 years). MRI [including T1- and T2-weighted volumes, gradient recalled echo (GRE)/susceptibility weighted imaging (SWI)] and gradient echo (GE) DWI volumes were acquired using the same MRI scanner type (Trio TIM, Siemens Corp.). Skull-stripping and eddy current correction were implemented. DWI volumes were processed in TrackVis (http://trackvis.org) and 3D Slicer (http://www.slicer.org). Tensors were fit to DWI data to perform DTI, and tractography streamlines were then reconstructed using deterministic tractography. A voxel classifier was used to identify image features as CMB candidates using Microbleed Anatomic Rating Scale (MARS) guidelines. For each peri-lesional DTI streamline bundle, the null hypothesis was formulated as the statement that there was no neurological or cognitive deficit associated with between-scan differences in the mean FA of DTI streamlines within each bundle. The statistical significance of each hypothesis test was calculated at the α = 0.05 level, subject to the family-wise error rate (FWER) correction for multiple comparisons. Results: In HC volunteers, the along-track analysis failed to identify statistically significant differences in the mean FA of DTI streamline bundles. In the mTBI group, significant differences in the mean FA of peri-lesional streamline bundles were found in 21 out of 26 volunteers. In those volunteers where significant differences had been found, these differences were associated with an average of ~47% of all identified CMBs (σ = 21%). In 12 out of the 21 volunteers exhibiting significant FA changes, cognitive functions (memory acquisition and retrieval, top-down control of attention, planning, judgment, cognitive aspects of decision-making) were found to have deteriorated over the six months following injury (r = -0.32, p < 0.001). Our preliminary results suggest that acute post-TBI CMBs may be associated with cognitive decline in some mTBI patients. Future research should attempt to identify mTBI patients at high risk for cognitive sequelae.Keywords: traumatic brain injury, magnetic resonance imaging, diffusion tensor imaging, connectomics
Procedia PDF Downloads 1734153 Tea and Its Working Methodology in the Biomass Estimation of Poplar Species
Authors: Pratima Poudel, Austin Himes, Heidi Renninger, Eric McConnel
Abstract:
Populus spp. (poplar) are the fastest-growing trees in North America, making them ideal for a range of applications as they can achieve high yields on short rotations and regenerate by coppice. Furthermore, poplar undergoes biochemical conversion to fuels without complexity, making it one of the most promising, purpose-grown, woody perennial energy sources. Employing wood-based biomass for bioenergy offers numerous benefits, including reducing greenhouse gas (GHG) emissions compared to non-renewable traditional fuels, the preservation of robust forest ecosystems, and creating economic prospects for rural communities.In order to gain a better understanding of the potential use of poplar as a biomass feedstock for biofuel in the southeastern US, the conducted a techno-economic assessment (TEA). This assessment is an analytical approach that integrates technical and economic factors of a production system to evaluate its economic viability. the TEA specifically focused on a short rotation coppice system employing a single-pass cut-and-chip harvesting method for poplar. It encompassed all the costs associated with establishing dedicated poplar plantations, including land rent, site preparation, planting, fertilizers, and herbicides. Additionally, we performed a sensitivity analysis to evaluate how different costs can affect the economic performance of the poplar cropping system. This analysis aimed to determine the minimum average delivered selling price for one metric ton of biomass necessary to achieve a desired rate of return over the cropping period. To inform the TEA, data on the establishment, crop care activities, and crop yields were derived from a field study conducted at the Mississippi Agricultural and Forestry Experiment Station's Bearden Dairy Research Center in Oktibbeha County and Pontotoc Ridge-Flatwood Branch Experiment Station in Pontotoc County.Keywords: biomass, populus species, sensitivity analysis, technoeconomic analysis
Procedia PDF Downloads 844152 Competitive Advantages of Efficient Reverse Logistics: A Case Study Integrating Firms and Customers Perspectives
Authors: Adèle Oliva, Samuel Fosso Wamba
Abstract:
This study looks at how firms can create competitive advantages through effective reserve logistics strategies. Upon using data collected from reverse supply chain managers of electronic commerce companies, the study found that improved reverse logistics management can have a positive impact on companies’ business benefits. These include playing a role in the implementation of many factors that highly influence the decision to purchase, customers’ loyalty, as well as increasing companies’ turnover. As a result, through an efficient design and management of their reverse flow, companies can decrease the costs associated to returned products.Keywords: reverse logistics, competitive advantage, case study, business value
Procedia PDF Downloads 4584151 Towards Natively Context-Aware Web Services
Authors: Hajer Taktak, Faouzi Moussa
Abstract:
With the ubiquitous computing’s emergence and the evolution of enterprises’ needs, one of the main challenges is to build context-aware applications based on Web services. These applications have become particularly relevant in the pervasive computing domain. In this paper, we introduce our approach that optimizes the use of Web services with context notions when dealing with contextual environments. We focus particularly on making Web services autonomous and natively context-aware. We implement and evaluate the proposed approach with a pedagogical example of a context-aware Web service treating temperature values.Keywords: context-aware, CXF framework, ubiquitous computing, web service
Procedia PDF Downloads 3664150 Comparison of Direction of Arrival Estimation Method for Drone Based on Phased Microphone Array
Authors: Jiwon Lee, Yeong-Ju Go, Jong-Soo Choi
Abstract:
Drones were first developed for military use and were used in World War 1. But recently drones have been used in a variety of fields. Several companies actively utilize drone technology to strengthen their services, and in agriculture, drones are used for crop monitoring and sowing. Other people use drones for hobby activities such as photography. However, as the range of use of drones expands rapidly, problems caused by drones such as improperly flying, privacy and terrorism are also increasing. As the need for monitoring and tracking of drones increases, researches are progressing accordingly. The drone detection system estimates the position of the drone using the physical phenomena that occur when the drones fly. The drone detection system measures being developed utilize many approaches, such as radar, infrared camera, and acoustic detection systems. Among the various drone detection system, the acoustic detection system is advantageous in that the microphone array system is small, inexpensive, and easy to operate than other systems. In this paper, the acoustic signal is acquired by using minimum microphone when drone is flying, and direction of drone is estimated. When estimating the Direction of Arrival(DOA), there is a method of calculating the DOA based on the Time Difference of Arrival(TDOA) and a method of calculating the DOA based on the beamforming. The TDOA technique requires less number of microphones than the beamforming technique, but is weak in noisy environments and can only estimate the DOA of a single source. The beamforming technique requires more microphones than the TDOA technique. However, it is strong against the noisy environment and it is possible to simultaneously estimate the DOA of several drones. When estimating the DOA using acoustic signals emitted from the drone, it is impossible to measure the position of the drone, and only the direction can be estimated. To overcome this problem, in this work we show how to estimate the position of drones by arranging multiple microphone arrays. The microphone array used in the experiments was four tetrahedral microphones. We simulated the performance of each DOA algorithm and demonstrated the simulation results through experiments.Keywords: acoustic sensing, direction of arrival, drone detection, microphone array
Procedia PDF Downloads 1644149 Escalation of Commitment and Turnover in Top Management Teams
Authors: Dmitriy V. Chulkov
Abstract:
Escalation of commitment is defined as continuation of a project after receiving negative information about it. While literature in management and psychology identified various factors contributing to escalation behavior, this phenomenon has received little analysis in economics, potentially due to the apparent irrationality of escalation. In this study, we present an economic model of escalation with asymmetric information in a principal-agent setup where the agents are responsible for a project selection decision and discover the outcome of the project before the principal. Our theoretical model complements the existing literature on several accounts. First, we link the incentive to escalate commitment to a project with the turnover decision by the manager. When a manager learns the outcome of the project and stops it that reveals that a mistake was made. There is an incentive to continue failing projects and avoid admitting the mistake. This incentive is enhanced when the agent may voluntarily resign from the firm before the outcome of the failing project is revealed, and thus not bear the full extent of reputation damage due to project failure. As long as some successful managers leave the firm for extraneous reasons, outside firms find it difficult to link failing projects with certainty to managers that left a firm. Second, we demonstrate that non-CEO managers have reputation concerns separate from those of the CEO, and thus may escalate commitment to projects they oversee, when such escalation can attenuate damage to reputation from impending project failure. Such incentive for escalation will be present for non-CEO managers if the CEO delegates responsibility for a project to a non-CEO executive. If reputation matters for promotion to the CEO, the incentive for a rising executive to escalate in order to protect reputation is distinct from that of a CEO. Third, our theoretical model is supported by empirical analysis of changes in the firm’s operations measured by the presence of discontinued operations at the time of turnover among the top four members of the top management team. Discontinued operations are indicative of termination of failing projects at a firm. The empirical results demonstrate that in a large dataset of over three thousand publicly traded U.S. firms for a period from 1993 to 2014 turnover by top executives significantly increases the likelihood that the firm discontinues operations. Furthermore, the type of turnover matters as this effect is strongest when at least one non-CEO member of the top management team leaves the firm and when the CEO departure is due to a voluntary resignation and not to a retirement or illness. Empirical results are consistent with the predictions of the theoretical model and suggest that escalation of commitment is primarily observed in decisions by non-CEO members of the top management team.Keywords: discontinued operations, escalation of commitment, executive turnover, top management teams
Procedia PDF Downloads 3704148 English is Not Going to the Dog (E): Rising Fame of Doge Speak
Abstract:
Doge speak is an Internet variety with its own linguistic patterns and regularities. Doge meme contains some unconventional grammar rules which make it recognizable. With the use of doge corpus, certain characteristics of doge speak as well as reasons for its popularity are analyzed. The study concludes that doge memes can be applied to a variety of situations, for instance advertising or fashion industry. Doge users play with language and create surprising linguistic combinations. To sum up, doge meme making is a multiperson task. Doge users predict and comment on the world with the use of doge memes.Keywords: dogespeak, internet language, language play, meme
Procedia PDF Downloads 4814147 A Web Service Based Sensor Data Management System
Authors: Rose A. Yemson, Ping Jiang, Oyedeji L. Inumoh
Abstract:
The deployment of wireless sensor network has rapidly increased, however with the increased capacity and diversity of sensors, and applications ranging from biological, environmental, military etc. generates tremendous volume of data’s where more attention is placed on the distributed sensing and little on how to manage, analyze, retrieve and understand the data generated. This makes it more quite difficult to process live sensor data, run concurrent control and update because sensor data are either heavyweight, complex, and slow. This work will focus on developing a web service platform for automatic detection of sensors, acquisition of sensor data, storage of sensor data into a database, processing of sensor data using reconfigurable software components. This work will also create a web service based sensor data management system to monitor physical movement of an individual wearing wireless network sensor technology (SunSPOT). The sensor will detect movement of that individual by sensing the acceleration in the direction of X, Y and Z axes accordingly and then send the sensed reading to a database that will be interfaced with an internet platform. The collected sensed data will determine the posture of the person such as standing, sitting and lying down. The system is designed using the Unified Modeling Language (UML) and implemented using Java, JavaScript, html and MySQL. This system allows real time monitoring an individual closely and obtain their physical activity details without been physically presence for in-situ measurement which enables you to work remotely instead of the time consuming check of an individual. These details can help in evaluating an individual’s physical activity and generate feedback on medication. It can also help in keeping track of any mandatory physical activities required to be done by the individuals. These evaluations and feedback can help in maintaining a better health status of the individual and providing improved health care.Keywords: HTML, java, javascript, MySQL, sunspot, UML, web-based, wireless network sensor
Procedia PDF Downloads 2144146 Placenta A Classical Caesarean Section with Peripartum Hysterectomy at 27+3 Weeks Gestation For Placnta Accreta
Authors: Huda Abdelrhman Osman Ahmed, Paul Feyi Waboso
Abstract:
Introduction: Placenta accreta spectrum (PAS) disorders present a significant challenge in obstetric management due to the high risk of hemorrhage and potential complications at delivery. This case describes a 27+3 weeks gestation in a patient with placenta accreta managed with classical cesarean section and peripartum hysterectomy. Case Description: AGravida 4P3 patient presented at 27+3 weeks gestation with painless, unprovoked vaginal bleeding and an estimated blood loss (EBL) of 300 mL. At the 20+5 week anomaly scan, a placenta previa was identified anterior, covering the os anterior uterus and containing lacunae with signs of myometrial thinning. At a 24+1 week scan conducted at a tertiary center, further imaging indicated placenta increta with invasion into the myometrium and potential areas of placenta percreta. The patient’s past obstetric history included three previous cesarean sections, with no significant medical or surgical history. Social history revealed heavy smoking but no alcohol use. No drug allergies were reported. Given the risks associated with PAS, a management plan was formulated, including an MRI at a later stage and cesarean delivery with a possible hysterectomy between 34-36 weeks. However, at 27+3 weeks, the patient experienced another episode of vaginal bleeding EBL 500 ml, necessitating immediate intervention. Management: As the patient was unstable, she was not transferred to the tertiary center. Completed and informed consent was obtained. MDT planning-group and cross-matching 4 units, uterotonics. Tranexamic acid blood products, cryo, cell salvage, 2 obstetric consultants and an anesthetic consultant, blood bank aware and hematologist. HDU bed and ITU availability. This study assisted in performing a classical Caesarean section, Where the urologist inserted JJ ureteric stents. Following this, we also assisted in a total abdominal hysterectomy with the conservation of ovaries. 4 units RBC and 1 unit FFP were transfused. The total blood loss was 2.3 L. Outcome: The procedure successfully achieved hemostasis, and the neonate was delivered with subsequent transfer to a neonatal intensive care unit for management. The patient’s postoperative course was monitored closely with no immediate complications. Discussion: This case highlights the complexity and urgency in managing placenta accreta spectrum disorders, particularly with the added challenges posed by remote location and limited tertiary support. The need for rapid decision-making and interdisciplinary coordination is emphasized in such high-risk obstetric cases. The case also underscores the potential for surgical intervention and the importance of family involvement in emergent care decisions. Conclusion: Placenta accreta spectrum disorders demand meticulous planning and timely intervention. This case contributes to understanding PAS management at earlier gestational ages and provides insights into the challenges posed by access to tertiary care, especially in urgent situations.Keywords: Accreta, Hysterectomy, 3MDT, prematurity
Procedia PDF Downloads 174145 Using Neural Networks for Click Prediction of Sponsored Search
Authors: Afroze Ibrahim Baqapuri, Ilya Trofimov
Abstract:
Sponsored search is a multi-billion dollar industry and makes up a major source of revenue for search engines (SE). Click-through-rate (CTR) estimation plays a crucial role for ads selection, and greatly affects the SE revenue, advertiser traffic and user experience. We propose a novel architecture of solving CTR prediction problem by combining artificial neural networks (ANN) with decision trees. First, we compare ANN with respect to other popular machine learning models being used for this task. Then we go on to combine ANN with MatrixNet (proprietary implementation of boosted trees) and evaluate the performance of the system as a whole. The results show that our approach provides a significant improvement over existing models.Keywords: neural networks, sponsored search, web advertisement, click prediction, click-through rate
Procedia PDF Downloads 5764144 Job Shop Scheduling: Classification, Constraints and Objective Functions
Authors: Majid Abdolrazzagh-Nezhad, Salwani Abdullah
Abstract:
The job-shop scheduling problem (JSSP) is an important decision facing those involved in the fields of industry, economics and management. This problem is a class of combinational optimization problem known as the NP-hard problem. JSSPs deal with a set of machines and a set of jobs with various predetermined routes through the machines, where the objective is to assemble a schedule of jobs that minimizes certain criteria such as makespan, maximum lateness, and total weighted tardiness. Over the past several decades, interest in meta-heuristic approaches to address JSSPs has increased due to the ability of these approaches to generate solutions which are better than those generated from heuristics alone. This article provides the classification, constraints and objective functions imposed on JSSPs that are available in the literature.Keywords: job-shop scheduling, classification, constraints, objective functions
Procedia PDF Downloads 4514143 China-Pakistan Nexus and Its Implication for India
Authors: Riddhi Chopra
Abstract:
While China’s friendship with a number of countries has waxed and waned over the decades, Sino-Pak relationship is said to have withstood the vicissitudes of larger international politics as well as changes in regional and domestic currents. Pakistan, one of the first countries to recognize the People’s Republic of China, thus providing China with a corridor into the energy rich Muslim states which was reciprocated with a continual stream of no-strings-attached military hardware and defense-related assistance from Beijing. The joint enmity towards India also provided the initial thrust to a burgeoning Sino-Pak friendship. This paper intends to provide a profound analysis of the strategic relation between China-Pakistan and examine India as a determining factor. The Pakistan-China strategic relationship has been conventionally viewed by India as a zero sum game, wherein any gains accrued by Pakistan or China through their partnership is seen as a direct detriment to the evolution of India-Pakistan or India-China relation. The paper evaluates various factors which were crucial for the synthesis of such a strong relation and presents a comprehensive study of the various policies and programs that have been undertaken by the two countries to tie India to South Asia and reduce its sphere of influence. The geographic dynamics is said to breed a natural coalition, dominating the strategic ambitions of both Beijing and Islamabad hence directing their relationship. In addition to the obvious geopolitical factors, there are several dense collaborations between the two nations knitting a relatively close partnership. Moreover, an attempt has been made to assess the irritants in China-Pak relations and the initiatives taken by the two to further strengthen it. Current trends in diplomatic, economic and defense cooperation – along with the staunch affinity rooted in history and consistent geo-strategic interests – points to a strong and strengthening relationship, significant in directing India’s foreign and security policies. This paper seeks to analyze the changing power dynamics of the China-Pak nexus with external actors such as US and India with an ulterior motive of their own and predict the change in power dynamics between the four countries.Keywords: China, Pakistan, India, strategy
Procedia PDF Downloads 2704142 Effects of the Exit from Budget Support on Good Governance: Findings from Four Sub-Saharan Countries
Authors: Magdalena Orth, Gunnar Gotz
Abstract:
Background: Domestic accountability, budget transparency and public financial management (PFM) are considered vital components of good governance in developing countries. The aid modality budget support (BS) promotes these governance functions in developing countries. BS engages in political decision-making and provides financial and technical support to poverty reduction strategies of the partner countries. Nevertheless, many donors have withdrawn their support from this modality due to cases of corruption, fraud or human rights violations. This exit from BS is leaving a finance and governance vacuum in the countries. The evaluation team analyzed the consequences of terminating the use of this modality and found particularly negative effects for good governance outcomes. Methodology: The evaluation uses a qualitative (theory-based) approach consisting of a comparative case study design, which is complemented by a process-tracing approach. For the case studies, the team conducted over 100 semi-structured interviews in Malawi, Uganda, Rwanda and Zambia and used four country-specific, tailor-made budget analysis. In combination with a previous DEval evaluation synthesis on the effects of BS, the team was able to create a before-and-after comparison that yields causal effects. Main Findings: In all four countries domestic accountability and budget transparency declined if other forms of pressure are not replacing BS´s mutual accountability mechanisms. In Malawi a fraud scandal created pressure from the society and from donors so that accountability was improved. In the other countries, these pressure mechanisms were absent so that domestic accountability declined. BS enables donors to actively participate in political processes of the partner country as donors transfer funds into the treasury of the partner country and conduct a high-level political dialogue. The results confirm that the exit from BS created a governance vacuum that, if not compensated through external/internal pressure, leads to a deterioration of good governance. For example, in the case of highly aid dependent Malawi did the possibility of a relaunch of BS provide sufficient incentives to push for governance reforms. Overall the results show that the three good governance areas are negatively affected by the exit from BS. This stands in contrast to positive effects found before the exit. The team concludes that the relationship is causal, because the before-and-after comparison coherently shows that the presence of BS correlates with positive effects and the absence with negative effects. Conclusion: These findings strongly suggest that BS is an effective modality to promote governance and its abolishment is likely to cause governance disruptions. Donors and partner governments should find ways to re-engage in closely coordinated policy-based aid modalities. In addition, a coordinated and carefully managed exit-strategy should be in place before an exit from similar modalities is considered. Particularly a continued framework of mutual accountability and a high-level political dialogue should be aspired to maintain pressure and oversight that is required to achieve good governance.Keywords: budget support, domestic accountability, public financial management and budget transparency, Sub-Sahara Africa
Procedia PDF Downloads 1594141 Towards Sustainable Evolution of Bioeconomy: The Role of Technology and Innovation Management
Authors: Ronald Orth, Johanna Haunschild, Sara Tsog
Abstract:
The bioeconomy is an inter- and cross-disciplinary field covering a large number and wide scope of existing and emerging technologies. It has a great potential to contribute to the transformation process of industry landscape and ultimately drive the economy towards sustainability. However, bioeconomy per se is not necessarily sustainable and technology should be seen as an enabler rather than panacea to all our ecological, social and economic issues. Therefore, to draw and maximize benefits from bioeconomy in terms of sustainability, we propose that innovative activities should encompass not only novel technologies and bio-based new materials but also multifocal innovations. For multifocal innovation endeavors, innovation management plays a substantial role, as any innovation emerges in a complex iterative process where communication and knowledge exchange among relevant stake holders has a pivotal role. The knowledge generation and innovation are although at the core of transition towards a more sustainable bio-based economy, to date, there is a significant lack of concepts and models that approach bioeconomy from the innovation management approach. The aim of this paper is therefore two-fold. First, it inspects the role of transformative approach in the adaptation of bioeconomy that contributes to the environmental, ecological, social and economic sustainability. Second, it elaborates the importance of technology and innovation management as a tool for smooth, prompt and effective transition of firms to the bioeconomy. We conduct a qualitative literature study on the sustainability challenges that bioeconomy entails thus far using Science Citation Index and based on grey literature, as major economies e.g. EU, USA, China and Brazil have pledged to adopt bioeconomy and have released extensive publications on the topic. We will draw an example on the forest based business sector that is transforming towards the new green economy more rapidly as expected, although this sector has a long-established conventional business culture with consolidated and fully fledged industry. Based on our analysis we found that a successful transition to sustainable bioeconomy is conditioned on heterogenous and contested factors in terms of stakeholders , activities and modes of innovation. In addition, multifocal innovations occur when actors from interdisciplinary fields engage in intensive and continuous interaction where the focus of innovation is allocated to a field of mutually evolving socio-technical practices that correspond to the aims of the novel paradigm of transformative innovation policy. By adopting an integrated and systems approach as well as tapping into various innovation networks and joining global innovation clusters, firms have better chance of creating an entire new chain of value added products and services. This requires professionals that have certain capabilities and skills such as: foresight for future markets, ability to deal with complex issues, ability to guide responsible R&D, ability of strategic decision making, manage in-depth innovation systems analysis including value chain analysis. Policy makers, on the other hand, need to acknowledge the essential role of firms in the transformative innovation policy paradigm.Keywords: bioeconomy, innovation and technology management, multifocal innovation, sustainability, transformative innovation policy
Procedia PDF Downloads 1304140 An Integrated Mixed-Integer Programming Model to Address Concurrent Project Scheduling and Material Ordering
Authors: Babak H. Tabrizi, Seyed Farid Ghaderi
Abstract:
Concurrent planning of project scheduling and material ordering can provide more flexibility to the project scheduling problem, as the project execution costs can be enhanced. Hence, the issue has been taken into account in this paper. To do so, a mixed-integer mathematical model is developed which considers the aforementioned flexibility, in addition to the materials quantity discount and space availability restrictions. Moreover, the activities duration has been treated as decision variables. Finally, the efficiency of the proposed model is tested by different instances. Additionally, the influence of the aforementioned parameters is investigated on the model performance.Keywords: material ordering, project scheduling, quantity discount, space availability
Procedia PDF Downloads 3724139 Production of High Purity Cellulose Products from Sawdust Waste Material
Authors: Simiksha Balkissoon, Jerome Andrew, Bruce Sithole
Abstract:
Approximately half of the wood processed in the Forestry, Timber, Pulp and Paper (FTPP) sector is accumulated as waste. The concept of a “green economy” encourages industries to employ revolutionary, transformative technologies to eliminate waste generation by exploring the development of new value chains. The transition towards an almost paperless world driven by the rise of digital media has resulted in a decline in traditional paper markets, prompting the FTTP sector to reposition itself and expand its product offerings by unlocking the potential of value-adding opportunities from renewable resources such as wood to generate revenue and mitigate its environmental impact. The production of valuable products from wood waste such as sawdust has been extensively explored in recent years. Wood components such as lignin, cellulose and hemicelluloses, which can be extracted selectively by chemical processing, are suitable candidates for producing numerous high-value products. In this study, a novel approach to produce high-value cellulose products, such as dissolving wood pulp (DWP), from sawdust was developed. DWP is a high purity cellulose product used in several applications such as pharmaceutical, textile, food, paint and coatings industries. The proposed approach demonstrates the potential to eliminate several complex processing stages, such as pulping and bleaching, which are associated with traditional commercial processes to produce high purity cellulose products such as DWP, making it less chemically energy and water-intensive. The developed process followed the path of experimentally designed lab tests evaluating typical processing conditions such as residence time, chemical concentrations, liquid-to-solid ratios and temperature, followed by the application of suitable purification steps. Characterization of the product from the initial stage was conducted using commercially available DWP grades as reference materials. The chemical characteristics of the products thus far have shown similar properties to commercial products, making the proposed process a promising and viable option for the production of DWP from sawdust.Keywords: biomass, cellulose, chemical treatment, dissolving wood pulp
Procedia PDF Downloads 1914138 Learning Analytics in a HiFlex Learning Environment
Authors: Matthew Montebello
Abstract:
Student engagement within a virtual learning environment generates masses of data points that can significantly contribute to the learning analytics that lead to decision support. Ideally, similar data is collected during student interaction with a physical learning space, and as a consequence, data is present at a large scale, even in relatively small classes. In this paper, we report of such an occurrence during classes held in a HiFlex modality as we investigate the advantages of adopting such a methodology. We plan to take full advantage of the learner-generated data in an attempt to further enhance the effectiveness of the adopted learning environment. This could shed crucial light on operating modalities that higher education institutions around the world will switch to in a post-COVID era.Keywords: HiFlex, big data in higher education, learning analytics, virtual learning environment
Procedia PDF Downloads 2064137 A Semi-supervised Classification Approach for Trend Following Investment Strategy
Authors: Rodrigo Arnaldo Scarpel
Abstract:
Trend following is a widely accepted investment strategy that adopts a rule-based trading mechanism that rather than striving to predict market direction or on information gathering to decide when to buy and when to sell a stock. Thus, in trend following one must respond to market’s movements that has recently happen and what is currently happening, rather than on what will happen. Optimally, in trend following strategy, is to catch a bull market at its early stage, ride the trend, and liquidate the position at the first evidence of the subsequent bear market. For applying the trend following strategy one needs to find the trend and identify trade signals. In order to avoid false signals, i.e., identify fluctuations of short, mid and long terms and to separate noise from real changes in the trend, most academic works rely on moving averages and other technical analysis indicators, such as the moving average convergence divergence (MACD) and the relative strength index (RSI) to uncover intelligible stock trading rules following trend following strategy philosophy. Recently, some works has applied machine learning techniques for trade rules discovery. In those works, the process of rule construction is based on evolutionary learning which aims to adapt the rules to the current environment and searches for the global optimum rules in the search space. In this work, instead of focusing on the usage of machine learning techniques for creating trading rules, a time series trend classification employing a semi-supervised approach was used to early identify both the beginning and the end of upward and downward trends. Such classification model can be employed to identify trade signals and the decision-making procedure is that if an up-trend (down-trend) is identified, a buy (sell) signal is generated. Semi-supervised learning is used for model training when only part of the data is labeled and Semi-supervised classification aims to train a classifier from both the labeled and unlabeled data, such that it is better than the supervised classifier trained only on the labeled data. For illustrating the proposed approach, it was employed daily trade information, including the open, high, low and closing values and volume from January 1, 2000 to December 31, 2022, of the São Paulo Exchange Composite index (IBOVESPA). Through this time period it was visually identified consistent changes in price, upwards or downwards, for assigning labels and leaving the rest of the days (when there is not a consistent change in price) unlabeled. For training the classification model, a pseudo-label semi-supervised learning strategy was used employing different technical analysis indicators. In this learning strategy, the core is to use unlabeled data to generate a pseudo-label for supervised training. For evaluating the achieved results, it was considered the annualized return and excess return, the Sortino and the Sharpe indicators. Through the evaluated time period, the obtained results were very consistent and can be considered promising for generating the intended trading signals.Keywords: evolutionary learning, semi-supervised classification, time series data, trading signals generation
Procedia PDF Downloads 924136 An Argument for Agile, Lean, and Hybrid Project Management in Museum Conservation Practice: A Qualitative Evaluation of the Morris Collection Conservation Project at the Sainsbury Centre for Visual Arts
Authors: Maria Ledinskaya
Abstract:
This paper is part case study and part literature review. It seeks to introduce Agile, Lean, and Hybrid project management concepts from business, software development, and manufacturing fields to museum conservation by looking at their practical application on a recent conservation project at the Sainsbury Centre for Visual Arts. The author outlines the advantages of leaner and more agile conservation practices in today’s faster, less certain, and more budget-conscious museum climate where traditional project structures are no longer as relevant or effective. The Morris Collection Conservation Project was carried out in 2019-2021 in Norwich, UK, and concerned the remedial conservation of around 150 Abstract Constructivist artworks bequeathed to the Sainsbury Centre by private collectors Michael and Joyce Morris. It was a medium-sized conservation project of moderate complexity, planned and delivered in an environment with multiple known unknowns – unresearched collection, unknown conditions and materials, unconfirmed budget. The project was later impacted by the COVID-19 pandemic, introducing indeterminate lockdowns, budget cuts, staff changes, and the need to accommodate social distancing and remote communications. The author, then a staff conservator at the Sainsbury Centre who acted as project manager on the Morris Project, presents an incremental, iterative, and value-based approach to managing a conservation project in an uncertain environment. The paper examines the project from the point of view of Traditional, Agile, Lean, and Hybrid project management. The author argues that most academic writing on project management in conservation has focussed on a Traditional plan-driven approach – also known as Waterfall project management – which has significant drawbacks in today’s museum environment due to its over-reliance on prediction-based planning and its low tolerance to change. In the last 20 years, alternative Agile, Lean and Hybrid approaches to project management have been widely adopted in software development, manufacturing, and other industries, although their recognition in the museum sector has been slow. Using examples from the Morris Project, the author introduces key principles and tools of Agile, Lean, and Hybrid project management and presents a series of arguments on the effectiveness of these alternative methodologies in museum conservation, including the ethical and practical challenges to their implementation. These project management approaches are discussed in the context of consequentialist, relativist, and utilitarian developments in contemporary conservation ethics. Although not intentionally planned as such, the Morris Project had a number of Agile and Lean features which were instrumental to its successful delivery. These key features are identified as distributed decision-making, a co-located cross-disciplinary team, servant leadership, focus on value-added work, flexible planning done in shorter sprint cycles, light documentation, and emphasis on reducing procedural, financial, and logistical waste. Overall, the author’s findings point in favour of a hybrid model, which combines traditional and alternative project processes and tools to suit the specific needs of the project.Keywords: agile project management, conservation, hybrid project management, lean project management, waterfall project management
Procedia PDF Downloads 734135 Business Continuity Opportunities in the Cloud a Small to Medium Business Perspective
Authors: Donald Zullick, Cihan Varol
Abstract:
This research paper begins with a look at current work in business continuity as it relates to the cloud and small to medium business (SMB). While cloud services are an emerging paradigm that is quickly making an impact on business, there has been no substantive research applied to SMB. Seeing this lapse, we have taken a fusion of continuity and cloud research with application to the SMB market. It is an initial reflection with base framework guidelines as a starting point for implementation. In this approach, our research ties together existing work and fill the gap with an SMB outlook.Keywords: business continuity, cloud services, medium size business, risk assessment, small business
Procedia PDF Downloads 4064134 A Comprehensive Approach to Create ‘Livable Streets’ in the Mixed Land Use of Urban Neighborhoods Applying Urban Design Principles Which Will Achieve Quality of Life for Pedestrians
Authors: K. C. Tanuja, Mamatha P. Raj
Abstract:
Urbanisation is happening rapidly all over the world. As population increasing in the urban settlements, its required to provide quality of life to all the inhabitants who live in. Urban design is a place making strategic planning. Urban design principles promote visualising any place environmentally, socially and economically viable. Urban design strategies include building mass, transit development, economic viability and sustenance and social aspects.Keywords: livable streets, social interaction, pedestrian use, urban design
Procedia PDF Downloads 2394133 Aerodynamic Effects of Ice and Its Influences on Flight Characteristics of Low Speed Unmanned Aerial Vehicles
Authors: I. McAndrew, K. L. Witcher, E. Navarro
Abstract:
This paper presents the theory and application of low-speed flight for unmanned aerial vehicles when subjected to surface environmental conditions such as ice on the leading edge and upper surface. A model was developed and tested in a wind tunnel to see how theory compares with practice at various speed including take-off, landing and operational applications where head winds substantially alter parameters. Furthermore, a comparison is drawn with maned operations and how that this subject is currently under-supported with accurate theory or knowledge for designers or operators to make informed decision or accommodate individual applications. The effects of ice formation for lift and drag are determined for a range of different angles of attacks.Keywords: aerodynamics, environmental influences, glide path ratio, unmanned vehicles
Procedia PDF Downloads 3364132 Ergonomics and Its Applicability in the Design Process in Egypt Challenges and Prospects
Authors: Mohamed Moheyeldin Mahmoud
Abstract:
Egypt suffers from a severe shortage of data and charts concerning the physical dimensions, measurements, qualities and consumer behavior. The shortage of needed information and appropriate methods has forced the Egyptian designer to use any other foreign standard when designing a product for the Egyptian consumer which has led to many problems. The urgently needed database concerning the physical specifications, measurements of the Egyptian consumers, as well as the need to support the Ergonomics given courses in many colleges and institutes with the latest technologies, is stated as the research problem. Descriptive analytical method relying on the compiling, comparing and analyzing of information and facts in order to get acceptable perceptions, ideas and considerations is the used methodology by the researcher. The research concludes that: 1. Good interaction relationship between users and products shows the success of that product. 2. An integration linkage between the most prominent fields of science specially Ergonomics, Interaction Design and Ethnography should be encouraged to provide an ultimately updated database concerning the nature, specifications and environment of the Egyptian consumer, in order to achieve a higher benefit for both user and product. 3. Chinese economic policy based on the study of market requirements long before any market activities should be emulated. 4. Using Ethnography supports the design activities creating new products or updating existent ones through measuring the compatibility of products with their environment and user expectations, While contracting a joint cooperation between military colleges, sports education institutes from one side, and design institutes from the other side to provide an ultimately updated (annually updated) database concerning some specifications about students of both sexes applying in those institutes (height, weight, etc.) to provide the Industrial designer with the needed information when creating a new product or updating an existing one concerning that category is recommended by the researcher.Keywords: adapt, ergonomics, ethnography, interaction design
Procedia PDF Downloads 2314131 Electricity Market Categorization for Smart Grid Market Testing
Authors: Rebeca Ramirez Acosta, Sebastian Lenhoff
Abstract:
Decision makers worldwide need to determine if the implementation of a new market mechanism will contribute to the sustainability and resilience of the power system. Due to smart grid technologies, new products in the distribution and transmission system can be traded; however, the impact of changing a market rule will differ between several regions. To test systematically those impacts, a market categorization has been compiled and organized in a smart grid market testing toolbox. This toolbox maps all actual energy products and sets the basis for running a co-simulation test with the new rule to be implemented. It will help to measure the impact of the new rule, based on the sustainable and resilience indicators.Keywords: co-simulation, electricity market, smart grid market, market testing
Procedia PDF Downloads 1934130 Closest Possible Neighbor of a Different Class: Explaining a Model Using a Neighbor Migrating Generator
Authors: Hassan Eshkiki, Benjamin Mora
Abstract:
The Neighbor Migrating Generator is a simple and efficient approach to finding the closest potential neighbor(s) with a different label for a given instance and so without the need to calibrate any kernel settings at all. This allows determining and explaining the most important features that will influence an AI model. It can be used to either migrate a specific sample to the class decision boundary of the original model within a close neighborhood of that sample or identify global features that can help localising neighbor classes. The proposed technique works by minimizing a loss function that is divided into two components which are independently weighted according to three parameters α, β, and ω, α being self-adjusting. Results show that this approach is superior to past techniques when detecting the smallest changes in the feature space and may also point out issues in models like over-fitting.Keywords: explainable AI, EX AI, feature importance, counterfactual explanations
Procedia PDF Downloads 199