Search results for: suspension systems
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9651

Search results for: suspension systems

6291 Ethical Issues around Online Marketing to Children

Authors: Chris Preston

Abstract:

As we devise ever more sophisticated methods of on-line marketing, devising systems that are able to reach into the everyday lives of consumers, we are confronted by a generation of children who face unprecedented intervention by commercial organisations into young minds, via electronic devices, and whether by computer, tablet or phone, such children have been somehow reduced to the status of their devices, with little regard for their well being as individuals. This discussion paper seeks to draw attention to such practice and questions the ethics of digital marketing methods.

Keywords: online marketing to children, online research of children, online targeting of children, consumer rights, ethics

Procedia PDF Downloads 393
6290 Residential Satisfaction and Public Perception of Socialized Housing Projects in Davao City, Philippines

Authors: Micah Amor P. Yares

Abstract:

Aside from the provision of adequate housing, the Philippine government faces the challenge of ensuring that the housing units provided conform to the Filipino’s ambition to self as manifested by owning a small house on a big lot. The study aimed to explore the levels of satisfaction of end-users and the public perception towards socialized housing in Davao City, Philippines. The residential satisfaction survey includes three types of respondents, which are end-users of single-detached, duplex and rowhouse socialized housing units. Respondents were asked to rate their level of satisfaction and perception to the following housing components: Dwelling Unit; Public Facilities; Social Environment; Neighborhood Facilities; Management Systems; and Acquisition and Financing. The data were subjected to Exploratory Factor Analysis to determine if variables can be grouped together, and Confirmatory Factor Analysis to measure if the model fits the construct. In determining which component affects the level of perception and satisfaction, a Multiple Linear Regression Analysis was employed. Lastly, an Individual Samples T-Test was performed to compare the levels of satisfaction and perception among respondents. Results revealed that residents of socialized housing were highly satisfied with their living conditions despite concerns on management systems, public and neighborhood facilities. Residents' satisfaction is primarily influenced by the Social Environment, Acquisition and Financing, and the Dwelling Unit. However, a significant difference in residential satisfaction level was observed among different types of housing with rowhouse residents recording the lowest satisfaction level compared to single-detached and duplex units. Moreover, the general public perceived Socialized housing as moderately satisfactory having the same determinant as the end-users aside from the Public Facilities. This study recommends revisiting the current Socialized Housing policies by considering the feedback from the end-users based on their lived experience and the public according to their perception.

Keywords: public perception, residential satisfaction, rowhouse, socialized housing

Procedia PDF Downloads 237
6289 Rural Territorial Sustainable Development: Interinstitutional Dialogue and Transition to Sustainable Livelihoods

Authors: Aico Nogueira

Abstract:

This paper examines the interinstitutional dialogues within the Brazilian federal structures, which comprises federal, state and local levels, around the themes of new approaches and interventions aimed to promote sustainable rural development, particularly rural development as part of a territorial approach. The work seeks to understand to what extent the various levels of the state interact with these strategies, particularly with the locally constituted powers, focusing on the importance of the transition of traditional agriculture methods to more sustainable agroecological systems and its effects on food security and sustainable rural development. The research analyses as case studies the Sustainable Rural Territories Development Program (PRONAT) of the Ministry of Agrarian Development at the federal level, as well as the State of São Paulo and the Vale do Ribeira Territory, an area characterized by environmental and social vulnerability, restrictive environmental laws and attempts to promote sustainable development. In order to examine how the interrelationships between different levels of governance and civil society, in addition to the neo-institutionalist polity centered literature, the research uses an adaptation of the concept of arena in Ostrom and Hannigan, produced at different scales of decision-making processes, as well as the multilevel governance literature. Document analysis, interviews, focus groups and direct observation techniques are also used. The main findings of this study are that how different levels of governance understand and organize themselves for this work and have a direct impact on the actions taken. Consequently, programs formulated for this purpose are not associated with the creation of institutions capable of breaking with a traditional sectoral view that has historically prevailed in policymaking. And the transition from traditional agriculture to agroecological production systems is hampered by a sectorial foundation, based on large-scale production and the strengthening of the traditional country's land concentration model.

Keywords: agroecology, food security, inter-institutional dialogue, rural poverty, sustainable rural development, territorial development

Procedia PDF Downloads 202
6288 Local Governments Supporting Environmentally Sustainable Meals to Protect the Planet and People

Authors: Magdy Danial Riad

Abstract:

Introduction: The ability of our world to support the expanding population after 2050 is at risk due to the food system's global role in poor health, climate change, and resource depletion. Healthy, equitable, and sustainable food systems must be achieved from the point of production through consumption in order to meet several of the sustainable development goals (SDG) targets. There is evidence that changing the local food environment can effectively change dietary habits in a community. The purpose of this article is to outline the policy initiatives taken by local governments to support environmentally friendly eating habits. Methods: Five databases were searched for peer-reviewed articles that described local government authorities' implementation of environmentally sustainable eating habits, were located in cities that had signed the Milan Urban Food Policy Pact, were published after 2015, were available in English, and described policy interventions. Data extraction was a two-step approach that started with extracting information from the included study and ended with locating information unique to policies in the grey literature. Results: 45 papers that described a variety of policy initiatives from low-, middle-, and high-income countries met the inclusion criteria. A variety of desired dietary behaviors were the focus of policy action, including reducing food waste, procuring food locally and in season, boosting breastfeeding, avoiding overconsumption, and consuming more plant-based meals and fewer items derived from animals. Conclusions: In order to achieve SDG targets, local governments are under pressure to implement evidence-based interventions. This study can help direct local governments toward evidence-based policy measures to improve regional food systems and support ecologically friendly eating habits.

Keywords: meals, planet, poor health, eating habits

Procedia PDF Downloads 52
6287 Multi-Agent System Based Distributed Voltage Control in Distribution Systems

Authors: A. Arshad, M. Lehtonen. M. Humayun

Abstract:

With the increasing Distributed Generation (DG) penetration, distribution systems are advancing towards the smart grid technology for least latency in tackling voltage control problem in a distributed manner. This paper proposes a Multi-agent based distributed voltage level control. In this method a flat architecture of agents is used and agents involved in the whole controlling procedure are On Load Tap Changer Agent (OLTCA), Static VAR Compensator Agent (SVCA), and the agents associated with DGs and loads at their locations. The objectives of the proposed voltage control model are to minimize network losses and DG curtailments while maintaining voltage value within statutory limits as close as possible to the nominal. The total loss cost is the sum of network losses cost, DG curtailment costs, and voltage damage cost (which is based on penalty function implementation). The total cost is iteratively calculated for various stricter limits by plotting voltage damage cost and losses cost against varying voltage limit band. The method provides the optimal limits closer to nominal value with minimum total loss cost. In order to achieve the objective of voltage control, the whole network is divided into multiple control regions; downstream from the controlling device. The OLTCA behaves as a supervisory agent and performs all the optimizations. At first, a token is generated by OLTCA on each time step and it transfers from node to node until the node with voltage violation is detected. Upon detection of such a node, the token grants permission to Load Agent (LA) for initiation of possible remedial actions. LA will contact the respective controlling devices dependent on the vicinity of the violated node. If the violated node does not lie in the vicinity of the controller or the controlling capabilities of all the downstream control devices are at their limits then OLTC is considered as a last resort. For a realistic study, simulations are performed for a typical Finnish residential medium-voltage distribution system using Matlab ®. These simulations are executed for two cases; simple Distributed Voltage Control (DVC) and DVC with optimized loss cost (DVC + Penalty Function). A sensitivity analysis is performed based on DG penetration. The results indicate that costs of losses and DG curtailments are directly proportional to the DG penetration, while in case 2 there is a significant reduction in total loss. For lower DG penetration, losses are reduced more or less 50%, while for higher DG penetration, loss reduction is not very significant. Another observation is that the newer stricter limits calculated by cost optimization moves towards the statutory limits of ±10% of the nominal with the increasing DG penetration as for 25, 45 and 65% limits calculated are ±5, ±6.25 and 8.75% respectively. Observed results conclude that the novel voltage control algorithm proposed in case 1 is able to deal with the voltage control problem instantly but with higher losses. In contrast, case 2 make sure to reduce the network losses through proposed iterative method of loss cost optimization by OLTCA, slowly with time.

Keywords: distributed voltage control, distribution system, multi-agent systems, smart grids

Procedia PDF Downloads 312
6286 Disaster Response Training Simulator Based on Augmented Reality, Virtual Reality, and MPEG-DASH

Authors: Sunho Seo, Younghwan Shin, Jong-Hong Park, Sooeun Song, Junsung Kim, Jusik Yun, Yongkyun Kim, Jong-Moon Chung

Abstract:

In order to effectively cope with large and complex disasters, disaster response training is needed. Recently, disaster response training led by the ROK (Republic of Korea) government is being implemented through a 4 year R&D project, which has several similar functions as the HSEEP (Homeland Security Exercise and Evaluation Program) of the United States, but also has several different features as well. Due to the unpredictiveness and diversity of disasters, existing training methods have many limitations in providing experience in the efficient use of disaster incident response and recovery resources. Always, the challenge is to be as efficient and effective as possible using the limited human and material/physical resources available based on the given time and environmental circumstances. To enable repeated training under diverse scenarios, an AR (Augmented Reality) and VR (Virtual Reality) combined simulator is under development. Unlike existing disaster response training, simulator based training (that allows remote login simultaneous multi-user training) enables freedom from limitations in time and space constraints, and can be repeatedly trained with different combinations of functions and disaster situations. There are related systems such as ADMS (Advanced Disaster Management Simulator) developed by ETC simulation and HLS2 (Homeland Security Simulation System) developed by ELBIT system. However, the ROK government needs a simulator custom made to the country's environment and disaster types, and also combines the latest information and communication technologies, which include AR, VR, and MPEG-DASH (Moving Picture Experts Group - Dynamic Adaptive Streaming over HTTP) technology. In this paper, a new disaster response training simulator is proposed to overcome the limitation of existing training systems, and adapted to actual disaster situations in the ROK, where several technical features are described.

Keywords: augmented reality, emergency response training simulator, MPEG-DASH, virtual reality

Procedia PDF Downloads 301
6285 Predicting the Turbulence Intensity, Excess Energy Available and Potential Power Generated by Building Mounted Wind Turbines over Four Major UK City

Authors: Emejeamara Francis

Abstract:

The future of potentials wind energy applications within suburban/urban areas are currently faced with various problems. These include insufficient assessment of urban wind resource, and the effectiveness of commercial gust control solutions as well as unavailability of effective and cheaper valuable tools for scoping the potentials of urban wind applications within built-up environments. In order to achieve effective assessment of the potentials of urban wind installations, an estimation of the total energy that would be available to them were effective control systems to be used, and evaluating the potential power to be generated by the wind system is required. This paper presents a methodology of predicting the power generated by a wind system operating within an urban wind resource. This method was developed by using high temporal resolution wind measurements from eight potential sites within the urban and suburban environment as inputs to a vertical axis wind turbine multiple stream tube model. A relationship between the unsteady performance coefficient obtained from the stream tube model results and turbulence intensity was demonstrated. Hence, an analytical methodology for estimating the unsteady power coefficient at a potential turbine site is proposed. This is combined with analytical models that were developed to predict the wind speed and the excess energy (EEC) available in estimating the potential power generated by wind systems at different heights within a built environment. Estimates of turbulence intensities, wind speed, EEC and turbine performance based on the current methodology allow a more complete assessment of available wind resource and potential urban wind projects. This methodology is applied to four major UK cities namely Leeds, Manchester, London and Edinburgh and the potential to map the turbine performance at different heights within a typical urban city is demonstrated.

Keywords: small-scale wind, turbine power, urban wind energy, turbulence intensity, excess energy content

Procedia PDF Downloads 277
6284 Cost Effective Microfabrication Technique for Lab on Chip (LOC) Devices Using Epoxy Polymers

Authors: Charmi Chande, Ravindra Phadke

Abstract:

Microfluidics devices are fabricated by using multiple fabrication methods. Photolithography is one of the common methods wherein SU8 is widely used for making master which in turn is used for making working chip by the process of soft lithography. The high-aspect ratio features of SU-8 makes it suitable to be used as micro moulds for injection moulding, hot embossing, and moulds to form polydimethylsiloxane (PDMS) structures for bioMEMS (Microelectromechanical systems) applications. But due to high cost, difficulty in procuring and need for clean room, restricts the use of this polymer especially in developing countries and small research labs. ‘Bisphenol –A’ based polymers in mixture with curing agent are used in various industries like Paints and coatings, Adhesives, Electrical systems and electronics, Industrial tooling and composites. We present the novel use of ‘Bisphenol – A’ based polymer in fabricating micro channels for Lab On Chip(LOC) devices. The present paper describes the prototype for production of microfluidics chips using range of ‘Bisphenol-A’ based polymers viz. GY 250, ATUL B11, DER 331, DER 330 in mixture with cationic photo initiators. All the steps of chip production were carried out using an inexpensive approach that uses low cost chemicals and equipment. This even excludes the need of clean room. The produced chips using all above mentioned polymers were validated with respect to height and the chip giving least height was selected for further experimentation. The lowest height achieved was 7 micrometers by GY250. The cost of the master fabricated was $ 0.20 and working chip was $. 0.22. The best working chip was used for morphological identification and profiling of microorganisms from environmental samples like soil, marine water and salt water pan sites. The current chip can be adapted for various microbiological screening experiments like biochemical based microbial identification, studying uncultivable microorganisms at single cell/community level.

Keywords: bisphenol–A based epoxy, cationic photoinitiators, microfabrication, photolithography

Procedia PDF Downloads 287
6283 Examples of Parameterization of Stabilizing Controllers with One-Side Coprime Factorization

Authors: Kazuyoshi Mori

Abstract:

Examples of parameterization of stabilizing controllers that require only one of right-/left-coprime factorizations are presented. One parameterization method requires one side coprime factorization. The other requires no coprime factorization. The methods are based on the factorization approach so that a number of models can be applied the method we use in this paper.

Keywords: parametrization, coprime factorization, factorization approach, linear systems

Procedia PDF Downloads 373
6282 Reliability and Availability Analysis of Satellite Data Reception System using Reliability Modeling

Authors: Ch. Sridevi, S. P. Shailender Kumar, B. Gurudayal, A. Chalapathi Rao, K. Koteswara Rao, P. Srinivasulu

Abstract:

System reliability and system availability evaluation plays a crucial role in ensuring the seamless operation of complex satellite data reception system with consistent performance for longer periods. This paper presents a novel approach for the same using a case study on one of the antenna systems at satellite data reception ground station in India. The methodology involves analyzing system's components, their failure rates, system's architecture, generation of logical reliability block diagram model and estimating the reliability of the system using the component level mean time between failures considering exponential distribution to derive a baseline estimate of the system's reliability. The model is then validated with collected system level field failure data from the operational satellite data reception systems that includes failure occurred, failure time, criticality of the failure and repair times by using statistical techniques like median rank, regression and Weibull analysis to extract meaningful insights regarding failure patterns and practical reliability of the system and to assess the accuracy of the developed reliability model. The study mainly focused on identification of critical units within the system, which are prone to failures and have a significant impact on overall performance and brought out a reliability model of the identified critical unit. This model takes into account the interdependencies among system components and their impact on overall system reliability and provides valuable insights into the performance of the system to understand the Improvement or degradation of the system over a period of time and will be the vital input to arrive at the optimized design for future development. It also provides a plug and play framework to understand the effect on performance of the system in case of any up gradations or new designs of the unit. It helps in effective planning and formulating contingency plans to address potential system failures, ensuring the continuity of operations. Furthermore, to instill confidence in system users, the duration for which the system can operate continuously with the desired level of 3 sigma reliability was estimated that turned out to be a vital input to maintenance plan. System availability and station availability was also assessed by considering scenarios of clash and non-clash to determine the overall system performance and potential bottlenecks. Overall, this paper establishes a comprehensive methodology for reliability and availability analysis of complex satellite data reception systems. The results derived from this approach facilitate effective planning contingency measures, and provide users with confidence in system performance and enables decision-makers to make informed choices about system maintenance, upgrades and replacements. It also aids in identifying critical units and assessing system availability in various scenarios and helps in minimizing downtime and optimizing resource allocation.

Keywords: exponential distribution, reliability modeling, reliability block diagram, satellite data reception system, system availability, weibull analysis

Procedia PDF Downloads 84
6281 Economic Impacts of Nitrogen Fertilizer Use into Tropical Pastures for Beef Cattle in Brazil

Authors: Elieder P. Romanzini, Lutti M. Delevatti, Rhaony G. Leite, Ricardo A. Reis, Euclides B. Malheiros

Abstract:

Brazilian beef cattle production systems are an important profitability source for the national gross domestic product. The main characteristic of these systems is forage utilization as the exclusive feed source. Forage utilization had been causing on owners the false feeling of low production costs. However, this low cost is followed to low profit causing a lot times worst animal index what can result in activities changes or until land sold. Aiming to evaluate economic impacts into Brazilian beef cattle systems were evaluated four nitrogen fertilizer (N) application levels (0, 90, 180 and 270 kg per hectare [kg.ha-1]). Research was developed during 2015 into Forage Crops and Grasslands section of São Paulo State University, “Júlio de Mesquita Filho” (Unesp) (Jaboticabal, São Paulo, Brazil). Pastures were seeded with Brachiaria brizantha Stapf. ‘Marandu’ (Palisade grass) handled using continuous grazing system, with variable stocking rate, sward height maintained at 25 cm. The economic evaluation was developed in rearing e finishing phases. We evaluated the cash flows inside each phase on different N levels. Economic valuations were considering: cost-effective operating (CEO), cost-total operating (CTO), gross revenue (GR), operating profit (OP) and net income (NI), every measured in US$. Complementary analyses were developed, profitability was calculated by [OP/GR]. Pay back (measured in years) was calculated considering average capital stocktaking pondered by area in use (ACS) divided by [GR-CEO]. And the internal rate of return (IRR) was calculated by 100/(pay back). Input prices were prices during 2015 and were obtained from Anuário Brasileiro da Pecuária, Centro de Estudos Avançados em Economia Aplicada and quotation in the same region of animal production (northeast São Paulo State) during the period above mentioned. Values were calculated in US$ according exchange rate US$1.00 equal R$3.34. The CEO, CTO, GR, OP and NI per hectare for each N level were respectively US$1,919.66; US$2,048.47; US$2,905.72; US$857.25 and US$986.06 to 0 kg.ha-1; US$2,403.20; US$2,551.80; US$3,530.19; US$978.39 and US$1,126.99 to 90 kg.ha-1; US$3,180.42; US$3,364.81; US$4,985.03; US$1,620.23 and US$1,804.62 to 180 kg.ha-1andUS$3,709.14; US$3,915.15; US$5,554.95; US$1,639.80 and US$1,845.81 to 270 kg.ha-1. Relationship to another economic indexes, profitability, pay back and IRR, the results were respectively 29.50%, 6.44 and 15.54% to 0 kg.ha-1; 27.72%, 6.88 and 14.54% to 90 kg.ha-1; 32.50%, 4.08 and 24.50% to 180 kg.ha-1 and 29.52%, 3.42 and 29.27% to 270 kg.ha-1. Values previously presented in this evaluation allowing to affirm that the best result was obtained to N level 270 kg.ha-1. These results among all N levels evaluated could be explained by improve occurred on stocking rate caused by increase on N level. However, a crucial information about high N level application into pastures is the efficiency of N utilization (associated to environmental impacts) that normally decrease with the increase on N level. Hence, considering all situations (efficiency of N utilization and economic results) into tropical pastures used to beef cattle production could be recommended N level equal to 180kg.ha-1, which had better profitability and cause lesser environmental impacts, proved by other studies developed in the same area.

Keywords: Brachiaria brizantha, cost-total operating, gross revenue, profitability

Procedia PDF Downloads 171
6280 An Exploratory Study of E-Learning Stakeholders’ Experiences of Developing, Implementing and Enhancing E-Courses in One Saudi University

Authors: Zahra Alqahtani

Abstract:

The use of e-learning technologies is gaining momentum in all educational institutions of the world, including Saudi universities. In the e-learning context, there is a growing need and concern among Saudi universities to improve and enhance quality assurance for e-learning systems. Practicing quality assurance activities and applying quality standards in e-learning in Saudi universities is thought to reduce the negative viewpoints of some stakeholders and ensure stakeholders’ satisfaction and needs. As a contribution to improving the quality of e-learning method in Saudi universities, the main purpose of this study is to explore and investigate strategies for the development of quality assurance in e-learning in one university in Saudi Arabia, which is considered a good reference university using the best and ongoing practices in e-learning systems among Saudi universities. In order to ensure the quality of its e-learning methods, Saudi university has adopted Quality Matters Standards as a controlling guide for the quality of its blended and full e-course electronic courses. Furthermore, quality assurance can be further improved if a variety of perspectives are taken into consideration from the comprehensive viewpoints of faculty members, administrative staff, and students.This qualitative research involved the use of different types of interviews, as well as documents that contain data related to e-learning methods in the Saudi university environment. This exploratory case study was undertaken, from the perspectives of various participants, to understand the phenomenon of quality assurance using an inductive technique.The results revealed six main supportive factors that assist in ensuring the quality of e-learning in the Saudi university environment. Essentially, these factors are institutional support, faculty member support, evaluation of faculty, quality of e-course design, technology support, and student support, which together have a remarkable positive effect on quality, forming intrinsic columns connected by bricks leading to quality e-learning. Quality Matters standards are considered to have a strong impact on improving faculty members' skills and on the development of high-quality blended and full e-courses.

Keywords: E-learning, quality assurance, quality matters standards, KKU-supportive factors

Procedia PDF Downloads 122
6279 Treatment of Wastewater by Constructed Wetland Eco-Technology: Plant Species Alters the Performance and the Enrichment of Bacteria Ries Alters the Performance and the Enrichment of Bacteria

Authors: Kraiem Khadija, Hamadi Kallali, Naceur Jedidi

Abstract:

Constructed wetland systems are eco-technology recognized as environmentally friendly and emerging innovative solutions remediation as these systems are cost-effective and sustainable wastewater treatment systems. The performance of these biological system is affected by various factors such as plant, substrate, wastewater type, hydraulic loading rate, hydraulic retention time, water depth, and operation mood. The objective of this study was to to assess the alters of plant species on pollutants reduction and enrichment of anammox and nitrifing denitrifing bacteria in a modified vertical flow (VFCW) constructed wetland. This tests were carried out using three modified vertical constructed wetlands with a surface of 0.23 m² and depth 80 cm. It was a saturated vertical constructed wetland at the bottom. The saturation zone is maintained by the siphon structure at the outlet. The VFCW (₁) system was unplanted, VFCW (₂) planted with Typha angustofolia, and VFCW(₃) planted with Phragmites australis. The experimental units were fed with domestic wastewater and were operated by batch mode during 8 months at an average hydraulic loading rate around 20 cm day− 1. The operation cycle was two days feeding and five days rest. Results indicated that plants presence improved the removal efficiency; the removal rates of organic matter (85.1–90.9%; COD and 81.8–88.9%; BOD5), nitrogen (54.2–73%; NTK and 66–77%; NH4 -N) were higher by 10.7–30.1% compared to the unplanted vertical constructed wetland. On the other hand, the plant species had no significant effect on removal efficiency of COD, The removal of COD was similar in VFCW (₂) and VFCW (₃) (p > 0.05), attaining average removal efficiencies of 88.7% and 85.2%, respectively. Whereas it had a significant effect on NTK removal (p > 0.05), with an average removal rate of 72% versus 51% for VFCW (₂) and VFCW (₃), respectively. Among the three sets of vertical flow constructed wetlands, the VFCW(₂) removed the highest percent of total streptococcus, fecal streptococcus total coliforms, fecal coliforms, E. coli as 59, 62, 52, 63, and 58%, respectively. The presence and the plant species alters the community composition and abundance of the bacteria. The abundance of bacteria in the planted wetland was much higher than that in the unplanted one. VFCW(₃) had the highest relative abundance of nitrifying bacteria such as Nitrosospira (18%), Nitrosospira (12%), and Nitrobacter (8%). Whereas the vertical constructed wetland planted with typha had larger number of denitrifying species, with relative abundances of Aeromonas (13%), Paracoccus (11%), Thauera (7%), and Thiobacillus (6%). However, the abundance of nitrifying bacteria was very lower in this system than VFCW(₂). Interestingly, the presence of Thypha angustofolia species favored the enrichment of anammox bacteria compared to unplanted system and system planted with phragmites australis. The results showed that the middle layer had the most accumulation of anammox bacteria, which the anaerobic condition is better and the root system is moderate. Vegetation has several characteristics that make it an essential component of wetlands, but its exact effects are complex and debated.

Keywords: wastawater, constructed wetland, anammox, removal

Procedia PDF Downloads 104
6278 Performance Management in Higher Education: Lessons from Germany's New Public Management System

Authors: Patrick Oehler, Nicholas Folger

Abstract:

Following a new public management approach, Germany has widely reformed its higher education system around the turn of the millennium. Aimed at preparing the country’s publicly funded universities and applied science colleges for a century of glory, the reforms led to the introduction of rigid performance measurement and management practices, which disrupted the inert system on all levels. Yet, many of the new policies met significant resistance, and some of them had to be reversed over time. Ever since Germany has struggled to find a balance between its pre- and its post-millennial approach to performance measurement and management. This contribution combines insights of a joint research project, which was created and funded by the German Federal Ministry of Education and Research with the aim to better understand the effects of its performance measurement and management policies, including those the ministry had implemented over the previous decades. The research project combines researchers from 17 German research institutions who employed a wide range of theories from various disciplines and very diverse research methods to explain performance measurement and management and their consequences on the behavior of various stakeholders in higher education systems. In these projects, performance measurement and management have been researched from three angles—education, research, and third mission. The collaborative project differentiated functional and dysfunctional elements of common performance measurement and management practices, and identified key problems with these practices, such as (1) oversimplification of performance indicators, (2) ‘overmeasurement’ of performance in general, (3) excessive use of quantitative indicators, and (4), a myopic focus on research-focused indicators and a negligence of measures targeting education and third mission. To address these issues, the collaborative project developed alternative approaches to performance measurement and management, including suggestions for qualitative performance measures, improved supervision, review, and evaluations methods, and recommendations how to better balance education, research, and third mission. The authors would like to share the rich findings of the joint research project with an international audience and discuss their implications for alternative higher education systems.

Keywords: performance measurement, performance management, new public management, performance evaluation

Procedia PDF Downloads 270
6277 Effects of School Facilities’ Mechanical and Plumbing Characteristics and Conditions on Student Attendance, Academic Performance and Health

Authors: Erica Cochran Hameen, Bobuchi Ken-Opurum, Shalini Priyadarshini, Berangere Lartigue, Sadhana Anath-Pisipati

Abstract:

School districts throughout the United States are constantly seeking measures to improve test scores, reduce school absenteeism and improve indoor environmental quality. It is imperative to identify key building investments which will provide the largest benefits to schools in terms of improving the aforementioned factors. This study uses Analysis of Variance (ANOVA) tests to statistically evaluate the impact of a school building’s mechanical and plumbing characteristics on a child’s educational performance. The educational performance is measured via three indicators, i.e. test scores, suspensions, and absenteeism. The study investigated 125 New York City school facilities to determine the potential correlations between 50 mechanical and plumbing variables and the performance indicators. Key findings from the tests revealed that elementary schools with pneumatic systems in “good” condition have 48.8% lower percentages of students scoring at the minimum English Language Arts (ELA) competency level compared with those with no pneumatic system. Additionally, elementary schools with “unit heaters/cabinet heaters” in “good to fair” conditions have 1.1% higher attendance rates compared to schools with no “unit heaters/cabinet heaters” or those in inferior condition. Furthermore, elementary schools with air conditioning have 0.6% higher attendance rates compared to schools with no air conditioning, and those with interior floor drains in “good” condition have 1.8% higher attendance rates compared to schools with interior drains in inferior condition.

Keywords: academic attendance and performance, mechanical and plumbing systems, schools, student health

Procedia PDF Downloads 118
6276 Experimental and Theoretical Characterization of Supramolecular Complexes between 7-(Diethylamino)Quinoline-2(1H)-One and Cucurbit[7] Uril

Authors: Kevin A. Droguett, Edwin G. Pérez, Denis Fuentealba, Margarita E. Aliaga, Angélica M. Fierro

Abstract:

Supramolecular chemistry is a field of growing interest. Moreover, studying the formation of host-guest complexes between macrocycles and dyes is highly attractive due to their potential applications. Examples of the above are drug delivery, catalytic process, and sensing, among others. There are different dyes of interest in the literature; one example is the quinolinone derivatives. Those molecules have good optical properties and chemical and thermal stability, making them suitable for developing fluorescent probes. Secondly, several macrocycles can be seen in the literature. One example is the cucurbiturils. This water-soluble macromolecule family has a hydrophobic cavity and two identical carbonyl portals. Additionally, the thermodynamic analysis of those supramolecular systems could help understand the affinity between the host and guest, their interaction, and the main stabilization energy of the complex. In this work, two 7-(diethylamino) quinoline-2 (1H)-one derivative (QD1-2) and their interaction with cucurbit[7]uril (CB[7]) were studied from an experimental and in-silico point of view. For the experimental section, the complexes showed a 1:1 stoichiometry by HRMS-ESI and isothermal titration calorimetry (ITC). The inclusion of the derivatives on the macrocycle lends to an upward shift in the fluorescence intensity, and the pKa value of QD1-2 exhibits almost no variation after the formation of the complex. The thermodynamics of the inclusion complexes was investigated using ITC; the results demonstrate a non-classical hydrophobic effect with a minimum contribution from the entropy term and a constant binding on the order of 106 for both ligands. Additionally, dynamic molecular studies were carried out during 300 ns in an explicit solvent at NTP conditions. Our finding shows that the complex remains stable during the simulation (RMSD ~1 Å), and hydrogen bonds contribute to the stabilization of the systems. Finally, thermodynamic parameters from MMPBSA calculations were obtained to generate new computational insights to compare with experimental results.

Keywords: host-guest complexes, molecular dynamics, quinolin-2(1H)-one derivatives dyes, thermodynamics

Procedia PDF Downloads 92
6275 Personalizing Human Physical Life Routines Recognition over Cloud-based Sensor Data via AI and Machine Learning

Authors: Kaushik Sathupadi, Sandesh Achar

Abstract:

Pervasive computing is a growing research field that aims to acknowledge human physical life routines (HPLR) based on body-worn sensors such as MEMS sensors-based technologies. The use of these technologies for human activity recognition is progressively increasing. On the other hand, personalizing human life routines using numerous machine-learning techniques has always been an intriguing topic. In contrast, various methods have demonstrated the ability to recognize basic movement patterns. However, it still needs to be improved to anticipate the dynamics of human living patterns. This study introduces state-of-the-art techniques for recognizing static and dy-namic patterns and forecasting those challenging activities from multi-fused sensors. Further-more, numerous MEMS signals are extracted from one self-annotated IM-WSHA dataset and two benchmarked datasets. First, we acquired raw data is filtered with z-normalization and denoiser methods. Then, we adopted statistical, local binary pattern, auto-regressive model, and intrinsic time scale decomposition major features for feature extraction from different domains. Next, the acquired features are optimized using maximum relevance and minimum redundancy (mRMR). Finally, the artificial neural network is applied to analyze the whole system's performance. As a result, we attained a 90.27% recognition rate for the self-annotated dataset, while the HARTH and KU-HAR achieved 83% on nine living activities and 90.94% on 18 static and dynamic routines. Thus, the proposed HPLR system outperformed other state-of-the-art systems when evaluated with other methods in the literature.

Keywords: artificial intelligence, machine learning, gait analysis, local binary pattern (LBP), statistical features, micro-electro-mechanical systems (MEMS), maximum relevance and minimum re-dundancy (MRMR)

Procedia PDF Downloads 21
6274 A Low-Voltage Synchronous Command for JFET Rectifiers

Authors: P. Monginaud, J. C. Baudey

Abstract:

The synchronous, low-voltage command for JFET Rectifiers has many applications: indeed, replacing the traditional diodes by these components allows enhanced performances in gain, linearity and phase shift. We introduce here a new bridge, including JFET associated with pull-down, bipolar command systems, and double-purpose logic gates.

Keywords: synchronous, rectifier, MOSFET, JFET, bipolar command system, push-pull circuits, double-purpose logic gates

Procedia PDF Downloads 365
6273 Carbon Sequestration Modeling in the Implementation of REDD+ Programmes in Nigeria

Authors: Oluwafemi Samuel Oyamakin

Abstract:

The forest in Nigeria is currently estimated to extend to around 9.6 million hectares, but used to expand over central and southern Nigeria decades ago. The forest estate is shrinking due to long-term human exploitation for agricultural development, fuel wood demand, uncontrolled forest harvesting and urbanization, amongst other factors, compounded by population growth in rural areas. Nigeria has lost more than 50% of its forest cover since 1990 and currently less than 10% of the country is forested. The current deforestation rate is estimated at 3.7%, which is one of the highest in the world. Reducing Emissions from Deforestation and forest Degradation plus conservation, sustainable management of forests and enhancement of forest carbon stocks constituted what is referred to as REDD+. This study evaluated some of the existing way of computing carbon stocks using eight indigenous tree species like Mansonia, Shorea, Bombax, Terminalia superba, Khaya grandifolia, Khaya senegalenses, Pines and Gmelina arborea. While these components are the essential elements of REDD+ programme, they can be brought under a broader framework of systems analysis designed to arrive at optimal solutions for future predictions through statistical distribution pattern of carbon sequestrated by various species of tree. Available data on height and diameter of trees in Ibadan were studied and their respective potentials of carbon sequestration level were assessed and subjected to tests so as to determine the best statistical distribution that would describe the carbon sequestration pattern of trees. The result of this study suggests a reasonable statistical distribution for carbons sequestered in simulation studies and hence, allow planners and government in determining resources forecast for sustainable development especially where experiments with real-life systems are infeasible. Sustainable management of forest can then be achieved by projecting future condition of forests under different management regimes thereby supporting conservation and REDD+ programmes in Nigeria.

Keywords: REDD+, carbon, climate change, height and diameter

Procedia PDF Downloads 167
6272 Special Education in the South African Context: A Bio-Ecological Perspective

Authors: Suegnet Smit

Abstract:

Prior to 1994, special education in South Africa was marginalized and fragmented. Moving away from a Medical model approach to special education, the Government, after 1994, promoted an Inclusive approach, as a means to transform education in general, and special education in particular. This transformation, however, is moving at too a slow pace for learners with barriers to learning and development to benefit fully from their education. The goal of the Department of Basic Education is to minimize, remove, and prevent barriers to learning and development in the educational setting, by attending to the unique needs of the individual learner. However, the implementation of Inclusive education is problematic, and general education remains poor. This paper highlights the historical development of special education in South Africa, underpinned by a bio-ecological perspective. Problematic areas within the systemic levels of the education system are highlighted in order to indicate how the interactive processes within the systemic levels affect special needs learners on the personal dimension of the bio-ecological approach. As part of the methodology, thorough document analysis was conducted on information collected from a large body of research literature, which included academic articles, reports, policies, and policy reviews. Through a qualitative analysis, data were grouped and categorized according to the bio-ecological model systems, which revealed various successes and challenges within the education system. The challenges inhibit change, growth, and development for the child, who experience barriers to learning. From these findings, it is established that special education in South Africa has been, and still is, on a bumpy road. Sadly, the transformation process of change, envisaged by implementing Inclusive education, is still yet a dream, not fully realized. Special education seems to be stuck at what is, and the education system has not moved forward significantly enough to reach what special education should and could be. The gap that exists between a vision of Inclusive quality education for all, and the current reality, is still too wide. Problems encountered in all the education system levels, causes a funnel-effect downward to learners with special educational needs, with negative effects for the development of these learners.

Keywords: bio-ecological perspective, education systems, inclusive education, special education

Procedia PDF Downloads 144
6271 Ancient Iran Water Technologies

Authors: Akbar Khodavirdizadeh, Ali Nemati Babaylou, Hassan Moomivand

Abstract:

The history of human access to water technique has been one of the factors in the formation of human civilizations in the ancient world. The technique that makes surface water and groundwater accessible to humans on the ground has been a clever technique in human life to reach the water. In this study, while examining the water technique of ancient Iran using the Qanats technique, the water supply system of different regions of the ancient world were also studied and compared. Six groups of the ancient region of ancient Greece (Archaic 480-750 BC and Classical 223-480 BC), Urartu in Tuspa (600-850 BC), Petra (106-168 BC), Ancient Rome (265 BC), and the ancient United States (1450 BC) and ancient Iranian water technologies were studied under water supply systems. Past water technologies in these areas: water transmission systems in primary urban centers, use of water structures in water control, use of bridges in water transfer, construction of waterways for water transfer, storage of rainfall, construction of various types of pottery- ceramic, lead, wood and stone pipes have been used in water transfer, flood control, water reservoirs, dams, channel, wells, and Qanat. The central plateau of Iran is one of the arid and desert regions. Archaeological, geomorphological, and paleontological studies of the central region of the Iranian plateau showed that without the use of Qanats, the possibility of urban civilization in this region was difficult and even impossible. Zarch aqueduct is the most important aqueduct in Yazd region. Qanat of Zarch is a plain Qanat with a gallery length of 80 km; its mother well is 85 m deep and has 2115 well shafts. The main purpose of building the Qanat of Zārch was to access the groundwater source and transfer it to the surface of the ground. Regarding the structure of the aqueduct and the technique of transferring water from the groundwater source to the surface, it has a great impact on being different from other water techniques in the ancient world. The results show that the use of water technologies in ancient is very important to understand the history of humanity in the use of hydraulic techniques.

Keywords: ancient water technologies, groundwaters, qanat, human history, Ancient Iran

Procedia PDF Downloads 112
6270 Double Row Taper Roller Bearing Wheel-end System in Rigid Rear Drive Axle in Heavy Duty SUV Passenger Vehicle

Authors: Mohd Imtiaz S, Saurabh Jain, Pothiraj K.

Abstract:

In today’s highly competitive passenger vehicle market, comfortable driving experience is one of the key parameters significantly weighed by the customer. Smooth ride and handling of the vehicle with exceptionally reliable wheel end solution is a paramount requirement in passenger Sports Utility Vehicle (SUV) vehicles subjected to challenging terrains and loads with rigid rear drive axle configuration. Traditional wheel-end bearing systems in passenger segment rigid rear drive axle utilizes the semi-floating layout, which imparts vertical bending loads and torsion to the axle shafts. The wheel-end bearing is usually a Single or Double Row Deep-Groove Ball Bearing (DRDGBB) or Double Row Angular Contact Ball Bearing (DRACBB). This solution is cost effective and simple in architecture. However, it lacks effectiveness against the heavy loads subjected to a SUV vehicle, especially the axial trust at high-speed cornering. This paper describes the solution of Double Row Taper Roller Bearing (DRTRB) wheel-end for a SUV vehicle in the rigid rear drive axle and improvement in terms of maximizing its load carrying capacity along with better reliability in terms of axial thrust in high-speed cornering. It describes the advantage of geometry of DRTRB over DRDGBB and DRACBB highlighting contact and load flow. The paper also highlights the vehicle level considerations affecting the B10 life of the bearing system for better selection of the DRTRB wheel-ends systems. This paper also describes real time vehicle level results along with theoretical improvements.

Keywords: axial thrust, b10 life, deep-groove ball bearing, taper roller bearing, semi-floating layout.

Procedia PDF Downloads 74
6269 Immersive and Non-Immersive Virtual Reality Applied to the Cervical Spine Assessment

Authors: Pawel Kiper, Alfonc Baba, Mahmoud Alhelou, Giorgia Pregnolato, Michela Agostini, Andrea Turolla

Abstract:

Impairment of cervical spine mobility is often related to pain triggered by musculoskeletal disorders or direct traumatic injuries of the spine. To date, these disorders are assessed with goniometers and inclinometers, which are the most popular devices used in clinical settings. Nevertheless, these technologies usually allow measurement of no more than two-dimensional range of motion (ROM) quotes in static conditions. Conversely, the wide use of motion tracking systems able to measure 3 to 6 degrees of freedom dynamically, while performing standard ROM assessment, are limited due to technical complexities in preparing the setup and high costs. Thus, motion tracking systems are primarily used in research. These systems are an integral part of virtual reality (VR) technologies, which can be used for measuring spine mobility. To our knowledge, the accuracy of VR measure has not yet been studied within virtual environments. Thus, the aim of this study was to test the reliability of a protocol for the assessment of sensorimotor function of the cervical spine in a population of healthy subjects and to compare whether using immersive or non-immersive VR for visualization affects the performance. Both VR assessments consisted of the same five exercises and random sequence determined which of the environments (i.e. immersive or non-immersive) was used as first assessment. Subjects were asked to perform head rotation (right and left), flexion, extension and lateral flexion (right and left side bending). Each movement was executed five times. Moreover, the participants were invited to perform head reaching movements i.e. head movements toward 8 targets placed along a circular perimeter each 45°, visualized one-by-one in random order. Finally, head repositioning movement was obtained by head movement toward the same 8 targets as for reaching and following reposition to the start point. Thus, each participant performed 46 tasks during assessment. Main measures were: ROM of rotation, flexion, extension, lateral flexion and complete kinematics of the cervical spine (i.e. number of completed targets, time of execution (seconds), spatial length (cm), angle distance (°), jerk). Thirty-five healthy participants (i.e. 14 males and 21 females, mean age 28.4±6.47) were recruited for the cervical spine assessment with immersive and non-immersive VR environments. Comparison analysis demonstrated that: head right rotation (p=0.027), extension (p=0.047), flexion (p=0.000), time (p=0.001), spatial length (p=0.004), jerk target (p=0.032), trajectory repositioning (p=0.003), and jerk target repositioning (p=0.007) were significantly better in immersive than non-immersive VR. A regression model showed that assessment in immersive VR was influenced by height, trajectory repositioning (p<0.05), and handedness (p<0.05), whereas in non-immersive VR performance was influenced by height, jerk target (p=0.002), head extension, jerk target repositioning (p=0.002), and by age, head flex/ext, trajectory repositioning, and weight (p=0.040). The results of this study showed higher accuracy of cervical spine assessment when executed in immersive VR. The assessment of ROM and kinematics of the cervical spine can be affected by independent and dependent variables in both immersive and non-immersive VR settings.

Keywords: virtual reality, cervical spine, motion analysis, range of motion, measurement validity

Procedia PDF Downloads 166
6268 A Posterior Predictive Model-Based Control Chart for Monitoring Healthcare

Authors: Yi-Fan Lin, Peter P. Howley, Frank A. Tuyl

Abstract:

Quality measurement and reporting systems are used in healthcare internationally. In Australia, the Australian Council on Healthcare Standards records and reports hundreds of clinical indicators (CIs) nationally across the healthcare system. These CIs are measures of performance in the clinical setting, and are used as a screening tool to help assess whether a standard of care is being met. Existing analysis and reporting of these CIs incorporate Bayesian methods to address sampling variation; however, such assessments are retrospective in nature, reporting upon the previous six or twelve months of data. The use of Bayesian methods within statistical process control for monitoring systems is an important pursuit to support more timely decision-making. Our research has developed and assessed a new graphical monitoring tool, similar to a control chart, based on the beta-binomial posterior predictive (BBPP) distribution to facilitate the real-time assessment of health care organizational performance via CIs. The BBPP charts have been compared with the traditional Bernoulli CUSUM (BC) chart by simulation. The more traditional “central” and “highest posterior density” (HPD) interval approaches were each considered to define the limits, and the multiple charts were compared via in-control and out-of-control average run lengths (ARLs), assuming that the parameter representing the underlying CI rate (proportion of cases with an event of interest) required estimation. Preliminary results have identified that the BBPP chart with HPD-based control limits provides better out-of-control run length performance than the central interval-based and BC charts. Further, the BC chart’s performance may be improved by using Bayesian parameter estimation of the underlying CI rate.

Keywords: average run length (ARL), bernoulli cusum (BC) chart, beta binomial posterior predictive (BBPP) distribution, clinical indicator (CI), healthcare organization (HCO), highest posterior density (HPD) interval

Procedia PDF Downloads 201
6267 Determining Optimum Locations for Runoff Water Harvesting in W. Watir, South Sinai, Using RS, GIS, and WMS Techniques

Authors: H. H. Elewa, E. M. Ramadan, A. M. Nosair

Abstract:

Rainfall water harvesting is considered as an important tool for overcoming water scarcity in arid and semi-arid region. Wadi Watir in the southeastern part of Sinai Peninsula is considered as one of the main and active basins in the Gulf of Aqaba drainage system. It is characterized by steep hills mainly consist of impermeable rocks, whereas the streambeds are covered by a highly permeable mixture of gravel and sand. A comprehensive approach involving the integration of geographic information systems, remote sensing and watershed modeling was followed to identify the RWH capability in this area. Eight thematic layers, viz volume of annual flood, overland flow distance, maximum flow distance, rock or soil infiltration, drainage frequency density, basin area, basin slope and basin length were used as a multi-parametric decision support system for conducting weighted spatial probability models (WSPMs) to determine the potential areas for the RWH. The WSPMs maps classified the area into five RWH potentiality classes ranging from the very low to very high. Three performed WSPMs' scenarios for W. Watir reflected identical results among their maps for the high and very high RWH potentiality classes, which are the most suitable ones for conducting surface water harvesting techniques. There is also a reasonable match with respect to the potentiality of runoff harvesting areas with a probability of moderate, low and very low among the three scenarios. WSPM results have shown that the high and very high classes, which are the most suitable for the RWH are representing approximately 40.23% of the total area of the basin. Accordingly, several locations were decided for the establishment of water harvesting dams and cisterns to improve the water conditions and living environment in the study area.

Keywords: Sinai, Wadi Watir, remote sensing, geographic information systems, watershed modeling, runoff water harvesting

Procedia PDF Downloads 357
6266 Hardware Implementation for the Contact Force Reconstruction in Tactile Sensor Arrays

Authors: María-Luisa Pinto-Salamanca, Wilson-Javier Pérez-Holguín

Abstract:

Reconstruction of contact forces is a fundamental technique for analyzing the properties of a touched object and is essential for regulating the grip force in slip control loops. This is based on the processing of the distribution, intensity, and direction of the forces during the capture of the sensors. Currently, efficient hardware alternatives have been used more frequently in different fields of application, allowing the implementation of computationally complex algorithms, as is the case with tactile signal processing. The use of hardware for smart tactile sensing systems is a research area that promises to improve the processing time and portability requirements of applications such as artificial skin and robotics, among others. The literature review shows that hardware implementations are present today in almost all stages of smart tactile detection systems except in the force reconstruction process, a stage in which they have been less applied. This work presents a hardware implementation of a model-driven reported in the literature for the contact force reconstruction of flat and rigid tactile sensor arrays from normal stress data. From the analysis of a software implementation of such a model, this implementation proposes the parallelization of tasks that facilitate the execution of matrix operations and a two-dimensional optimization function to obtain a vector force by each taxel in the array. This work seeks to take advantage of the parallel hardware characteristics of Field Programmable Gate Arrays, FPGAs, and the possibility of applying appropriate techniques for algorithms parallelization using as a guide the rules of generalization, efficiency, and scalability in the tactile decoding process and considering the low latency, low power consumption, and real-time execution as the main parameters of design. The results show a maximum estimation error of 32% in the tangential forces and 22% in the normal forces with respect to the simulation by the Finite Element Modeling (FEM) technique of Hertzian and non-Hertzian contact events, over sensor arrays of 10×10 taxels of different sizes. The hardware implementation was carried out on an MPSoC XCZU9EG-2FFVB1156 platform of Xilinx® that allows the reconstruction of force vectors following a scalable approach, from the information captured by means of tactile sensor arrays composed of up to 48 × 48 taxels that use various transduction technologies. The proposed implementation demonstrates a reduction in estimation time of x / 180 compared to software implementations. Despite the relatively high values of the estimation errors, the information provided by this implementation on the tangential and normal tractions and the triaxial reconstruction of forces allows to adequately reconstruct the tactile properties of the touched object, which are similar to those obtained in the software implementation and in the two FEM simulations taken as reference. Although errors could be reduced, the proposed implementation is useful for decoding contact forces for portable tactile sensing systems, thus helping to expand electronic skin applications in robotic and biomedical contexts.

Keywords: contact forces reconstruction, forces estimation, tactile sensor array, hardware implementation

Procedia PDF Downloads 195
6265 Clathrate Hydrate Measurements and Thermodynamic Modelling for Refrigerants with Electrolytes Solution in the Presence of Cyclopentane

Authors: Peterson Thokozani Ngema, Paramespri Naidoo, Amir H. Mohammadi, Deresh Ramjugernath

Abstract:

Phase equilibrium data (dissociation data) for clathrate hydrate (gas hydrate) were undertaken for systems involving fluorinated refrigerants with a single and mixed electrolytes (NaCl, CaCl₂, MgCl₂, and Na₂SO₄) aqueous solution at various salt concentrations in the absence and presence of cyclopentane (CP). The ternary systems for (R410a or R507) with the water system in the presence of CP were performed in the temperature and pressures ranges of (279.8 to 294.4) K and (0.158 to 1.385) MPa, respectively. Measurements for R410a with single electrolyte {NaCl or CaCl₂} solution in the presence of CP were undertaken at salt concentrations of (0.10, 0.15 and 0.20) mass fractions in the temperature and pressure ranges of (278.4 to 293.7) K and (0.214 to1.179) MPa, respectively. The temperature and pressure conditions for R410a with Na₂SO₄ aqueous solution system were investigated at a salt concentration of 0.10 mass fraction in the range of (283.3 to 291.6) K and (0.483 to 1.373) MPa respectively. Measurements for {R410a or R507} with mixed electrolytes {NaCl, CaCl₂, MgCl₂} aqueous solution was undertaken at various salt concentrations of (0.002 to 0.15) mass fractions in the temperature and pressure ranges of (274.5 to 292.9) K and (0.149 to1.119) MPa in the absence and presence of CP, in which there is no published data related to mixed salt and a promoter. The phase equilibrium measurements were performed using a non-visual isochoric equilibrium cell that co-operates the pressure-search technique. This study is focused on obtaining equilibrium data that can be utilized to design and optimize industrial wastewater, desalination process and the development of Hydrate Electrolyte–Cubic Plus Association (HE–CPA) Equation of State. The results show an impressive improvement in the presence of promoter (CP) on hydrate formation because it increases the dissociation temperatures near ambient conditions. The results obtained were modeled using a developed HE–CPA equation of state. The model results strongly agree with the measured hydrate dissociation data.

Keywords: association, desalination, electrolytes, promoter

Procedia PDF Downloads 245
6264 Leveraging Automated and Connected Vehicles with Deep Learning for Smart Transportation Network Optimization

Authors: Taha Benarbia

Abstract:

The advent of automated and connected vehicles has revolutionized the transportation industry, presenting new opportunities for enhancing the efficiency, safety, and sustainability of our transportation networks. This paper explores the integration of automated and connected vehicles into a smart transportation framework, leveraging the power of deep learning techniques to optimize the overall network performance. The first aspect addressed in this paper is the deployment of automated vehicles (AVs) within the transportation system. AVs offer numerous advantages, such as reduced congestion, improved fuel efficiency, and increased safety through advanced sensing and decisionmaking capabilities. The paper delves into the technical aspects of AVs, including their perception, planning, and control systems, highlighting the role of deep learning algorithms in enabling intelligent and reliable AV operations. Furthermore, the paper investigates the potential of connected vehicles (CVs) in creating a seamless communication network between vehicles, infrastructure, and traffic management systems. By harnessing real-time data exchange, CVs enable proactive traffic management, adaptive signal control, and effective route planning. Deep learning techniques play a pivotal role in extracting meaningful insights from the vast amount of data generated by CVs, empowering transportation authorities to make informed decisions for optimizing network performance. The integration of deep learning with automated and connected vehicles paves the way for advanced transportation network optimization. Deep learning algorithms can analyze complex transportation data, including traffic patterns, demand forecasting, and dynamic congestion scenarios, to optimize routing, reduce travel times, and enhance overall system efficiency. The paper presents case studies and simulations demonstrating the effectiveness of deep learning-based approaches in achieving significant improvements in network performance metrics

Keywords: automated vehicles, connected vehicles, deep learning, smart transportation network

Procedia PDF Downloads 79
6263 Design and Integration of an Energy Harvesting Vibration Absorber for Rotating System

Authors: F. Infante, W. Kaal, S. Perfetto, S. Herold

Abstract:

In the last decade the demand of wireless sensors and low-power electric devices for condition monitoring in mechanical structures has been strongly increased. Networks of wireless sensors can potentially be applied in a huge variety of applications. Due to the reduction of both size and power consumption of the electric components and the increasing complexity of mechanical systems, the interest of creating dense nodes sensor networks has become very salient. Nevertheless, with the development of large sensor networks with numerous nodes, the critical problem of powering them is drawing more and more attention. Batteries are not a valid alternative for consideration regarding lifetime, size and effort in replacing them. Between possible alternative solutions for durable power sources useable in mechanical components, vibrations represent a suitable source for the amount of power required to feed a wireless sensor network. For this purpose, energy harvesting from structural vibrations has received much attention in the past few years. Suitable vibrations can be found in numerous mechanical environments including automotive moving structures, household applications, but also civil engineering structures like buildings and bridges. Similarly, a dynamic vibration absorber (DVA) is one of the most used devices to mitigate unwanted vibration of structures. This device is used to transfer the primary structural vibration to the auxiliary system. Thus, the related energy is effectively localized in the secondary less sensitive structure. Then, the additional benefit of harvesting part of the energy can be obtained by implementing dedicated components. This paper describes the design process of an energy harvesting tuned vibration absorber (EHTVA) for rotating systems using piezoelectric elements. The energy of the vibration is converted into electricity rather than dissipated. The device proposed is indeed designed to mitigate torsional vibrations as with a conventional rotational TVA, while harvesting energy as a power source for immediate use or storage. The resultant rotational multi degree of freedom (MDOF) system is initially reduced in an equivalent single degree of freedom (SDOF) system. The Den Hartog’s theory is used for evaluating the optimal mechanical parameters of the initial DVA for the SDOF systems defined. The performance of the TVA is operationally assessed and the vibration reduction at the original resonance frequency is measured. Then, the design is modified for the integration of active piezoelectric patches without detuning the TVA. In order to estimate the real power generated, a complex storage circuit is implemented. A DC-DC step-down converter is connected to the device through a rectifier to return a fixed output voltage. Introducing a big capacitor, the energy stored is measured at different frequencies. Finally, the electromechanical prototype is tested and validated achieving simultaneously reduction and harvesting functions.

Keywords: energy harvesting, piezoelectricity, torsional vibration, vibration absorber

Procedia PDF Downloads 147
6262 Using Differentiated Instruction Applying Cognitive Approaches and Strategies for Teaching Diverse Learners

Authors: Jolanta Jonak, Sylvia Tolczyk

Abstract:

Educational systems are tasked with preparing students for future success in academic or work environments. Schools strive to achieve this goal, but often it is challenging as conventional teaching approaches are often ineffective in increasingly diverse educational systems. In today’s ever-increasing global society, educational systems become increasingly diverse in terms of cultural and linguistic differences, learning preferences and styles, ability and disability. Through increased understanding of disabilities and improved identification processes, students having some form of disabilities tend to be identified earlier than in the past, meaning that more students with identified disabilities are being supported in our classrooms. Also, a large majority of students with disabilities are educated in general education environments. Due to cognitive makeup and life experiences, students have varying learning styles and preferences impacting how they receive and express what they are learning. Many students come from bi or multilingual households and with varying proficiencies in the English language, further impacting their learning. All these factors need to be seriously considered when developing learning opportunities for student's. Educators try to adjust their teaching practices as they discover that conventional methods are often ineffective in reaching each student’s potential. Many teachers do not have the necessary educational background or training to know how to teach students whose learning needs are more unique and may vary from the norm. This is further complicated by the fact that many classrooms lack consistent access to interventionists/coaches that are adequately trained in evidence-based approaches to meet the needs of all students, regardless of what their academic needs may be. One evidence-based way for providing successful education for all students is by incorporating cognitive approaches and strategies that tap into affective, recognition, and strategic networks in the student's brain. This can be done through Differentiated Instruction (DI). Differentiated Instruction is increasingly recognized model that is established on the basic principles of Universal Design for Learning. This form of support ensures that regardless of the students’ learning preferences and cognitive learning profiles, they have opportunities to learn through approaches that are suitable to their needs. This approach improves the educational outcomes of students with special needs and it benefits other students as it accommodates learning styles as well as the scope of unique learning needs that are evident in the typical classroom setting. Differentiated Instruction also is recognized as an evidence-based best practice in education and is highly effective when it is implemented within the tiered system of the Response to Intervention (RTI) model. Recognition of DI becomes more common; however, there is still limited understanding of the effective implementation and use of strategies that can create unique learning environments for each student within the same setting. Through employing knowledge of a variety of instructional strategies, general and special education teachers can facilitate optimal learning for all students, with and without a disability. A desired byproduct of DI is that it can eliminate inaccurate perceptions about the students’ learning abilities, unnecessary referrals for special education evaluations, and inaccurate decisions about the presence of a disability.

Keywords: differentiated instruction, universal design for learning, special education, diversity

Procedia PDF Downloads 220