Search results for: learning outcomes framework
10702 Impact of Schools' Open and Semi-Open Spaces on Student's Studying Behavior
Authors: Chaithanya Pothuganti
Abstract:
Open and semi-open spaces in educational buildings like corridors, mid landings, seating spaces, lobby, courtyards are traditionally have been the places of social communion and interaction which helps in promoting the knowledge, performance, activeness, and motivation in students. Factors like availability of land, commercialization, of educational facilities, especially in e-techno and smart schools, led to closed classrooms to accommodate students thereby lack quality open and semi-open spaces. This insufficient attention towards open space design which is a means of informal learning misses an opportunity to encourage the student’s skill development, behavior and learning skills. The core objective of this paper is to find the level of impact on student learning behavior and to identify the suitable proportions and configuration of spaces that shape the schools. In order to achieve this, different types of open spaces in schools and their impact on student’s performance in various existing models are analysed using case studies to draw some design principles. The study is limited to indoor open spaces like corridors, break out spaces and courtyards. The expected outcome of the paper is to suggest better design considerations for the development of semi-open and open spaces which functions as an element for informal learnings. Its focus is to provide further thinking on designing and development of open spaces in educational buildings.Keywords: configuration of spaces and proportions, informal learning, open spaces, schools, student’s behavior
Procedia PDF Downloads 30910701 The Formation of Motivational Sphere for Learning Activity under Conditions of Change of One of Its Leading Components
Authors: M. Rodionov, Z. Dedovets
Abstract:
This article discusses ways to implement a differentiated approach to developing academic motivation for mathematical studies which relies on defining the primary structural characteristics of motivation. The following characteristics are considered: features of realization of cognitive activity, meaning-making characteristics, level of generalization and consistency of knowledge acquired by personal experience. The assessment of the present level of individual student understanding of each component of academic motivation is the basis for defining the relevant educational strategy for its further development.Keywords: learning activity, mathematics, motivation, student
Procedia PDF Downloads 41710700 The Effects of a Mathematics Remedial Program on Mathematics Success and Achievement among Beginning Mathematics Major Students: A Regression Discontinuity Analysis
Authors: Kuixi Du, Thomas J. Lipscomb
Abstract:
The proficiency in Mathematics skills is fundamental to success in the STEM disciplines. In the US, beginning college students who are placed in remedial/developmental Mathematics courses frequently struggle to achieve academic success. Therefore, Mathematics remediation in college has become an important concern, and providing Mathematics remediation is a prevalent way to help the students who may not be fully prepared for college-level courses. Programs vary, however, and the effectiveness of a particular remedial Mathematics program must be empirically demonstrated. The purpose of this study was to apply the sharp regression discontinuity (RD) technique to determine the effectiveness of the Jack Leaps Summer (JLS) Mathematic remediation program in supporting improved Mathematics learning outcomes among newly admitted Mathematics students in the South Dakota State University. The researchers studied the newly admitted Fall 2019 cohort of Mathematics majors (n=423). The results indicated that students whose pretest score was lower than the cut-off point and who were assigned to the JLS program experienced significantly higher scores on the post-test (Math 101 final score). Based on these results, there is evidence that the JLS program is effective in meeting its primary objective.Keywords: causal inference, mathematisc remedial program evaluation, quasi-experimental research design, regression discontinuity design, cohort studies
Procedia PDF Downloads 9710699 Buddhism and Education for Children: Cultivating Wisdom and Compassion
Authors: Harry Einhorn
Abstract:
This paper aims to explore the integration of Buddhism into educational settings with the goal of fostering the holistic development of children. By incorporating Buddhist principles and practices, educators can create a nurturing environment that cultivates wisdom, compassion, and ethical values in children. The teachings of Buddhism provide valuable insights into mindfulness, compassion, and critical thinking, which can be adapted and applied to educational curricula to enhance children's intellectual, emotional, and moral growth. One of the fundamental aspects of Buddhist philosophy that is particularly relevant to education is the concept of mindfulness. By introducing mindfulness practices, such as meditation and breathing exercises, children can learn to cultivate present-moment awareness, develop emotional resilience, and enhance their ability to concentrate and focus. These skills are essential for effective learning and can contribute to reducing stress and promoting overall well-being in children. Mindfulness practices can also teach children how to manage their emotions and thoughts, promoting self-regulation and creating a positive classroom environment. In addition to mindfulness, Buddhism emphasizes the cultivation of compassion and empathy toward all living beings. Integrating teachings on kindness, empathy, and ethical behavior into the educational framework can help children develop a deep sense of interconnectedness and social responsibility. By engaging children in activities that promote empathy and encourage acts of kindness, such as community service projects and cooperative learning, educators can foster the development of compassionate individuals who are actively engaged in creating a more harmonious and compassionate society. Moreover, Buddhist teachings encourage critical thinking and inquiry, which are crucial skills for intellectual development. By introducing children to fundamental Buddhist concepts such as impermanence, interdependence, and the nature of suffering, educators can engage them in philosophical reflections and broaden their perspectives on life. These teachings promote open-mindedness, curiosity, and a deeper understanding of the interconnectedness of all things. Through the exploration of these concepts, children can develop critical thinking skills and gain insights into the complexities of the world, enabling them to navigate challenges with wisdom and discernment. While integrating Buddhism into education requires sensitivity, cultural awareness, and respect for diverse beliefs and backgrounds, it holds great potential for nurturing the holistic development of children. By incorporating mindfulness practices, fostering compassion and empathy, and promoting critical thinking, Buddhism can contribute to the creation of a more compassionate, inclusive, and harmonious educational environment. This integration can shape well-rounded individuals who are equipped with the necessary skills and qualities to navigate the complexities of the modern world with wisdom, compassion, and resilience. In conclusion, the integration of Buddhism into education offers a valuable framework for cultivating wisdom, compassion, and ethical values in children. By incorporating mindfulness, compassion, and critical thinking into educational practices, educators can create a supportive environment that promotes children's holistic development. By nurturing these qualities, Buddhism can help shape individuals who are not only academically proficient but also morally and ethically responsible, contributing to a more compassionate and harmonious society.Keywords: Buddhism, education, children, mindfulness
Procedia PDF Downloads 6310698 Enhancing Pedagogical Practices in Online Arabic Language Instruction: Challenges, Opportunities, and Strategies
Authors: Salah Algabli
Abstract:
As online learning takes center stage; Arabic language instructors face the imperative to adapt their practices for the digital realm. This study investigates the experiences of online Arabic instructors to unveil the pedagogical opportunities and challenges this format presents. Utilizing a transcendental phenomenological approach with 15 diverse participants, the research shines a light on the unique realities of online language teaching at the university level, specifically in the United States. The study proposes theoretical and practical solutions to maximize the benefits of online language learning while mitigating its challenges. Recommendations cater to instructors, researchers, and program coordinators, paving the way for enhancing the quality of online Arabic language education. The findings highlight the need for pedagogical approaches tailored to the online environment, ultimately shaping a future where both instructors and learners thrive in this digital landscape.Keywords: online Arabic language learning, pedagogical opportunities and challenges, online Arabic teachers, online language instruction, digital pedagogy
Procedia PDF Downloads 6210697 Machine Learning for Targeting of Conditional Cash Transfers: Improving the Effectiveness of Proxy Means Tests to Identify Future School Dropouts and the Poor
Authors: Cristian Crespo
Abstract:
Conditional cash transfers (CCTs) have been targeted towards the poor. Thus, their targeting assessments check whether these schemes have been allocated to low-income households or individuals. However, CCTs have more than one goal and target group. An additional goal of CCTs is to increase school enrolment. Hence, students at risk of dropping out of school also are a target group. This paper analyses whether one of the most common targeting mechanisms of CCTs, a proxy means test (PMT), is suitable to identify the poor and future school dropouts. The PMT is compared with alternative approaches that use the outputs of a predictive model of school dropout. This model was built using machine learning algorithms and rich administrative datasets from Chile. The paper shows that using machine learning outputs in conjunction with the PMT increases targeting effectiveness by identifying more students who are either poor or future dropouts. This joint targeting approach increases effectiveness in different scenarios except when the social valuation of the two target groups largely differs. In these cases, the most likely optimal approach is to solely adopt the targeting mechanism designed to find the highly valued group.Keywords: conditional cash transfers, machine learning, poverty, proxy means tests, school dropout prediction, targeting
Procedia PDF Downloads 20510696 A Comparative Study on the Use of Learning Resources in Learning Biochemistry by MBBS Students at Ras Al Khaimah Medical and Health Sciences University, UAE
Authors: B. K. Manjunatha Goud, Aruna Chanu Oinam
Abstract:
The undergraduate medical curriculum is oriented towards training the students to undertake the responsibilities of a physician. During the training period, adequate emphasis is placed on inculcating logical and scientific habits of thought; clarity of expression and independence of judgment; and ability to collect and analyze information and to correlate them. At Ras Al Khaimah Medical and Health Sciences University (RAKMHSU), Biochemistry a basic medical science subject is taught in the 1st year of 5 years medical course with vertical interdisciplinary interaction with all subjects, which needs to be taught and learned adequately by the students to be related to clinical case or clinical problem in medicine and future diagnostics so that they can practice confidently and skillfully in the community. Based on these facts study was done to know the extent of usage of library resources by the students and the impact of study materials on their preparation for examination. It was a comparative cross sectional study included 100 and 80 1st and 2nd-year students who had successfully completed Biochemistry course. The purpose of the study was explained to all students [participants]. Information was collected on a pre-designed, pre-tested and self-administered questionnaire. The questionnaire was validated by the senior faculties and pre tested on students who were not involved in the study. The study results showed that 80.30% and 93.15% of 1st and 2nd year students have the clear idea of course outline given in course handout or study guide. We also found a statistically significant number of students agreed that they were benefited from the practical session and writing notes in the class hour. A high percentage of students [50% and 62.02%] disagreed that that reading only the handouts is enough for their examination as compared to other students. The study also showed that only 35% and 41% of students visited the library on daily basis for the learning process, around 65% of students were using lecture notes and text books as a tool for learning and to understand the subject and 45% and 53% of students used the library resources (recommended text books) compared to online sources before the examinations. The results presented here show that students perceived that e-learning resources like power point presentations along with text book reading using SQ4R technique had made a positive impact on various aspects of their learning in Biochemistry. The use of library by students has overall positive impact on learning process especially in medical field enhances the outcome, and medical students are better equipped to treat the patient. But it’s also true that use of library use has been in decline which will impact the knowledge aspects and outcome. In conclusion, a student has to be taught how to use the library as learning tool apart from lecture handouts.Keywords: medical education, learning resources, study guide, biochemistry
Procedia PDF Downloads 17810695 Physics-Informed Neural Network for Predicting Strain Demand in Inelastic Pipes under Ground Movement with Geometric and Soil Resistance Nonlinearities
Authors: Pouya Taraghi, Yong Li, Nader Yoosef-Ghodsi, Muntaseer Kainat, Samer Adeeb
Abstract:
Buried pipelines play a crucial role in the transportation of energy products such as oil, gas, and various chemical fluids, ensuring their efficient and safe distribution. However, these pipelines are often susceptible to ground movements caused by geohazards like landslides, fault movements, lateral spreading, and more. Such ground movements can lead to strain-induced failures in pipes, resulting in leaks or explosions, leading to fires, financial losses, environmental contamination, and even loss of human life. Therefore, it is essential to study how buried pipelines respond when traversing geohazard-prone areas to assess the potential impact of ground movement on pipeline design. As such, this study introduces an approach called the Physics-Informed Neural Network (PINN) to predict the strain demand in inelastic pipes subjected to permanent ground displacement (PGD). This method uses a deep learning framework that does not require training data and makes it feasible to consider more realistic assumptions regarding existing nonlinearities. It leverages the underlying physics described by differential equations to approximate the solution. The study analyzes various scenarios involving different geohazard types, PGD values, and crossing angles, comparing the predictions with results obtained from finite element methods. The findings demonstrate a good agreement between the results of the proposed method and the finite element method, highlighting its potential as a simulation-free, data-free, and meshless alternative. This study paves the way for further advancements, such as the simulation-free reliability assessment of pipes subjected to PGD, as part of ongoing research that leverages the proposed method.Keywords: strain demand, inelastic pipe, permanent ground displacement, machine learning, physics-informed neural network
Procedia PDF Downloads 6110694 Sparse Modelling of Cancer Patients’ Survival Based on Genomic Copy Number Alterations
Authors: Khaled M. Alqahtani
Abstract:
Copy number alterations (CNA) are variations in the structure of the genome, where certain regions deviate from the typical two chromosomal copies. These alterations are pivotal in understanding tumor progression and are indicative of patients' survival outcomes. However, effectively modeling patients' survival based on their genomic CNA profiles while identifying relevant genomic regions remains a statistical challenge. Various methods, such as the Cox proportional hazard (PH) model with ridge, lasso, or elastic net penalties, have been proposed but often overlook the inherent dependencies between genomic regions, leading to results that are hard to interpret. In this study, we enhance the elastic net penalty by incorporating an additional penalty that accounts for these dependencies. This approach yields smooth parameter estimates and facilitates variable selection, resulting in a sparse solution. Our findings demonstrate that this method outperforms other models in predicting survival outcomes, as evidenced by our simulation study. Moreover, it allows for a more meaningful interpretation of genomic regions associated with patients' survival. We demonstrate the efficacy of our approach using both real data from a lung cancer cohort and simulated datasets.Keywords: copy number alterations, cox proportional hazard, lung cancer, regression, sparse solution
Procedia PDF Downloads 4710693 Predictive Semi-Empirical NOx Model for Diesel Engine
Authors: Saurabh Sharma, Yong Sun, Bruce Vernham
Abstract:
Accurate prediction of NOx emission is a continuous challenge in the field of diesel engine-out emission modeling. Performing experiments for each conditions and scenario cost significant amount of money and man hours, therefore model-based development strategy has been implemented in order to solve that issue. NOx formation is highly dependent on the burn gas temperature and the O2 concentration inside the cylinder. The current empirical models are developed by calibrating the parameters representing the engine operating conditions with respect to the measured NOx. This makes the prediction of purely empirical models limited to the region where it has been calibrated. An alternative solution to that is presented in this paper, which focus on the utilization of in-cylinder combustion parameters to form a predictive semi-empirical NOx model. The result of this work is shown by developing a fast and predictive NOx model by using the physical parameters and empirical correlation. The model is developed based on the steady state data collected at entire operating region of the engine and the predictive combustion model, which is developed in Gamma Technology (GT)-Power by using Direct Injected (DI)-Pulse combustion object. In this approach, temperature in both burned and unburnt zone is considered during the combustion period i.e. from Intake Valve Closing (IVC) to Exhaust Valve Opening (EVO). Also, the oxygen concentration consumed in burnt zone and trapped fuel mass is also considered while developing the reported model. Several statistical methods are used to construct the model, including individual machine learning methods and ensemble machine learning methods. A detailed validation of the model on multiple diesel engines is reported in this work. Substantial numbers of cases are tested for different engine configurations over a large span of speed and load points. Different sweeps of operating conditions such as Exhaust Gas Recirculation (EGR), injection timing and Variable Valve Timing (VVT) are also considered for the validation. Model shows a very good predictability and robustness at both sea level and altitude condition with different ambient conditions. The various advantages such as high accuracy and robustness at different operating conditions, low computational time and lower number of data points requires for the calibration establishes the platform where the model-based approach can be used for the engine calibration and development process. Moreover, the focus of this work is towards establishing a framework for the future model development for other various targets such as soot, Combustion Noise Level (CNL), NO2/NOx ratio etc.Keywords: diesel engine, machine learning, NOₓ emission, semi-empirical
Procedia PDF Downloads 11410692 A Conceptual Framework to Study Cognitive-Affective Destination Images of Thailand among French Tourists
Authors: Ketwadee Madden
Abstract:
Product or service image is among the vital factors that predict individuals’ choice of buying a product or services, goes to a place or attached to a person. Similarly, in the context of tourism, the destination image is a very important factor to which tourist considers before making their tour destination decisions. In light of this, the objective of this study is to conceptually investigate among French tourists, the determinants of Thailand’s tourism destination image. For this objective to be achieved, prior studies were reviewed, leading to the development of conceptual framework highlighting the determinants of destination image. In addition, this study develops some hypotheses that are to be empirically investigated. Aside these, based on the conceptual findings, suggestions on how to motivate European tourists to chose Thailand as their preferred tourism destination were made.Keywords: cognitive destination image, affective destination image, motivations, risk perception, word of mouth
Procedia PDF Downloads 13910691 Academic Staff Perspective of Adoption of Augmented Reality in Teaching Practice to Support Students Learning Remotely in a Crisis Time in Higher
Authors: Ebtisam Alqahtani
Abstract:
The purpose of this study is to investigate academic staff perspectives on using Augmented Reality in teaching practice to support students learning remotely during the COVID pandemic. the study adopted the DTPB theoretical model to guide the identification of key potential factors that could motivate academic staff to use or not use AR in teaching practices. A mixing method design was adopted for a better understanding of the study problem. A survey was completed by 851 academic staff, and this was followed by interviews with 20 academic staff. Statistical analyses were used to assess the survey data, and thematic analysis was used to assess the interview data. The study finding indicates that 75% of academic staff were aware of AR as a pedagogical tool, and they agreed on the potential benefits of AR in teaching and learning practices. However, 36% of academic staff use it in teaching and learning practice, and most of them agree with most of the potential barriers to adopting AR in educational environments. In addition, the study results indicate that 91% of them are planning to use it in the future. The most important factors that motivated them to use it in the future are the COVID pandemic factor, hedonic motivation factor, and academic staff attitude factor. The perceptions of academic staff differed according to the universities they attended, the faculties they worked in, and their gender. This study offers further empirical support for the DTPB model, as well as recommendations to help higher education implement technology in its educational environment based on the findings of the study. It is unprecedented the study the necessity of the use of AR technologies in the time of Covid-19. Therefore, the contribution is both theoretical and practiceKeywords: higher education, academic staff, AR technology as pedological tools, teaching and learning practice, benefits of AR, barriers of adopting AR, and motivating factors to adopt AR
Procedia PDF Downloads 12810690 A Triple Win: Linking Students, Academics, and External Organisations to Provide Real-World Learning Experiences with Real-World Benefits
Authors: Anne E. Goodenough
Abstract:
Students often learn best ‘on the job’ through holistic real-world projects. They need real-world experiences to make classroom learning applicable and to increase their employability. Academics typically value working on projects where new knowledge is created and have a genuine desire to help students engage with learning and develop new skills. They might also have institutional pressure to enhance student engagement, retention, and satisfaction. External organizations - especially non-governmental bodies, charities, and small enterprises - often have fundamental and pressing questions, but lack the manpower and academic expertise to answer them effectively. They might also be on the lookout for talented potential employees. This study examines ways in which these diverse requirements can be met simultaneously by creating three-way projects that provide excellent academic and real-world outcomes for all involved. It studied a range of innovative projects across natural sciences (biology, ecology, physical geography and social sciences (human geography, sociology, criminology, and community engagement) to establish how to best harness the potential of this powerful approach. Focal collaborations included: (1) development of practitioner-linked modules; (2) frameworks where students collected/analyzed data for link organizations in research methods modules; (3) placement-based internships and dissertations; and (4) immersive fieldwork projects in novel locations to allow students engage first-hand with contemporary issues as diverse as rhino poaching in South Africa, segregation in Ireland, and gun crime in Florida. Although there was no ‘magic formula’ for success, the approach was found to work best when small projects were developed that were achievable in a short time-frame, both to tie into modular curricula and meet the immediacy expectations of many link organizations. Bigger projects were found to work well in some cases, especially when they were essentially a series of linked smaller projects, either running concurrently or successively with each building on previous work. Opportunities were maximized when there were tangible benefits to the link organization as this generally increased organization investment in the project and motivated students too. The importance of finding the right approach for a given project was found to be key: it was vital to ensure that something that could work effectively as an independent research project for one student, for example, was not shoehorned into being a project for multiple students within a taught module. In general, students were very positive about collaboration projects. They identified benefits to confidence, time-keeping and communication, as well as conveying their enthusiasm when their work was of benefit to the wider community. Several students have gone on to do further work with the link organization in a voluntary capacity or as paid staff, or used the experiences to help them break into the ever-more competitive job market in other ways. Although this approach involves a substantial time investment, especially from academics, the benefits can be profound. The approach has strong potential to engage students, help retention, improve student satisfaction, and teach new skills; keep the knowledge of academics fresh and current; and provide valuable tangible benefits for link organizations: a real triple win.Keywords: authentic learning, curriculum development, effective education, employability, higher education, innovative pedagogy, link organizations, student experience
Procedia PDF Downloads 21910689 Computational Intelligence and Machine Learning for Urban Drainage Infrastructure Asset Management
Authors: Thewodros K. Geberemariam
Abstract:
The rapid physical expansion of urbanization coupled with aging infrastructure presents a unique decision and management challenges for many big city municipalities. Cities must therefore upgrade and maintain the existing aging urban drainage infrastructure systems to keep up with the demands. Given the overall contribution of assets to municipal revenue and the importance of infrastructure to the success of a livable city, many municipalities are currently looking for a robust and smart urban drainage infrastructure asset management solution that combines management, financial, engineering and technical practices. This robust decision-making shall rely on sound, complete, current and relevant data that enables asset valuation, impairment testing, lifecycle modeling, and forecasting across the multiple asset portfolios. On this paper, predictive computational intelligence (CI) and multi-class machine learning (ML) coupled with online, offline, and historical record data that are collected from an array of multi-parameter sensors are used for the extraction of different operational and non-conforming patterns hidden in structured and unstructured data to determine and produce actionable insight on the current and future states of the network. This paper aims to improve the strategic decision-making process by identifying all possible alternatives; evaluate the risk of each alternative, and choose the alternative most likely to attain the required goal in a cost-effective manner using historical and near real-time urban drainage infrastructure data for urban drainage infrastructures assets that have previously not benefited from computational intelligence and machine learning advancements.Keywords: computational intelligence, machine learning, urban drainage infrastructure, machine learning, classification, prediction, asset management space
Procedia PDF Downloads 15210688 Factors Affecting and Impeding Teachers’ Use of Learning Management System in Kingdom of Saudi Arabia Universities
Authors: Omran Alharbi, Victor Lally
Abstract:
The advantages of the adoption of new technology such as learning management systems (LMSs) in education and teaching methods have been widely recognised. This has led a large number of universities to integrate this type of technology into their daily learning and teaching activities in order to facilitate the education process for both learners and teachers. On the other hand, in some developing countries such as Saudi Arabia, educators have seldom used this technology. As a result, this study was conducted in order to investigate the factors that impede teachers’ use of technology (LMSs) in their teaching in Saudi Arabian institutions. This study used a qualitative approach. Eight participants were invited to take part in this study, and they were asked to give their opinions about the most significant factors that prevented them from integrating technology into their daily activities. The results revealed that a lack of LMS skills, interest in and knowledge about the LMS among teachers were the most significant factors impeding them from using technology in their lessons. The participants suggested that incentive training should be provided to reduce these challenges.Keywords: LMS, factors, KSA, teachers
Procedia PDF Downloads 12910687 Sustainability Assessment of Food Delivery with Last-Mile Delivery Droids, A Case Study at the European Commission's JRC Ispra Site
Authors: Ada Garus
Abstract:
This paper presents the outcomes of the sustainability assessment of food delivery with a last-mile delivery service introduced in a real-world case study. The methodology used in the sustainability assessment integrates multi-criteria decision-making analysis, sustainability pillars, and scenario analysis to best reflect the conflicting needs of stakeholders involved in the last mile delivery system. The case study provides an application of the framework to the food delivery system of the Joint Research Centre of the European Commission where three alternative solutions were analyzed I) the existent state in which individuals frequent the local cantine or pick up their food, using their preferred mode of transport II) the hypothetical scenario in which individuals can only order their food using the delivery droid system III) a scenario in which the food delivery droid based system is introduced as a supplement to the current system. The environmental indices are calculated using a simulation study in which decision regarding the food delivery is predicted using a multinomial logit model. The vehicle dynamics model is used to predict the fuel consumption of the regular combustion engines vehicles used by the cantine goers and the electricity consumption of the droid. The sustainability assessment allows for the evaluation of the economic, environmental, and social aspects of food delivery, making it an apt input for policymakers. Moreover, the assessment is one of the first studies to investigate automated delivery droids, which could become a frequent addition to the urban landscape in the near future.Keywords: innovations in transportation technologies, behavioural change and mobility, urban freight logistics, innovative transportation systems
Procedia PDF Downloads 19310686 The Monitoring of Surface Water Bodies from Tisa Catchment Area, Maramureş County in 2014
Authors: Gabriela-Andreea Despescu, Mădălina Mavrodin, Gheorghe Lăzăroiu, S. Nacu, R. Băstinaş
Abstract:
The Monitoring of Surface Water Bodies (Rivers) from Tisa Catchment Area - Maramureş County in 2014. This study is focused on the monitoring and evaluation of river’s water bodies from Maramureş County, using the methodology associated with the EU Water Framework Directive 60/2000. Thus, in the first part are defined the theoretical terms of monitoring activities related to the water bodies’ quality and the specific features of those we can find in the studied area. There are presented the water bodies’ features, quality indicators and the monitoring frequencies for the rivers situated in the Tisa catchment area. The results have shown the actual ecological and chemical state of those water bodies, in relation with the standard values mentioned through the Water Framework Directive.Keywords: monitoring, surveillance, water bodies, quality
Procedia PDF Downloads 26410685 Assessment Literacy Levels of Mathematics Teachers to Implement Classroom Assessment in Ghanaian High Schools
Authors: Peter Akayuure
Abstract:
One key determinant of the quality of mathematics learning is the teacher’s ability to assess students adequately and effectively and make assessment an integral part of the instructional practices. If the mathematics teacher lacks the required literacy to perform classroom assessment roles, the true trajectory of learning success and attainment of curriculum expectations might be indeterminate. It is therefore important that educators and policymakers understand and seek ways to improve the literacy level of mathematics teachers to implement classroom assessments that would meet curriculum demands. This study employed a descriptive survey design to explore perceived levels of assessment literacy of mathematics teachers to implement classroom assessment with the school based assessment framework in Ghana. A 25-item classroom assessment inventory on teachers’ assessment scenarios was adopted, modified, and administered to a purposive sample of 48 mathematics teachers from eleven Senior High Schools. Seven other items were included to further collect data on their self-efficacy towards assessment literacy. Data were analyzed using descriptive and bivariate correlation statistics. The result shows that, on average, 48.6% of the mathematics teachers attained standard levels of assessment literacy. Specifically, 50.0% met standard one in choosing appropriate assessment methods, 68.3% reached standard two in developing appropriate assessment tasks, 36.6% reached standard three in administering, scoring, and interpreting assessment results, 58.3% reached standard four in making appropriate assessment decisions, 41.7% reached standard five in developing valid grading procedures, 45.8% reached standard six in communicating assessment results, and 36.2 % reached standard seven by identifying unethical, illegal and inappropriate use of assessment results. Participants rated their self-efficacy belief in performing assessments high, making the relationships between participants’ assessment literacy scores and self-efficacy scores weak and statistically insignificant. The study recommends that institutions training mathematics teachers or providing professional developments should accentuate assessment literacy development to ensure standard assessment practices and quality instruction in mathematics education at senior high schools.Keywords: assessment literacy, mathematics teacher, senior high schools, Ghana
Procedia PDF Downloads 13310684 Efficient Mercury Sorbent: Activated Carbon and Metal Organic Framework Hybrid
Authors: Yongseok Hong, Kurt Louis Solis
Abstract:
In the present study, a hybrid sorbent using the metal organic framework (MOF), UiO-66, and powdered activated carbon (pAC) is synthesized to remove cationic and anionic metals simultaneously. UiO-66 is an octahedron-shaped MOF with a Zr₆O₄(OH)₄ metal node and 1,4-benzene dicarboxylic acid (BDC) organic linker. Zr-based MOFs are attractive for trace element remediation in wastewaters, because Zr is relatively non-toxic as compared to other classes of MOF and, therefore, it will not cause secondary pollution. Most remediation studies with UiO-66 target anions such as fluoride, but trace element oxyanions such as arsenic, selenium, and antimony have also been investigated. There have also been studies involving mercury removal by UiO-66 derivatives, however these require post-synthetic modifications or have lower effective surface areas. Activated carbon is known for being a readily available, well-studied, effective adsorbent for metal contaminants. Solvothermal method was employed to prepare hybrid sorbent from UiO66 and activated carbon, which could be used to remove mercury and selenium simultaneously. The hybrid sorbent was characterized using FSEM-EDS, FT-IR, XRD, and TGA. The results showed that UiO66 and activated carbon are successfully composited. From BET studies, the hybrid sorbent has a SBET of 1051 m² g⁻¹. Adsorption studies were performed, where the hybrid showed maximum adsorption of 204.63 mg g⁻¹ and 168 mg g⁻¹ for Hg (II) and selenite, respectively, and follows the Langmuir model for both species. Kinetics studies have revealed that the Hg uptake of the hybrid is pseudo-2nd order and has rate constant of 5.6E-05 g mg⁻¹ min⁻¹ and the selenite uptake follows the simplified Elovich model with α = 2.99 mg g⁻¹ min⁻¹, β = 0.032 g mg⁻¹.Keywords: adsorption, flue gas wastewater, mercury, selenite, metal organic framework
Procedia PDF Downloads 17510683 Physical Activity and Academic Achievement: How Physical Activity Should Be Implemented to Enhance Mathematical Achievement and Mathematical Self-Concept
Authors: Laura C. Dapp, Claudia M. Roebers
Abstract:
Being physically active has many benefits for children and adolescents. It is crucial for various aspects of physical and mental health, the development of a healthy self-concept, and also positively influences academic performance and school achievement. In addressing the still incomplete understanding of the link between physical activity (PA) and academic achievement, the current study scrutinized the open issue of how PA has to be implemented to positively affect mathematical outcomes in N = 138 fourth graders. Therefore, the current study distinguished between structured PA (formal, organized, adult-led exercise and deliberate sports practice) and unstructured PA (non-formal, playful, peer-led physically active play and sports activities). Results indicated that especially structured PA has the potential to contribute to mathematical outcomes. Although children spent almost twice as much time engaging in unstructured PA as compared to structured PA, only structured PA was significantly related to mathematical achievement as well as to mathematical self-concept. Furthermore, the pending issue concerning the quantity of PA needed to enhance children’s mathematical achievement was addressed. As to that, results indicated that the amount of time spent in structured PA constitutes a critical factor in accounting for mathematical outcomes, since children engaging in PA for two hours or more a week were shown to be both the ones with the highest mathematical self-concept as well as those attaining the highest mathematical achievement scores. Finally, the present study investigated the indirect effect of PA on mathematical achievement by controlling for the mathematical self-concept as a mediating variable. The results of a maximum likelihood mediation analysis with a 2’000 resampling bootstrapping procedure for the 95% confidence intervals revealed a full mediation, indicating that PA improves mathematical self-concept, which, in turn, positively affects mathematical achievement. Thus, engaging in high amounts of structured PA constitutes an advantageous leisure activity for children and adolescents, not only to enhance their physical health but also to foster their self-concept in a way that is favorable and encouraging for promoting their academic achievement. Note: The content of this abstract is partially based on a paper published elswhere by the authors.Keywords: Academic Achievement, Mathematical Performance, Physical Activity, Self-Concept
Procedia PDF Downloads 11310682 A Study of EFL Learners with Different Goal Orientations in Response to Cognitive Diagnostic Reading Feedback
Authors: Yuxuan Tang
Abstract:
Cognitive diagnostic assessment has received much attention in second language education, and assessment for it can provide pedagogically useful feedback for language learners. However, there is a lack of research on how students interpret and use cognitive diagnostic feedback. Thus the present study aims to adopt a mixed-method approach mainly to explore the relationship between the goal-orientation and students' response to cognitive diagnostic feedback. Almost 200 Chinese undergraduates from two universities in Xi'an, China, will be invited to do a cognitive diagnostic reading test, and each student will receive specialized cognitive diagnostic feedback, comprising of students' reading attributes mastery level generated by applying a well-selected cognitive diagnostic model, students' perceived reading ability assessed by a self-assessing questionnaire and students’ level position in the whole class. And a goal-orientation questionnaire and a self-generated questionnaire on the perception of feedback will be given to students the moment they receive feedback. In addition, interviews of students will be conducted on their future plans to see whether they have awareness of carrying out studying plans. The study aims to find a new perspective towards how students use and interpret cognitive diagnostic feedback in terms of their different goal-orientation (self-based, task-based, and other-based goals) by applying the newest goal orientation model, which is an important construct of motivation in psychology, seldom researched under language learning area. And the study is expected to provide evidence on how diagnostic feedback promotes students' learning under the educational belief of assessment for learning. Practically speaking, according to the personalized diagnostic feedback, students can take remedial self-learning more purposefully, and teachers can target students' weaknesses to adjust teaching methods and carry out tailored teaching.Keywords: assessment for learning, cognitive diagnostic assessment, goal-orientation, personalized feedback
Procedia PDF Downloads 13310681 Framework for Performance Measure of Super Resolution Imaging
Authors: Varsha Hemant Patil, Swati A. Bhavsar, Abolee H. Patil
Abstract:
Image quality assessment plays an important role in image evaluation. This paper aims to present an investigation of classic techniques in use for image quality assessment, especially for super-resolution imaging. Researchers have contributed a lot towards the development of super-resolution imaging techniques. However, not much attention is paid to the development of metrics for testing the performance of developed techniques. In this paper, the study report of existing image quality measures is given. The paper classifies reviewed approaches according to functionality and suitability for super-resolution imaging. Probable modifications and improvements of these to suit super-resolution imaging are presented. The prime goal of the paper is to provide a comprehensive reference source for researchers working towards super-resolution imaging and suggest a better framework for measuring the performance of super-resolution imaging techniques.Keywords: interpolation, MSE, PSNR, SSIM, super resolution
Procedia PDF Downloads 9810680 Using Analytic Hierarchy Process as a Decision-Making Tool in Project Portfolio Management
Authors: Darius Danesh, Michael J. Ryan, Alireza Abbasi
Abstract:
Project Portfolio Management (PPM) is an essential component of an organisation’s strategic procedures, which requires attention of several factors to envisage a range of long-term outcomes to support strategic project portfolio decisions. To evaluate overall efficiency at the portfolio level, it is essential to identify the functionality of specific projects as well as to aggregate those findings in a mathematically meaningful manner that indicates the strategic significance of the associated projects at a number of levels of abstraction. PPM success is directly associated with the quality of decisions made and poor judgment increases portfolio costs. Hence, various Multi-Criteria Decision Making (MCDM) techniques have been designed and employed to support the decision-making functions. This paper reviews possible option to improve the decision-making outcomes in the organisational portfolio management processes using the Analytic Hierarchy Process (AHP) both from academic and practical perspectives and will examine the usability, certainty and quality of the technique. The results of the study will also provide insight into the technical risk associated with current decision-making model to underpin initiative tracking and strategic portfolio management.Keywords: analytic hierarchy process, decision support systems, multi-criteria decision making, project portfolio management
Procedia PDF Downloads 32110679 LIS Students’ Experience of Online Learning During Covid-19
Authors: Larasati Zuhro, Ida F Priyanto
Abstract:
Background: In March 2020, Indonesia started to be affected by Covid-19, and the number of victims increased slowly but surely until finally, the highest number of victims reached the highest—about 50,000 persons—for the daily cases in the middle of 2021. Like other institutions, schools and universities were suddenly closed in March 2020, and students had to change their ways of studying from face-to-face to online. This sudden changed affected students and faculty, including LIS students and faculty because they never experienced online classes in Indonesia due to the previous regulation that academic and school activities were all conducted onsite. For almost two years, school and academic activities were held online. This indeed has affected the way students learned and faculty delivered their courses. This raises the question of whether students are now ready for their new learning activities due to the covid-19 disruption. Objectives: this study was conducted to find out the impact of covid-19 pandemic on the LIS learning process and the effectiveness of online classes for students of LIS in Indonesia. Methodology: This was qualitative research conducted among LIS students at UIN Sunan Kalijaga, Yogyakarta, Indonesia. The population are students who were studying for masters’program during covid-19 pandemic. Results: The study showed that students were ready with the online classes because they are familiar with the technology. However, the Internet and technology infrastructure do not always support the process of learning. Students mention slow WIFI is one factor that causes them not being able to study optimally. They usually compensate themselves by visiting a public library, a café, or any other places to get WIFI network. Noises come from the people surrounding them while they are studying online.Some students could not concentrate well when attending the online classes as they studied at home, and their families sometimes talk to other family members, or they asked the students while they are attending the online classes. The noise also came when they studied in a café. Another issue is that the classes were held in shorter time than that in the face-to-face. Students said they still enjoyed the onsite classes instead of online, although they do not mind to have hybrid model of learning. Conclusion: Pandemic of Covid-19 has changed the way students of LIS in Indonesia learn. They have experienced a process of migrating the way they learn from onsite to online. They also adapted their learning with the condition of internet access speed, infrastructure, and the environment. They expect to have hybrid classes in the future.Keywords: learning, LIS students, pandemic, covid-19
Procedia PDF Downloads 12810678 Reducing the Imbalance Penalty Through Artificial Intelligence Methods Geothermal Production Forecasting: A Case Study for Turkey
Authors: Hayriye Anıl, Görkem Kar
Abstract:
In addition to being rich in renewable energy resources, Turkey is one of the countries that promise potential in geothermal energy production with its high installed power, cheapness, and sustainability. Increasing imbalance penalties become an economic burden for organizations since geothermal generation plants cannot maintain the balance of supply and demand due to the inadequacy of the production forecasts given in the day-ahead market. A better production forecast reduces the imbalance penalties of market participants and provides a better imbalance in the day ahead market. In this study, using machine learning, deep learning, and, time series methods, the total generation of the power plants belonging to Zorlu Natural Electricity Generation, which has a high installed capacity in terms of geothermal, was estimated for the first one and two weeks of March, then the imbalance penalties were calculated with these estimates and compared with the real values. These modeling operations were carried out on two datasets, the basic dataset and the dataset created by extracting new features from this dataset with the feature engineering method. According to the results, Support Vector Regression from traditional machine learning models outperformed other models and exhibited the best performance. In addition, the estimation results in the feature engineering dataset showed lower error rates than the basic dataset. It has been concluded that the estimated imbalance penalty calculated for the selected organization is lower than the actual imbalance penalty, optimum and profitable accounts.Keywords: machine learning, deep learning, time series models, feature engineering, geothermal energy production forecasting
Procedia PDF Downloads 11010677 Evaluation of the Impact of Functional Communication Training on Behaviors of Concern for Students at a Non-Maintained Special School
Authors: Kate Duggan
Abstract:
Introduction: Functional Communication Training (FCT) is an approach which aims to reduce behaviours of concern by teaching more effective ways to communicate. It requires identification of the function of the behaviour of concern, through gathering information from key stakeholders and completing observations of the individual’s behaviour including antecedents to, and consequences of the behaviour. Appropriate communicative alternatives are then identified and taught to the individual using systematic instruction techniques. Behaviours of concern demonstrated by individuals with autism spectrum conditions (ASC) frequently have a communication function. When contributing to positive behavior support plans, speech and language therapists and other professionals working with individuals with ASC need to identify alternative communicative behaviours which are equally reinforcing as the existing behaviours of concern. Successful implementation of FCT is dependent on an effective ‘response match’. The new way of communicating must be equally as effective as the behaviour previously used and require the same amount or less effort from the individual. It must also be understood by the communication partners the individual encounters and be appropriate to their communicative contexts. Method: Four case studies within a non-maintained special school environment were described and analysed. A response match framework was used to identify the effectiveness of functional communication training delivered by the student’s speech and language therapist, teacher and learning support assistants. The success of systematic instruction techniques used to develop new communicative behaviours was evaluated using the CODES framework. Findings: Functional communication training can be used as part of a positive behaviour support approach for students within this setting. All case studies reviewed demonstrated ‘response success’, in that the desired response was gained from the new communicative behaviour. Barriers to the successful embedding of new communicative behaviours were encountered. In some instances, the new communicative behaviour could not be consistently understood across all communication partners which reduced ‘response recognisability’. There was also evidence of increased physical or cognitive difficulty in employing the new communicative behaviour which reduced the ‘response effectivity’. Successful use of ‘thinning schedules of reinforcement’, taught students to tolerate a delay to reinforcement once the new communication behaviour was learned.Keywords: augmentative and alternative communication, autism spectrum conditions, behaviours of concern, functional communication training
Procedia PDF Downloads 11710676 Effectiveness of Prehabilitation on Improving Emotional and Clinical Recovery of Patients Undergoing Open Heart Surgeries
Authors: Fatma Ahmed, Heba Mostafa, Bassem Ramdan, Azza El-Soussi
Abstract:
Background: World Health Organization stated that by 2020 cardiac disease will be the number one cause of death worldwide and estimates that 25 million people per year will suffer from heart disease. Cardiac surgery is considered an effective treatment for severe forms of cardiovascular diseases that cannot be treated by medical treatment or cardiac interventions. In spite of the benefits of cardiac surgery, it is considered a major stressful experience for patients who are candidate for surgery. Prehabilitation can decrease incidences of postoperative complications as it prepares patients for surgical stress through enhancing their defenses to meet the demands of surgery. When patients anticipate the postoperative sequence of events, they will prepare themselves to act certain behaviors, identify their roles and actively participate in their own recovery, therefore, anxiety levels are decreased and functional capacity is enhanced. Prehabilitation programs can comprise interventions that include physical exercise, psychological prehabilitation, nutritional optimization and risk factor modification. Physical exercises are associated with improvements in the functioning of the various physiological systems, reflected in increased functional capacity, improved cardiac and respiratory functions and make patients fit for surgical intervention. Prehabilitation programs should also prepare patients psychologically in order to cope with stress, anxiety and depression associated with postoperative pain, fatigue, limited ability to perform the usual activities of daily living through acting in a healthy manner. Notwithstanding the benefits of psychological preparations, there are limited studies which investigated the effect of psychological prehabilitation to confirm its effect on psychological, quality of life and physiological outcomes of patients who had undergone cardiac surgery. Aim of the study: The study aims to determine the effect of prehabilitation interventions on outcomes of patients undergoing cardiac surgeries. Methods: Quasi experimental study design was used to conduct this study. Sixty eligible and consenting patients were recruited and divided into two groups: control and intervention group (30 participants in each). One tool namely emotional, physiological, clinical, cognitive and functional capacity outcomes of prehabilitation intervention assessment tool was utilized to collect the data of this study. Results: Data analysis showed significant improvement in patients' emotional state, physiological and clinical outcomes (P < 0.000) with the use of prehabilitation interventions. Conclusions: Cardiac prehabilitation in the form of providing information about surgery, circulation exercise, deep breathing exercise, incentive spirometer training and nutritional education implemented daily by patients scheduled for elective open heart surgery one week before surgery have been shown to improve patients' emotional state, physiological and clinical outcomes.Keywords: emotional recovery, clinical recovery, coronary artery bypass grafting patients, prehabilitation
Procedia PDF Downloads 20610675 Optimal Portfolio of Multi-service Provision based on Stochastic Model Predictive Control
Authors: Yifu Ding, Vijay Avinash, Malcolm McCulloch
Abstract:
As the proliferation of decentralized energy systems, the UK power system allows small-scale entities such as microgrids (MGs) to tender multiple energy services including energy arbitrage and frequency responses (FRs). However, its operation requires the balance between the uncertain renewable generations and loads in real-time and has to fulfill their provision requirements of contract services continuously during the time window agreed, otherwise it will be penalized for the under-delivered provision. To hedge against risks due to uncertainties and maximize the economic benefits, we propose a stochastic model predictive control (SMPC) framework to optimize its operation for the multi-service provision. Distinguished from previous works, we include a detailed economic-degradation model of the lithium-ion battery to quantify the costs of different service provisions, as well as accurately describe the changing dynamics of the battery. Considering a branch of load and generation scenarios and the battery aging, we formulate a risk-averse cost function using conditional value at risk (CVaR). It aims to achieve the maximum expected net revenue and avoids severe losses. The framework will be performed on a case study of a PV-battery grid-tied microgrid in the UK with real-life data. To highlight its performance, the framework will be compared with the case without the degradation model and the deterministic formulation.Keywords: model predictive control (MPC), battery degradation, frequency response, microgrids
Procedia PDF Downloads 12410674 Mobile Agents-Based Framework for Dynamic Resource Allocation in Cloud Computing
Authors: Safia Rabaaoui, Héla Hachicha, Ezzeddine Zagrouba
Abstract:
Nowadays, cloud computing is becoming the more popular technology to various companies and consumers, which benefit from its increased efficiency, cost optimization, data security, unlimited storage capacity, etc. One of the biggest challenges of cloud computing is resource allocation. Its efficiency directly influences the performance of the whole cloud environment. Finding an effective method to address these critical issues and increase cloud performance was necessary. This paper proposes a mobile agents-based framework for dynamic resource allocation in cloud computing to minimize both the cost of using virtual machines and the makespan. Furthermore, its impact on the best response time and power consumption has been studied. The simulation showed that our method gave better results than here.Keywords: cloud computing, multi-agent system, mobile agent, dynamic resource allocation, cost, makespan
Procedia PDF Downloads 10410673 SNR Classification Using Multiple CNNs
Authors: Thinh Ngo, Paul Rad, Brian Kelley
Abstract:
Noise estimation is essential in today wireless systems for power control, adaptive modulation, interference suppression and quality of service. Deep learning (DL) has already been applied in the physical layer for modulation and signal classifications. Unacceptably low accuracy of less than 50% is found to undermine traditional application of DL classification for SNR prediction. In this paper, we use divide-and-conquer algorithm and classifier fusion method to simplify SNR classification and therefore enhances DL learning and prediction. Specifically, multiple CNNs are used for classification rather than a single CNN. Each CNN performs a binary classification of a single SNR with two labels: less than, greater than or equal. Together, multiple CNNs are combined to effectively classify over a range of SNR values from −20 ≤ SNR ≤ 32 dB.We use pre-trained CNNs to predict SNR over a wide range of joint channel parameters including multiple Doppler shifts (0, 60, 120 Hz), power-delay profiles, and signal-modulation types (QPSK,16QAM,64-QAM). The approach achieves individual SNR prediction accuracy of 92%, composite accuracy of 70% and prediction convergence one order of magnitude faster than that of traditional estimation.Keywords: classification, CNN, deep learning, prediction, SNR
Procedia PDF Downloads 134