Search results for: chemical learning
8274 A Case Study on the Development and Application of Media Literacy Education Program Based on Circular Learning
Authors: Kim Hyekyoung, Au Yunkyung
Abstract:
As media plays an increasingly important role in our lives, the age at which media usage begins is getting younger worldwide. Particularly, young children are exposed to media at an early age, making early childhood media literacy education an essential task. However, most existing early childhood media literacy education programs focus solely on teaching children how to use media, and practical implementation and application are challenging. Therefore, this study aims to develop a play-based early childhood media literacy education program utilizing topic-based media content and explore the potential application and impact of this program on young children's media literacy learning. Based on theoretical and literature review on media literacy education, analysis of existing educational programs, and a survey on the current status and teacher perceptions of media literacy education for preschool children, this study developed a media literacy education program for preschool children, considering the components of media literacy (understanding media characteristics, self-regulation, self-expression, critical understanding, ethical norms, and social communication). To verify the effectiveness of the program, 20 preschool children aged 5 from C City M Kindergarten were chosen as participants, and the program was implemented from March 28th to July 4th, 2022, once a week for a total of 7 sessions. The program was developed based on Gallenstain's (2003) iterative learning model (participation-exploration-explanation-extension-evaluation). To explore the quantitative changes before and after the program, a repeated measures analysis of variance was conducted, and qualitative analysis was employed to examine the observed process changes. It was found that after the application of the education program, media literacy levels such as understanding media characteristics, self-regulation, self-expression, critical understanding, ethical norms, and social communication significantly improved. The recursive learning-based early childhood media literacy education program developed in this study can be effectively applied to young children's media literacy education and help enhance their media literacy levels. In terms of observed process changes, it was confirmed that children learned about various topics, expressed their thoughts, and improved their ability to communicate with others using media content. These findings emphasize the importance of developing and implementing media literacy education programs and can contribute to empowering young children to safely and effectively utilize media in their media environment. The results of this study, exploring the potential application and impact of the recursive learning-based early childhood media literacy education program on young children's media literacy learning, demonstrated positive changes in young children's media literacy levels. These results go beyond teaching children how to use media and can help foster their ability to safely and effectively utilize media in their media environment. Additionally, to enhance young children's media literacy levels and create a safe media environment, diverse content and methodologies are needed, and the continuous development and evaluation of education programs should be conducted.Keywords: young children, media literacy, recursive learning, education program
Procedia PDF Downloads 778273 Physicochemical and Bacteriological Quality Characterization of Some Selected Wells in Ado-Ekiti, Nigeria
Authors: Olu Ale, Olugbenga Aribisala, Sanmi Awopetu
Abstract:
Groundwater (Wells) is obtained from several well-defined and different water-bearing geological layers or strata. The physical, chemical and bacteriological quality of the water contributed from each of these water-bearing formations and resultant effects of indiscriminate wastes disposal will be dependent on the dissolution of material within the formation. Therefore, water withdrawn from any ground water source will be a composite of these individual aquifers. The water quality was determined by actual sampling and analysis of the completed wells. This study attempted to examine the physicochemical and bacteriological water quality of twenty five selected wells comprising twenty boreholes (deep wells) and five hand dug wells (shallow wells). The twenty five wells cut across the entire Ado Ekiti Metropolitan area. The water samples collected using standard method was promptly taken to water laboratory at the Federal Polytechnic Ado-Ekiti for analysis, physical, chemical and bacteriological tests were carried out. Quality characteristics tested were found to meet WHO’s standard and generally acceptable, making it potable for drinking in most situations, thus encouraging the use of groundwater. Possible improvement strategies to groundwater exploitation were highlighted while remedies to poor quality water were suggested.Keywords: bacteriological, physicochemical, quality, wells, Ado Ekiti
Procedia PDF Downloads 3688272 Assessment of DNA Sequence Encoding Techniques for Machine Learning Algorithms Using a Universal Bacterial Marker
Authors: Diego Santibañez Oyarce, Fernanda Bravo Cornejo, Camilo Cerda Sarabia, Belén Díaz Díaz, Esteban Gómez Terán, Hugo Osses Prado, Raúl Caulier-Cisterna, Jorge Vergara-Quezada, Ana Moya-Beltrán
Abstract:
The advent of high-throughput sequencing technologies has revolutionized genomics, generating vast amounts of genetic data that challenge traditional bioinformatics methods. Machine learning addresses these challenges by leveraging computational power to identify patterns and extract information from large datasets. However, biological sequence data, being symbolic and non-numeric, must be converted into numerical formats for machine learning algorithms to process effectively. So far, some encoding methods, such as one-hot encoding or k-mers, have been explored. This work proposes additional approaches for encoding DNA sequences in order to compare them with existing techniques and determine if they can provide improvements or if current methods offer superior results. Data from the 16S rRNA gene, a universal marker, was used to analyze eight bacterial groups that are significant in the pulmonary environment and have clinical implications. The bacterial genes included in this analysis are Prevotella, Abiotrophia, Acidovorax, Streptococcus, Neisseria, Veillonella, Mycobacterium, and Megasphaera. These data were downloaded from the NCBI database in Genbank file format, followed by a syntactic analysis to selectively extract relevant information from each file. For data encoding, a sequence normalization process was carried out as the first step. From approximately 22,000 initial data points, a subset was generated for testing purposes. Specifically, 55 sequences from each bacterial group met the length criteria, resulting in an initial sample of approximately 440 sequences. The sequences were encoded using different methods, including one-hot encoding, k-mers, Fourier transform, and Wavelet transform. Various machine learning algorithms, such as support vector machines, random forests, and neural networks, were trained to evaluate these encoding methods. The performance of these models was assessed using multiple metrics, including the confusion matrix, ROC curve, and F1 Score, providing a comprehensive evaluation of their classification capabilities. The results show that accuracies between encoding methods vary by up to approximately 15%, with the Fourier transform obtaining the best results for the evaluated machine learning algorithms. These findings, supported by the detailed analysis using the confusion matrix, ROC curve, and F1 Score, provide valuable insights into the effectiveness of different encoding methods and machine learning algorithms for genomic data analysis, potentially improving the accuracy and efficiency of bacterial classification and related genomic studies.Keywords: DNA encoding, machine learning, Fourier transform, Fourier transformation
Procedia PDF Downloads 248271 Vitamin C Enhances Growth and Productivity of Sunflower Plants Grown under Newly-Reclaimed Saline Soil Conditions
Authors: Saad M. Howladar, Mostafa M. Rady, Wael M. Semida
Abstract:
A field experiment was conducted during the two successive seasons of 2012 and 2013 in the Experimental Farm (newly-reclaimed saline soil; EC = 7.8 dS m-1), Faculty of Agriculture, Fayoum University, Fayoum, Egypt to investigate the effect of vitamin C foliar application at the rates of 1, 2, 3 and 4 mM on the possibility of improving growth, seed and oil yields, and some chemical constituents of Helianthus annuus L. plants under the adverse conditions of the selected soil. Significant positive influences of all vitamin C treatments were observed on growth, seed and oil yields and some chemical constituents in both seasons. Compared to unsprayed plants (control), spraying plants with various rates of vitamin C significantly increased vegetative growth traits (i.e. plant height, No. of leaves plant-1, leaf area leaf-1, total leaves area plant-1, and dry weights of leaves and shoot plant-1) and seed and oil yields and their components (i.e. head diameter, seed weight head-1, 100-seed weight, seed yield feddan-1 and oil yield feddan-1). In addition, the concentrations of chlorophyll a, chlorophyll b, total chlorophylls, total carotenoids and total phenols in fresh leaves, and total carbohydrates, total soluble sugars, free proline and some nutrients (i.e. N, P, K, Fe, Mn, and Zn) in dry leaves were also increased significantly with all vitamin C applications. Vitamin C treatment at the rate of 3 mM was generated the best results. These results are important as the potential of vitamin C to alleviate the harmful effects of salt stress offer an opportunity to increase the resistance of sunflower plants to grow under saline conditions of the newly-reclaimed soils.Keywords: sunflower, Helianthus annuus L., ascorbic acid, salinity, growth, seed yield, oil content, chemical composition
Procedia PDF Downloads 4578270 Teachers’ Stress as a Moderator of the Impact of POMPedaSens on Preschool Children’s Social-Emotional Learning
Authors: Maryam Zarra-Nezhad, Ali Moazami-Goodarzi, Joona Muotka, Nina Sajaniemi
Abstract:
This study examines the extent to which the impact of a universal intervention program, i.e., POMPedaSens, on children’s early social-emotional learning (SEL) is different depending on early childhood education (ECE) teaches stress at work. The POMPedaSens program aims to promote children’s (5–6-year-olds) SEL by supporting ECE teachers’ engagement and emotional availability. The intervention effectiveness has been monitored using an 8-month randomized controlled trial design with an intervention (IG; 26 teachers and 195 children) and a waiting control group (CG; 36 teachers and 198 children) that provided the data before and after the program implementation. The ECE teachers in the IG are trained to implement the intervention program in their early childhood education and care groups. Latent change score analysis suggests that the program increases children’s prosocial behavior in the IG when teachers show a low level of stress. No significant results were found for the IG regarding a change in antisocial behavior. However, when teachers showed a high level of stress, an increase in prosocial behavior and a decrease in antisocial behavior were only found for children in the CG. The results suggest a promising application of the POMPedaSens program for promoting prosocial behavior in early childhood when teachers have low stress. The intervention will likely need a longer time to display the moderating effect of ECE teachers’ well-being on children’s antisocial behavior change.Keywords: early childhood, social-emotional learning, universal intervention program, professional development, teachers' stress
Procedia PDF Downloads 898269 Machine Learning for Exoplanetary Habitability Assessment
Authors: King Kumire, Amos Kubeka
Abstract:
The synergy of machine learning and astronomical technology advancement is giving rise to the new space age, which is pronounced by better habitability assessments. To initiate this discussion, it should be recorded for definition purposes that the symbiotic relationship between astronomy and improved computing has been code-named the Cis-Astro gateway concept. The cosmological fate of this phrase has been unashamedly plagiarized from the cis-lunar gateway template and its associated LaGrange points which act as an orbital bridge to the moon from our planet Earth. However, for this study, the scientific audience is invited to bridge toward the discovery of new habitable planets. It is imperative to state that cosmic probes of this magnitude can be utilized as the starting nodes of the astrobiological search for galactic life. This research can also assist by acting as the navigation system for future space telescope launches through the delimitation of target exoplanets. The findings and the associated platforms can be harnessed as building blocks for the modeling of climate change on planet earth. The notion that if the human genus exhausts the resources of the planet earth or there is a bug of some sort that makes the earth inhabitable for humans explains the need to find an alternative planet to inhabit. The scientific community, through interdisciplinary discussions of the International Astronautical Federation so far has the common position that engineers can reduce space mission costs by constructing a stable cis-lunar orbit infrastructure for refilling and carrying out other associated in-orbit servicing activities. Similarly, the Cis-Astro gateway can be envisaged as a budget optimization technique that models extra-solar bodies and can facilitate the scoping of future mission rendezvous. It should be registered as well that this broad and voluminous catalog of exoplanets shall be narrowed along the way using machine learning filters. The gist of this topic revolves around the indirect economic rationale of establishing a habitability scoping platform.Keywords: machine-learning, habitability, exoplanets, supercomputing
Procedia PDF Downloads 908268 Machine Learning for Exoplanetary Habitability Assessment
Authors: King Kumire, Amos Kubeka
Abstract:
The synergy of machine learning and astronomical technology advancement is giving rise to the new space age, which is pronounced by better habitability assessments. To initiate this discussion, it should be recorded for definition purposes that the symbiotic relationship between astronomy and improved computing has been code-named the Cis-Astro gateway concept. The cosmological fate of this phrase has been unashamedly plagiarized from the cis-lunar gateway template and its associated LaGrange points which act as an orbital bridge to the moon from our planet Earth. However, for this study, the scientific audience is invited to bridge toward the discovery of new habitable planets. It is imperative to state that cosmic probes of this magnitude can be utilized as the starting nodes of the astrobiological search for galactic life. This research can also assist by acting as the navigation system for future space telescope launches through the delimitation of target exoplanets. The findings and the associated platforms can be harnessed as building blocks for the modeling of climate change on planet earth. The notion that if the human genus exhausts the resources of the planet earth or there is a bug of some sort that makes the earth inhabitable for humans explains the need to find an alternative planet to inhabit. The scientific community, through interdisciplinary discussions of the International Astronautical Federation so far, has the common position that engineers can reduce space mission costs by constructing a stable cis-lunar orbit infrastructure for refilling and carrying out other associated in-orbit servicing activities. Similarly, the Cis-Astro gateway can be envisaged as a budget optimization technique that models extra-solar bodies and can facilitate the scoping of future mission rendezvous. It should be registered as well that this broad and voluminous catalog of exoplanets shall be narrowed along the way using machine learning filters. The gist of this topic revolves around the indirect economic rationale of establishing a habitability scoping platform.Keywords: exoplanets, habitability, machine-learning, supercomputing
Procedia PDF Downloads 1188267 Transgressing Boundaries for Encouraging Critical Thinking: Reflections on the Integration of Active Pedagogy and Transnational Exchange into Social Work Education
Authors: Rosemary R. Carlton, Roxane Caron
Abstract:
Almost three decades ago, bell hooks (1994) identified the classroom as “the most radical space of possibility in the academy”. A feminist scholar, educator, and activist, hooks urged educators to transgress the boundaries of what might be customary or considered acceptable in teaching, thus encouraging the pursuit of new ways of knowing and different strategies for sharing knowledge. This paper reflects upon a particular response to hooks’ still relevant call for transgression in teaching. Specifically, this paper reports on the design, implementation, and preliminary analysis of a social work course integrating active pedagogy and transnational exchange to encourage students’ critical thinking and autonomous learning in their development as social workers in a global context. The bachelor’s level course, Pratiques spécifiques: Projet international, was developed collaboratively across three francophone institutions of higher learning in Belgium, Canada, and France: the Haute École de Namur-Liège-Luxembourg (Hénallux); the Université de Montréal; and, the Institut d’enseignement supérieur et professionnel, l’IRTS Paris Île-de-France. The driving aims of the course are to promote autonomous learning and critical thinking through a lens of transnational understandings of social problems -competencies indispensable to students’ development as social workers. The course is offered to two paired cohorts, one addressing the subject of “migrations” (Canada/France) and the other the subject of “sexual exploitation” (Canada/Belgium). Through the adaptation of a critical pedagogy of problem-based learning, students are called upon to actively engage in acquiring and applying knowledge to respond to “real life” social issues relating to migration or sexual exploitation. At the conclusion of the course, each cohort of students is brought together for a week-long intensive period of transnational exchange either at the Université de Montréal in Canada or at Hénallux in Belgium. Extending the bounds of the classroom across international borders allows students novel opportunities to deepen and expand their understandings of issues relating to predefined social issues and to critically examine associated social work practices. The paper opens with a presentation of the social work course. Specifically, the authors will outline their adaptation of a pedagogy of problem-based learning integrating transnational exchange in the design and implementation of the course. Returning to hooks’ notion of transgression in teaching, the paper offers a preliminary analysis of how and with what effect the course provides opportunities to transgress hierarchical student-teacher relationships; transgress conventional modes of learning to explore diverse sources of knowledge and transgress the walls of the university to engage with and learn from local and global partners. The paper concludes with a consideration of the potential influence of such transgressions in teaching for students’ development of critical thinking in their practice of social work in global context.Keywords: active learning, critical pedagogy, social work intervention, transnational learning
Procedia PDF Downloads 1658266 The Impact of an Interactive E-Book on Mathematics Reading and Spatial Ability in Middle School Students
Authors: Abebayehu Yohannes, Hsiu-Ling Chen, Chiu-Chen Chang
Abstract:
Mathematics reading and spatial ability are important learning components in mathematics education. However, many students struggle to understand real-world problems and lack the spatial ability to form internal imagery. To cope with this problem, in this study, an interactive e-book was developed. The result indicated that both groups had a significant increase in the mathematics reading ability test, and a significant difference was observed in the overall mathematics reading score in favor of the experimental group. In addition, the interactive e-book learning mode had significant impacts on students’ spatial ability. It was also found that the richness of content with visual and interactive elements provided in the interactive e-book enhanced students’ satisfaction with the teaching material.Keywords: interactive e-books, spatial ability, mathematics reading, satisfaction, three view
Procedia PDF Downloads 1938265 Safety Validation of Black-Box Autonomous Systems: A Multi-Fidelity Reinforcement Learning Approach
Authors: Jared Beard, Ali Baheri
Abstract:
As autonomous systems become more prominent in society, ensuring their safe application becomes increasingly important. This is clearly demonstrated with autonomous cars traveling through a crowded city or robots traversing a warehouse with heavy equipment. Human environments can be complex, having high dimensional state and action spaces. This gives rise to two problems. One being that analytic solutions may not be possible. The other is that in simulation based approaches, searching the entirety of the problem space could be computationally intractable, ruling out formal methods. To overcome this, approximate solutions may seek to find failures or estimate their likelihood of occurrence. One such approach is adaptive stress testing (AST) which uses reinforcement learning to induce failures in the system. The premise of which is that a learned model can be used to help find new failure scenarios, making better use of simulations. In spite of these failures AST fails to find particularly sparse failures and can be inclined to find similar solutions to those found previously. To help overcome this, multi-fidelity learning can be used to alleviate this overuse of information. That is, information in lower fidelity can simulations can be used to build up samples less expensively, and more effectively cover the solution space to find a broader set of failures. Recent work in multi-fidelity learning has passed information bidirectionally using “knows what it knows” (KWIK) reinforcement learners to minimize the number of samples in high fidelity simulators (thereby reducing computation time and load). The contribution of this work, then, is development of the bidirectional multi-fidelity AST framework. Such an algorithm, uses multi-fidelity KWIK learners in an adversarial context to find failure modes. Thus far, a KWIK learner has been used to train an adversary in a grid world to prevent an agent from reaching its goal; thus demonstrating the utility of KWIK learners in an AST framework. The next step is implementation of the bidirectional multi-fidelity AST framework described. Testing will be conducted in a grid world containing an agent attempting to reach a goal position and adversary tasked with intercepting the agent as demonstrated previously. Fidelities will be modified by adjusting the size of a time-step, with higher-fidelity effectively allowing for more responsive closed loop feedback. Results will compare the single KWIK AST learner with the multi-fidelity algorithm with respect to number of samples, distinct failure modes found, and relative effect of learning after a number of trials.Keywords: multi-fidelity reinforcement learning, multi-fidelity simulation, safety validation, falsification
Procedia PDF Downloads 1578264 Family Income and Parental Behavior: Maternal Personality as a Moderator
Authors: Robert H. Bradley, Robert F. Corwyn
Abstract:
There is abundant research showing that socio-economic status is implicated in parenting. However, additional factors such as family context, parent personality, parenting history and child behavior also help determine how parents enact the role of caregiver. Each of these factors not only helps determine how a parent will act in a given situation, but each can serve to moderate the influence of the other factors. Personality has long been studied as a factor that influences parental behavior, but it has almost never been considered as a moderator of family contextual factors. For this study, relations between three maternal personality characteristics (agreeableness, extraversion, neuroticism) and four aspects of parenting (harshness, sensitivity, stimulation, learning materials) were examined when children were 6 months, 36 months, and 54 months old and again at 5th grade. Relations between these three aspects of personality and the overall home environment were also examined. A key concern was whether maternal personality characteristics moderated relations between household income and the four aspects of parenting and between household income and the overall home environment. The data for this study were taken from the NICHD Study of Early Child Care and Youth Development (NICHD SECCYD). The total sample consisted of 1364 families living in ten different sites in the United States. However, the samples analyzed included only those with complete data on all four parenting outcomes (i.e., sensitivity, harshness, stimulation, and provision of learning materials), income, maternal education and all three measures of personality (i.e., agreeableness, neuroticism, extraversion) at each age examined. Results from hierarchical regression analysis showed that mothers high in agreeableness were more likely to demonstrate sensitivity and stimulation as well as provide more learning materials to their children but were less likely to manifest harshness. Maternal agreeableness also consistently moderated the effects of low income on parental behavior. Mothers high in extraversion were more likely to provide stimulation and learning materials, with extraversion serving as a moderator of low income on both. By contrast, mothers high in neuroticism were less likely to demonstrate positive aspects of parenting and more likely to manifest negative aspects (e.g., harshness). Neuroticism also served to moderate the influence of low income on parenting, especially for stimulation and learning materials. The most consistent effects of parent personality were on the overall home environment, with significant main and interaction effects observed in 11 of the 12 models tested. These findings suggest that it may behoove professional who work with parents living in adverse circumstances to consider parental personality in helping to better target prevention or intervention efforts aimed at supporting parental efforts to act in ways that benefit children.Keywords: home environment, household income, learning materials, personality, sensitivity, stimulation
Procedia PDF Downloads 2118263 A Comparative Performance of Polyaspartic Acid and Sodium Polyacrylate on Silicate Scale Inhibition
Authors: Ismail Bin Mohd Saaid, Abubakar Abubakar Umar
Abstract:
Despite the successes recorded by Alkaline/Surfactant/Polymer (ASP) flooding as an effective chemical EOR technique, the combination CEOR is not unassociated with stern glitches, one of which is the scaling of downhole equipment. One of the major issues inside the oil industry is how to control scale formation, regardless of whether it is in the wellhead equipment, down-hole pipelines or even the actual field formation. The best approach to handle the challenge associated with oilfield scale formation is the application of scale inhibitors to avert the scale formation. Chemical inhibitors have been employed in doing such. But due to environmental regulations, the industry have focused on using green scale inhibitors to mitigate the formation of scales. This paper compares the scale inhibition performance of Polyaspartic acid and sodium polyacrylic acid, both commercial green scale inhibitors, in mitigating silicate scales formed during Alkaline/Surfactant/polymer flooding under static conditions. Both PASP and TH5000 are non-threshold inhibitors, therefore their efficiency was only seeing in delaying the deposition of the silicate scales.Keywords: alkaline/surfactant/polymer flooding (ASP), polyaspartic acid (PASP), sodium polyacrylate (SPA)
Procedia PDF Downloads 3518262 A Study of Variables Affecting on a Quality Assessment of Mathematics Subject in Thailand by Using Value Added Analysis on TIMSS 2011
Authors: Ruangdech Sirikit
Abstract:
The purposes of this research were to study the variables affecting the quality assessment of mathematics subject in Thailand by using value-added analysis on TIMSS 2011. The data used in this research is the secondary data from the 2011 Trends in International Mathematics and Science Study (TIMSS), collected from 6,124 students in 172 schools from Thailand, studying only mathematics subjects. The data were based on 14 assessment tests of knowledge in mathematics. There were 3 steps of data analysis: 1) To analyze descriptive statistics 2) To estimate competency of students from the assessment of their mathematics proficiency by using MULTILOG program; 3) analyze value added in the model of quality assessment using Value-Added Model with Hierarchical Linear Modeling (HLM) and 2 levels of analysis. The research results were as follows: 1. Student level variables that had significant effects on the competency of students at .01 levels were Parental care, Resources at home, Enjoyment of learning mathematics and Extrinsic motivation in learning mathematics. Variable that had significant effects on the competency of students at .05 levels were Education of parents and self-confident in learning mathematics. 2. School level variable that had significant effects on competency of students at .01 levels was Extra large school. Variable that had significant effects on competency of students at .05 levels was medium school.Keywords: quality assessment, value-added model, TIMSS, mathematics, Thailand
Procedia PDF Downloads 2838261 An Exploratory Study on the Integration of Neurodiverse University Students into Mainstream Learning and Their Performance: The Case of the Jones Learning Center
Authors: George Kassar, Phillip A. Cartwright
Abstract:
Based on data collected from The Jones Learning Center (JLC), University of the Ozarks, Arkansas, U.S., this study explores the impact of inclusive classroom practices on neuro-diverse college students’ and their consequent academic performance having participated in integrative therapies designed to support students who are intellectually capable of obtaining a college degree, but who require support for learning challenges owing to disabilities, AD/HD, or ASD. The purpose of this study is two-fold. The first objective is to explore the general process, special techniques, and practices of the (JLC) inclusive program. The second objective is to identify and analyze the effectiveness of the processes, techniques, and practices in supporting the academic performance of enrolled college students with learning disabilities following integration into mainstream university learning. Integrity, transparency, and confidentiality are vital in the research. All questions were shared in advance and confirmed by the concerned management at the JLC. While administering the questionnaire as well as conducted the interviews, the purpose of the study, its scope, aims, and objectives were clearly explained to all participants prior starting the questionnaire / interview. Confidentiality of all participants assured and guaranteed by using encrypted identification of individuals, thus limiting access to data to only the researcher, and storing data in a secure location. Respondents were also informed that their participation in this research is voluntary, and they may withdraw from it at any time prior to submission if they wish. Ethical consent was obtained from the participants before proceeding with videorecording of the interviews. This research uses a mixed methods approach. The research design involves collecting, analyzing, and “mixing” quantitative and qualitative methods and data to enable a research inquiry. The research process is organized based on a five-pillar approach. The first three pillars are focused on testing the first hypothesis (H1) directed toward determining the extent to the academic performance of JLC students did improve after involvement with comprehensive JLC special program. The other two pillars relate to the second hypothesis (H2), which is directed toward determining the extent to which collective and applied knowledge at JLC is distinctive from typical practices in the field. The data collected for research were obtained from three sources: 1) a set of secondary data in the form of Grade Point Average (GPA) received from the registrar, 2) a set of primary data collected throughout structured questionnaire administered to students and alumni at JLC, and 3) another set of primary data collected throughout interviews conducted with staff and educators at JLC. The significance of this study is two folds. First, it validates the effectiveness of the special program at JLC for college-level students who learn differently. Second, it identifies the distinctiveness of the mix of techniques, methods, and practices, including the special individualized and personalized one-on-one approach at JLC.Keywords: education, neuro-diverse students, program effectiveness, Jones learning center
Procedia PDF Downloads 748260 Develop a Conceptual Data Model of Geotechnical Risk Assessment in Underground Coal Mining Using a Cloud-Based Machine Learning Platform
Authors: Reza Mohammadzadeh
Abstract:
The major challenges in geotechnical engineering in underground spaces arise from uncertainties and different probabilities. The collection, collation, and collaboration of existing data to incorporate them in analysis and design for given prospect evaluation would be a reliable, practical problem solving method under uncertainty. Machine learning (ML) is a subfield of artificial intelligence in statistical science which applies different techniques (e.g., Regression, neural networks, support vector machines, decision trees, random forests, genetic programming, etc.) on data to automatically learn and improve from them without being explicitly programmed and make decisions and predictions. In this paper, a conceptual database schema of geotechnical risks in underground coal mining based on a cloud system architecture has been designed. A new approach of risk assessment using a three-dimensional risk matrix supported by the level of knowledge (LoK) has been proposed in this model. Subsequently, the model workflow methodology stages have been described. In order to train data and LoK models deployment, an ML platform has been implemented. IBM Watson Studio, as a leading data science tool and data-driven cloud integration ML platform, is employed in this study. As a Use case, a data set of geotechnical hazards and risk assessment in underground coal mining were prepared to demonstrate the performance of the model, and accordingly, the results have been outlined.Keywords: data model, geotechnical risks, machine learning, underground coal mining
Procedia PDF Downloads 2748259 Road Condition Monitoring Using Built-in Vehicle Technology Data, Drones, and Deep Learning
Authors: Judith Mwakalonge, Geophrey Mbatta, Saidi Siuhi, Gurcan Comert, Cuthbert Ruseruka
Abstract:
Transportation agencies worldwide continuously monitor their roads' conditions to minimize road maintenance costs and maintain public safety and rideability quality. Existing methods for carrying out road condition surveys involve manual observations of roads using standard survey forms done by qualified road condition surveyors or engineers either on foot or by vehicle. Automated road condition survey vehicles exist; however, they are very expensive since they require special vehicles equipped with sensors for data collection together with data processing and computing devices. The manual methods are expensive, time-consuming, infrequent, and can hardly provide real-time information for road conditions. This study contributes to this arena by utilizing built-in vehicle technologies, drones, and deep learning to automate road condition surveys while using low-cost technology. A single model is trained to capture flexible pavement distresses (Potholes, Rutting, Cracking, and raveling), thereby providing a more cost-effective and efficient road condition monitoring approach that can also provide real-time road conditions. Additionally, data fusion is employed to enhance the road condition assessment with data from vehicles and drones.Keywords: road conditions, built-in vehicle technology, deep learning, drones
Procedia PDF Downloads 1248258 Efficacy of Problem Solving Approach on the Achievement of Students in Mathematics
Authors: Akintunde O. Osibamowo, Abdulrasaq O. Olusanya
Abstract:
The present study was designed to examine the effect of problem-solving approach as a medium of instruction in teaching and learning of mathematics to improve the achievement of the student. One Hundred (100) students were randomly chosen from five (5) Junior Secondary School in Ijebu-Ode Local Government Area of Ogun State, Nigeria. The data was collected through Mathematics Achievement Test (MAT) on the two groups (experimental and control group). The study confirmed that there is a significant different in the achievement of students exposed to problem-solving approach than those not exposed. The result also indicated that male students, however, had a greater mean-score than the female with no significant difference in their achievement. The result of the study supports the use of problem-solving approach in the teaching and learning of mathematics in secondary schools.Keywords: problem, achievement, teaching phases, experimental control
Procedia PDF Downloads 2908257 Online Delivery Approaches of Post Secondary Virtual Inclusive Media Education
Authors: Margot Whitfield, Andrea Ducent, Marie Catherine Rombaut, Katia Iassinovskaia, Deborah Fels
Abstract:
Learning how to create inclusive media, such as closed captioning (CC) and audio description (AD), in North America is restricted to the private sector, proprietary company-based training. We are delivering (through synchronous and asynchronous online learning) the first Canadian post-secondary, practice-based continuing education course package in inclusive media for broadcast production and processes. Despite the prevalence of CC and AD taught within the field of translation studies in Europe, North America has no comparable field of study. This novel approach to audio visual translation (AVT) education develops evidence-based methodology innovations, stemming from user study research with blind/low vision and Deaf/hard of hearing audiences for television and theatre, undertaken at Ryerson University. Knowledge outcomes from the courses include a) Understanding how CC/AD fit within disability/regulatory frameworks in Canada. b) Knowledge of how CC/AD could be employed in the initial stages of production development within broadcasting. c) Writing and/or speaking techniques designed for media. d) Hands-on practice in captioning re-speaking techniques and open source technologies, or in AD techniques. e) Understanding of audio production technologies and editing techniques. The case study of the curriculum development and deployment, involving first-time online course delivery from academic and practitioner-based instructors in introductory Captioning and Audio Description courses (CDIM 101 and 102), will compare two different instructors' approaches to learning design, including the ratio of synchronous and asynchronous classroom time and technological engagement tools on meeting software platform such as breakout rooms and polling. Student reception of these two different approaches will be analysed using qualitative thematic and quantitative survey analysis. Thus far, anecdotal conversations with students suggests that they prefer synchronous compared with asynchronous learning within our hands-on online course delivery method.Keywords: inclusive media theory, broadcasting practices, AVT post secondary education, respeaking, audio description, learning design, virtual education
Procedia PDF Downloads 1838256 The Impact of the Flipped Classroom Instructional Model on MPharm Students in Two Pharmacy Schools in the UK
Authors: Mona Almanasef, Angel Chater, Jane Portlock
Abstract:
Introduction: A 'flipped classroom' uses technology to shift the traditional lecture outside the scheduled class time and uses the face-to-face time to engage students in interactive activities. Aim of the Study: Assess the feasibility, acceptability, and effectiveness of using the 'flipped classroom' teaching format with MPharm students in two pharmacy schools in the UK: UCL School of Pharmacy and the School of Pharmacy and Biomedical Sciences at University of Portsmouth. Methods: An experimental mixed methods design was employed, with final year MPharm students in two phases; 1) a qualitative study using focus groups, 2) a quasi-experiment measuring knowledge acquisition and satisfaction by delivering a session on rheumatoid arthritis, in two teaching formats: the flipped classroom and the traditional lecture. Results: The flipped classroom approach was preferred over the traditional lecture for delivering a pharmacy practice topic, and it was comparable or better than the traditional lecture with respect to knowledge acquisition. In addition, this teaching approach was found to overcome the perceived challenges of the traditional lecture method such as fast pace instructions, student disengagement and boredom due to lack of activities and/or social anxiety. However, high workload and difficult or new concepts could be barriers to pre-class preparation, and therefore successful flipped classroom. The flipped classroom encouraged learning scaffolding where students could benefit from application of knowledge, and interaction with peers and the lecturer, which might, in turn, facilitate learning consolidation and deep understanding. This research indicated that the flipped classroom was beneficial for all learning styles. Conclusion: Implementing the flipped classroom at both pharmacy institutions was successful and well received by final year MPharm students. Given the attention now being put on the Teaching Excellence Framework (TEF), understanding effective methods of teaching to enhance student achievement and satisfaction is now more valuable than ever.Keywords: blended learning, flipped classroom, inverted classroom, pharmacy education
Procedia PDF Downloads 1368255 Analysis of Indoor Air Quality and Sick Building Syndrome in Control Room Oil Gas Refinery
Authors: Dessy Laksyana Utami
Abstract:
The sick building syndrome comprises of various nonspecific symptoms that occur in the occupants of a building. It is commonly increases sickness absenteeism and causes a decrease in productivity of the workers. Evidence suggests that what is called the Sick Building Syndrome are at least three separate entities, which has at least one cause. The following are some of the factors that might be primarily responsible for Sick Building Syndrome such as: Chemical contaminants, Biological contaminants, Inadequate ventilation and Electromagnetic radiation. In many cases it is due to insufficient maintenance of the HVAC (heating, ventilation, air conditioning) system in the building. As this syndrome is increasingly becoming a major occupational hazard. It was used the analytic cross-sectional design. Based on data obtained 80% of respondents reported significant ongoing health problems in the eyes, head, and the nose. 60% had bad symptoms in the throat, the stomach and cough, 50% had gastrointestinal disorders, 40% fatigue and 25% occurred all symptoms sick building syndrome. The 40 respondents were recruited to the study, with a mean age of 35 years (range 20-55). To support the evidence of Sick Building Syndrome, further checks are needed for some of the factors in next research, i.e. measurement of Chemical contaminants, Biological contaminants, inadequate ventilation & Electromagnetic radiation.Keywords: indoor air pollution, sick building syndrome, indoor air quality, oil gas polution
Procedia PDF Downloads 1388254 Critical Understanding on Equity and Access in Higher Education Engaging with Adult Learners and International Student in the Context of Globalisation
Authors: Jin-Hee Kim
Abstract:
The way that globalization distinguishes itself from the previous changes is scope and intensity of changes, which together affect many parts of a nation’s system. In this way, globalization has its relation with the concept of ‘internationalization’ in that a nation state formulates a set of strategies in many areas of its governance to actively react to it. In short, globalization is a ‘catalyst,’ and internationalization is a ‘response’. In this regard, the field of higher education is one of the representative cases that globalization has several consequences that change the terrain of national policy-making. Started and been dominated mainly by the Western world, it has now been expanded to the ‘late movers,’ such as Asia-Pacific countries. The case of internationalization of Korean higher education is, therefore, located in a unique place in this arena. Yet Korea still is one of the major countries of sending its students to the so-called, ‘first world.’ On the other hand, it has started its effort to recruit international students from the world to its higher education system. After new Millennium, particularly, internationalization of higher education has been launched in its full-scale and gradually been one of the important global policy agenda, striving in both ways by opening its turf to foreign educational service providers and recruiting prospective students from other countries. Particularly the latter, recruiting international students, has been highlighted under the government project named ‘Study Korea,’ launched in 2004. Not only global, but also local issues and motivations were based to launch this nationwide project. Bringing international students means various desirable economic outcomes such as reducing educational deficit as well as utilizing them in Korean industry after the completion of their study, to name a few. In addition, in a similar vein, Korea's higher education institutes have started to have a new comers of adult learners. When it comes to the questions regarding the quality and access of this new learning agency, the answer is quite tricky. This study will investigate the different dimension of education provision and learning process to empower diverse group regardless of nationality, race, class and gender in Korea. Listening to the voices of international students and adult learning as non-traditional participants in a changing Korean higher educational space not only benefit students themselves, but Korean stakeholders who should try to accommodate more comprehensive and fair educational provisions for more and more diversifying groups of learners.Keywords: education equity, access, globalisation, international students, adult learning, learning support
Procedia PDF Downloads 2098253 Black-Box-Base Generic Perturbation Generation Method under Salient Graphs
Authors: Dingyang Hu, Dan Liu
Abstract:
DNN (Deep Neural Network) deep learning models are widely used in classification, prediction, and other task scenarios. To address the difficulties of generic adversarial perturbation generation for deep learning models under black-box conditions, a generic adversarial ingestion generation method based on a saliency map (CJsp) is proposed to obtain salient image regions by counting the factors that influence the input features of an image on the output results. This method can be understood as a saliency map attack algorithm to obtain false classification results by reducing the weights of salient feature points. Experiments also demonstrate that this method can obtain a high success rate of migration attacks and is a batch adversarial sample generation method.Keywords: adversarial sample, gradient, probability, black box
Procedia PDF Downloads 1048252 A Developmental Study of the Flipped Classroom Approach on Students’ Learning in English Language Modules in British University in Egypt
Authors: A. T. Zaki
Abstract:
The flipped classroom approach as a mode of blended learning was formally introduced to students of the English language modules at the British University in Egypt (BUE) at the start of the academic year 2015/2016. This paper aims to study the impact of the flipped classroom approach after three semesters of implementation. It will restrict itself to the examination of students’ achievement rates, student satisfaction, and how different student cohorts have benefited differently from the flipped practice. The paper concludes with recommendations of how the experience can be further developed.Keywords: achievement rates, developmental experience, Egypt, flipped classroom, higher education, student cohorts, student satisfaction
Procedia PDF Downloads 2588251 The Use of Self-Determination Theory to Assess the Opportunities and Challenges for Blended E-Learning in Egypt: An Analysis of the Motivations of Logistics Lecturers
Authors: Aisha Tarek Noour, Nick Hubbard
Abstract:
Blended e-Learning (BL) is proving to be an effective pedagogical tool in many areas of business and management education, but there remains a number of barriers to overcome before its implementation. This paper seeks to analyse the views of lecturers towards BL according to Self-Determination Theory (SDT), and identifies the opportunities and challenges for using BL in Logistics Education in an Egyptian higher education establishment. SDT is approached from a different perspective and the relationship between intrinsic motivation (IM), extrinsic motivation (EM), and amotivation (AM) is analysed and related to the opportunities and challenges of the BL method. The case study methodology comprises of a series of interviews with lecturers employed at three Colleges of International Transport and Logistics (CITLs) at the Arab Academy for Science, Technology, Maritime and Transport (AAST&MT) in Egypt. A structured face-to-face interview was undertaken with 61 interviewees across all faculty positions: Deans, Associate Professors, Assistant Professor, Department Heads, Part-time instructors, Teaching Assistants, and Graduate Teaching Assistants. The findings were based on "content analysis" of the interview transcripts and use of the NVivo10 software program. The research contributes to the application of SDT within the field of BL through an analysis of the views of lecturers towards the opportunities and challenges that BL offers to logistics educators in Egypt.Keywords: intrinsic motivation, extrinsic motivation, amotivation, autonomy, competence, relatedness, self-determination theory and blended e-learning
Procedia PDF Downloads 4408250 Blockchain-Based Assignment Management System
Authors: Amogh Katti, J. Sai Asritha, D. Nivedh, M. Kalyan Srinivas, B. Somnath Chakravarthi
Abstract:
Today's modern education system uses Learning Management System (LMS) portals for the scoring and grading of student performances, to maintain student records, and teachers are instructed to accept assignments through online submissions of .pdf,.doc,.ppt, etc. There is a risk of data tampering in the traditional portals; we will apply the Blockchain model instead of this traditional model to avoid data tampering and also provide a decentralized mechanism for overall fairness. Blockchain technology is a better and also recommended model because of the following features: consensus mechanism, decentralized system, cryptographic encryption, smart contracts, Ethereum blockchain. The proposed system ensures data integrity and tamper-proof assignment submission and grading, which will be helpful for both students and also educators.Keywords: education technology, learning management system, decentralized applications, blockchain
Procedia PDF Downloads 848249 Quantum Chemical Prediction of Standard Formation Enthalpies of Uranyl Nitrates and Its Degradation Products
Authors: Mohamad Saab, Florent Real, Francois Virot, Laurent Cantrel, Valerie Vallet
Abstract:
All spent nuclear fuel reprocessing plants use the PUREX process (Plutonium Uranium Refining by Extraction), which is a liquid-liquid extraction method. The organic extracting solvent is a mixture of tri-n-butyl phosphate (TBP) and hydrocarbon solvent such as hydrogenated tetra-propylene (TPH). By chemical complexation, uranium and plutonium (from spent fuel dissolved in nitric acid solution), are separated from fission products and minor actinides. During a normal extraction operation, uranium is extracted in the organic phase as the UO₂(NO₃)₂(TBP)₂ complex. The TBP solvent can form an explosive mixture called red oil when it comes in contact with nitric acid. The formation of this unstable organic phase originates from the reaction between TBP and its degradation products on the one hand, and nitric acid, its derivatives and heavy metal nitrate complexes on the other hand. The decomposition of the red oil can lead to violent explosive thermal runaway. These hazards are at the origin of several accidents such as the two in the United States in 1953 and 1975 (Savannah River) and, more recently, the one in Russia in 1993 (Tomsk). This raises the question of the exothermicity of reactions that involve TBP and all other degradation products, and calls for a better knowledge of the underlying chemical phenomena. A simulation tool (Alambic) is currently being developed at IRSN that integrates thermal and kinetic functions related to the deterioration of uranyl nitrates in organic and aqueous phases, but not of the n-butyl phosphate. To include them in the modeling scheme, there is an urgent need to obtain the thermodynamic and kinetic functions governing the deterioration processes in liquid phase. However, little is known about the thermodynamic properties, like standard enthalpies of formation, of the n-butyl phosphate molecules and of the UO₂(NO₃)₂(TBP)₂ UO₂(NO₃)₂(HDBP)(TBP) and UO₂(NO₃)₂(HDBP)₂ complexes. In this work, we propose to estimate the thermodynamic properties with Quantum Methods (QM). Thus, in the first part of our project, we focused on the mono, di, and tri-butyl complexes. Quantum chemical calculations have been performed to study several reactions leading to the formation of mono-(H₂MBP), di-(HDBP), and TBP in gas and liquid phases. In the gas phase, the optimal structures of all species were optimized using the B3LYP density functional. Triple-ζ def2-TZVP basis sets were used for all atoms. All geometries were optimized in the gas-phase, and the corresponding harmonic frequencies were used without scaling to compute the vibrational partition functions at 298.15 K and 0.1 Mpa. Accurate single point energies were calculated using the efficient localized LCCSD(T) method to the complete basis set limit. Whenever species in the liquid phase are considered, solvent effects are included with the COSMO-RS continuum model. The standard enthalpies of formation of TBP, HDBP, and H2MBP are finally predicted with an uncertainty of about 15 kJ mol⁻¹. In the second part of this project, we have investigated the fundamental properties of three organic species that mostly contribute to the thermal runaway: UO₂(NO₃)₂(TBP)₂, UO₂(NO₃)₂(HDBP)(TBP), and UO₂(NO₃)₂(HDBP)₂ using the same quantum chemical methods that were used for TBP and its derivatives in both the gas and the liquid phase. We will discuss the structures and thermodynamic properties of all these species.Keywords: PUREX process, red oils, quantum chemical methods, hydrolysis
Procedia PDF Downloads 1888248 Melanoma and Non-Melanoma, Skin Lesion Classification, Using a Deep Learning Model
Authors: Shaira L. Kee, Michael Aaron G. Sy, Myles Joshua T. Tan, Hezerul Abdul Karim, Nouar AlDahoul
Abstract:
Skin diseases are considered the fourth most common disease, with melanoma and non-melanoma skin cancer as the most common type of cancer in Caucasians. The alarming increase in Skin Cancer cases shows an urgent need for further research to improve diagnostic methods, as early diagnosis can significantly improve the 5-year survival rate. Machine Learning algorithms for image pattern analysis in diagnosing skin lesions can dramatically increase the accuracy rate of detection and decrease possible human errors. Several studies have shown the diagnostic performance of computer algorithms outperformed dermatologists. However, existing methods still need improvements to reduce diagnostic errors and generate efficient and accurate results. Our paper proposes an ensemble method to classify dermoscopic images into benign and malignant skin lesions. The experiments were conducted using the International Skin Imaging Collaboration (ISIC) image samples. The dataset contains 3,297 dermoscopic images with benign and malignant categories. The results show improvement in performance with an accuracy of 88% and an F1 score of 87%, outperforming other existing models such as support vector machine (SVM), Residual network (ResNet50), EfficientNetB0, EfficientNetB4, and VGG16.Keywords: deep learning - VGG16 - efficientNet - CNN – ensemble – dermoscopic images - melanoma
Procedia PDF Downloads 818247 Review of Full Body Imaging and High-Resolution Automatic 3D Mapping Systems for Medical Application
Authors: Jurijs Salijevs, Katrina Bolocko
Abstract:
The integration of artificial intelligence and neural networks has significantly changed full-body imaging and high-resolution 3D mapping systems, and this paper reviews research in these areas. With an emphasis on their use in the early identification of melanoma and other disorders, the goal is to give a wide perspective on the current status and potential future of these medical imaging technologies. Authors also examine methodologies such as machine learning and deep learning, seeking to identify efficient procedures that enhance diagnostic capabilities through the analysis of 3D body scans. This work aims to encourage further research and technological development to harness the full potential of AI in disease diagnosis.Keywords: artificial intelligence, neural networks, 3D scan, body scan, 3D mapping system, healthcare
Procedia PDF Downloads 1038246 Physics Recitations for College Physics Courses Using Breakout Rooms during COVID Pandemic
Authors: Pratheesh Jakkala
Abstract:
This paper addresses the use of breakout sessions to conduct successful weekly physics recitations for College Physics I and II at a large University in remote teaching method during COVID-19 pandemic. All breakout sessions are synchronous, conducted live, and handled by teaching assistants. A two-prong approach is used to maintain the integrity of recitations. Three different conference platforms WebEx, Zoom, and Canvas conferences, were tested, and BigBlue button using Canvas was adopted. The results and experiences of all three learning platforms are presented in this paper. Recitation questions were assigned on WebAssign learning platform and a standard five-question template developed by the instructor was used for group discussions and active peer-peer engagement. Breakout sessions feature of BigBlueButton in Canvas conferences was successfully implemented. Each breakout session consists of a team of 4 students. An online whiteboard, chat window options were used for live teamwork. Student peer-peer interactions, Teaching Assistants’ interaction with students were video and audio recorded. A total of 72 students in College Physics II and 55 students in College Physics I was enrolled. 82% of students agreed that method under study is better than previous methods. The study addressed the quality of student teamwork, student attitude towards problem-solving, and student performance in the exams.Keywords: recitations, breakout rooms, online learning platforms, COVID pandemic
Procedia PDF Downloads 1108245 Establishing a Surrogate Approach to Assess the Exposure Concentrations during Coating Process
Authors: Shan-Hong Ying, Ying-Fang Wang
Abstract:
A surrogate approach was deployed for assessing exposures of multiple chemicals at the selected working area of coating processes and applied to assess the exposure concentration of similar exposed groups using the same chemicals but different formula ratios. For the selected area, 6 to 12 portable photoionization detector (PID) were placed uniformly in its workplace to measure its total VOCs concentrations (CT-VOCs) for 6 randomly selected workshifts. Simultaneously, one sampling strain was placed beside one of these portable PIDs, and the collected air sample was analyzed for individual concentration (CVOCi) of 5 VOCs (xylene, butanone, toluene, butyl acetate, and dimethylformamide). Predictive models were established by relating the CT-VOCs to CVOCi of each individual compound via simple regression analysis. The established predictive models were employed to predict each CVOCi based on the measured CT-VOC for each the similar working area using the same portable PID. Results show that predictive models obtained from simple linear regression analyses were found with an R2 = 0.83~0.99 indicating that CT-VOCs were adequate for predicting CVOCi. In order to verify the validity of the exposure prediction model, the sampling analysis of the above chemical substances was further carried out and the correlation between the measured value (Cm) and the predicted value (Cp) was analyzed. It was found that there is a good correction between the predicted value and measured value of each measured chemical substance (R2=0.83~0.98). Therefore, the surrogate approach could be assessed the exposure concentration of similar exposed groups using the same chemicals but different formula ratios. However, it is recommended to establish the prediction model between the chemical substances belonging to each coater and the direct-reading PID, which is more representative of reality exposure situation and more accurately to estimate the long-term exposure concentration of operators.Keywords: exposure assessment, exposure prediction model, surrogate approach, TVOC
Procedia PDF Downloads 150