Search results for: thermal diffusivity
254 Enhanced Stability of Piezoelectric Crystalline Phase of Poly(Vinylidene Fluoride) (PVDF) and Its Copolymer upon Epitaxial Relationships
Authors: Devi Eka Septiyani Arifin, Jrjeng Ruan
Abstract:
As an approach to manipulate the performance of polymer thin film, epitaxy crystallization within polymer blends of poly(vinylidene fluoride) (PVDF) and its copolymer poly(vinylidene fluoride-trifluoroethylene) P(VDF-TrFE) was studied in this research, which involves the competition between phase separation and crystal growth of constitutive semicrystalline polymers. The unique piezoelectric feature of poly(vinylidene fluoride) crystalline phase is derived from the packing of molecular chains in all-trans conformation, which spatially arranges all the substituted fluorene atoms on one side of the molecular chain and hydrogen atoms on the other side. Therefore, the net dipole moment is induced across the lateral packing of molecular chains. Nevertheless, due to the mutual repulsion among fluorene atoms, this all-trans molecular conformation is not stable, and ready to change above curie temperature, where thermal energy is sufficient to cause segmental rotation. This research attempts to explore whether the epitaxial interactions between piezoelectric crystals and crystal lattice of hexamethylbenzene (HMB) crystalline platelet is able to stabilize this metastable all-trans molecular conformation or not. As an aromatic crystalline compound, the melt of HMB was surprisingly found able to dissolve the poly(vinylidene fluoride), resulting in homogeneous eutectic solution. Thus, after quenching this binary eutectic mixture to room temperature, subsequent heating or annealing processes were designed to explore the involve phase separation and crystallization behavior. The phase transition behaviors were observed in-situ by X-ray diffraction and differential scanning calorimetry (DSC). The molecular packing was observed via transmission electron microscope (TEM) and the principles of electron diffraction were brought to study the internal crystal structure epitaxially developed within thin films. Obtained results clearly indicated the occurrence of heteroepitaxy of PVDF/PVDF-TrFE on HMB crystalline platelet. Both the concentration of poly(vinylidene fluoride) and the mixing ratios of these two constitutive polymers have been adopted as the influential factors for studying the competition between the epitaxial crystallization of PVDF and P(VDF-TrFE) on HMB crystalline. Furthermore, the involved epitaxial relationship is to be deciphered and studied as a potential factor capable of guiding the wide spread of piezoelectric crystalline form.Keywords: epitaxy, crystallization, crystalline platelet, thin film and mixing ratio
Procedia PDF Downloads 221253 Study of Biofouling Wastewater Treatment Technology
Authors: Sangho Park, Mansoo Kim, Kyujung Chae, Junhyuk Yang
Abstract:
The International Maritime Organization (IMO) recognized the problem of invasive species invasion and adopted the "International Convention for the Control and Management of Ships' Ballast Water and Sediments" in 2004, which came into force on September 8, 2017. In 2011, the IMO approved the "Guidelines for the Control and Management of Ships' Biofouling to Minimize the Transfer of Invasive Aquatic Species" to minimize the movement of invasive species by hull-attached organisms and required ships to manage the organisms attached to their hulls. Invasive species enter new environments through ships' ballast water and hull attachment. However, several obstacles to implementing these guidelines have been identified, including a lack of underwater cleaning equipment, regulations on underwater cleaning activities in ports, and difficulty accessing crevices in underwater areas. The shipping industry, which is the party responsible for understanding these guidelines, wants to implement them for fuel cost savings resulting from the removal of organisms attached to the hull, but they anticipate significant difficulties in implementing the guidelines due to the obstacles mentioned above. Robots or people remove the organisms attached to the hull underwater, and the resulting wastewater includes various species of organisms and particles of paint and other pollutants. Currently, there is no technology available to sterilize the organisms in the wastewater or stabilize the heavy metals in the paint particles. In this study, we aim to analyze the characteristics of the wastewater generated from the removal of hull-attached organisms and select the optimal treatment technology. The organisms in the wastewater generated from the removal of the attached organisms meet the biological treatment standard (D-2) using the sterilization technology applied in the ships' ballast water treatment system. The heavy metals and other pollutants in the paint particles generated during removal are treated using stabilization technologies such as thermal decomposition. The wastewater generated is treated using a two-step process: 1) development of sterilization technology through pretreatment filtration equipment and electrolytic sterilization treatment and 2) development of technology for removing particle pollutants such as heavy metals and dissolved inorganic substances. Through this study, we will develop a biological removal technology and an environmentally friendly processing system for the waste generated after removal that meets the requirements of the government and the shipping industry and lays the groundwork for future treatment standards.Keywords: biofouling, ballast water treatment system, filtration, sterilization, wastewater
Procedia PDF Downloads 108252 Determination of Activation Energy for Thermal Decomposition of Selected Soft Tissues Components
Authors: M. Ekiert, T. Uhl, A. Mlyniec
Abstract:
Tendons are the biological soft tissue structures composed of collagen, proteoglycan, glycoproteins, water and cells of extracellular matrix (ECM). Tendons, which primary function is to transfer force generated by the muscles to the bones causing joints movement, are exposed to many micro and macro damages. In fact, tendons and ligaments trauma are one of the most numerous injuries of human musculoskeletal system, causing for many people (particularly for athletes and physically active people), recurring disorders, chronic pain or even inability of movement. The number of tendons reconstruction and transplantation procedures is increasing every year. Therefore, studies on soft tissues storage conditions (influencing i.e. tissue aging) seem to be an extremely important issue. In this study, an atomic-scale investigation on the kinetics of decomposition of two selected tendon components – collagen type I (which forms a 60-85% of a tendon dry mass) and elastin protein (which combine with ECM creates elastic fibers of connective tissues) is presented. A molecular model of collagen and elastin was developed based on crystal structure of triple-helical collagen-like 1QSU peptide and P15502 human elastin protein, respectively. Each model employed 4 linear strands collagen/elastin strands per unit cell, distributed in 2x2 matrix arrangement, placed in simulation box filled with water molecules. A decomposition phenomena was simulated with molecular dynamics (MD) method using ReaxFF force field and periodic boundary conditions. A set of NVT-MD runs was performed for 1000K temperature range in order to obtained temperature-depended rate of production of decomposition by-products. Based on calculated reaction rates activation energies and pre-exponential factors, required to formulate Arrhenius equations describing kinetics of decomposition of tested soft tissue components, were calculated. Moreover, by adjusting a model developed for collagen, system scalability and correct implementation of the periodic boundary conditions were evaluated. An obtained results provide a deeper insight into decomposition of selected tendon components. A developed methodology may also be easily transferred to other connective tissue elements and therefore might be used for further studies on soft tissues aging.Keywords: decomposition, molecular dynamics, soft tissue, tendons
Procedia PDF Downloads 209251 Poly(ε-caprolactone)/Halloysite Nanotube Nanocomposites Scaffolds for Tissue Engineering
Authors: Z. Terzopoulou, I. Koliakou, D. Bikiaris
Abstract:
Tissue engineering offers a new approach to regenerate diseased or damaged tissues such as bone. Great effort is devoted to eliminating the need of removing non-degradable implants at the end of their life span, with biodegradable polymers playing a major part. Poly(ε-caprolactone) (PCL) is one of the best candidates for this purpose due to its high permeability, good biodegradability and exceptional biocompatibility, which has stimulated extensive research into its potential application in the biomedical fields. However, PCL degrades much slower than other known biodegradable polymers and has a total degradation of 2-4 years depending on the initial molecular weight of the device. This is due to its relatively hydrophobic character and high crystallinity. Consequently, much attention has been given to the tunable degradation of PCL to meet the diverse requirements of biomedicine. Poly(ε-caprolactone) (PCL) is a biodegradable polyester that lacks bioactivity, so when used in bone tissue engineering, new bone tissue cannot bond tightly on the polymeric surface. Therefore, it is important to incorporate reinforcing fillers into PCL matrix in order to result in a promising combination of bioactivity, biodegradability, and strength. Natural clay halloysite nanotubes (HNTs) were incorporated into PCL polymeric matrix, via in situ ring-opening polymerization of caprolactone, in concentrations 0.5, 1 and 2.5 wt%. Both unmodified and modified with aminopropyltrimethoxysilane (APTES) HNTs were used in this study. The effect of nanofiller concentration and functionalization with end-amino groups on the physicochemical properties of the prepared nanocomposites was studied. Mechanical properties were found enhanced after the incorporation of nanofillers, while the modification increased further the values of tensile and impact strength. Thermal stability of PCL was not affected by the presence of nanofillers, while the crystallization rate that was studied by Differential Scanning Calorimetry (DSC) and Polarized Light Optical Microscopy (POM) increased. All materials were subjected to enzymatic hydrolysis in phosphate buffer in the presence of lipases. Due to the hydrophilic nature of HNTs, the biodegradation rate of nanocomposites was higher compared to neat PCL. In order to confirm the effect of hydrophilicity, contact angle measurements were also performed. In vitro biomineralization test confirmed that all samples were bioactive as mineral deposits were detected by X-ray diffractometry after incubation in SBF. All scaffolds were tested in relevant cell culture using osteoblast-like cells (MG-63) to demonstrate their biocompatibilityKeywords: biomaterials, nanocomposites, scaffolds, tissue engineering
Procedia PDF Downloads 315250 Interlayer-Mechanical Working: Effective Strategy to Mitigate Solidification Cracking in Wire-Arc Additive Manufacturing (WAAM) of Fe-based Shape Memory Alloy
Authors: Soumyajit Koley, Kuladeep Rajamudili, Supriyo Ganguly
Abstract:
In recent years, iron-based shape-memory alloys have been emerging as an inexpensive alternative to costly Ni-Ti alloy and thus considered suitable for many different applications in civil structures. Fe-17Mn-10Cr-5Si-4Ni-0.5V-0.5C alloy contains 37 wt.% of total solute elements. Such complex multi-component metallurgical system often leads to severe solute segregation and solidification cracking. Wire-arc additive manufacturing (WAAM) of Fe-17Mn-10Cr-5Si-4Ni-0.5V-0.5C alloy was attempted using a cold-wire fed plasma arc torch attached to a 6-axis robot. Self-standing walls were manufactured. However, multiple vertical cracks were observed after deposition of around 15 layers. Microstructural characterization revealed open surfaces of dendrites inside the crack, confirming these cracks as solidification cracks. Machine hammer peening (MHP) process was adopted on each layer to cold work the newly deposited alloy. Effect of MHP traverse speed were varied systematically to attain a window of operation where cracking was completely stopped. Microstructural and textural analysis were carried out further to correlate the peening process to microstructure.MHP helped in many ways. Firstly, a compressive residual stress was induced on each layer which countered the tensile residual stress evolved from solidification process; thus, reducing net tensile stress on the wall along its length. Secondly, significant local plastic deformation from MHP followed by the thermal cycle induced by deposition of next layer resulted into a recovered and recrystallized equiaxed microstructure instead of long columnar grains along the vertical direction. This microstructural change increased the total crack propagation length and thus, the overall toughness. Thirdly, the inter-layer peening significantly reduced the strong cubic {001} crystallographic texture formed along the build direction. Cubic {001} texture promotes easy separation of planes and easy crack propagation. Thus reduction of cubic texture alleviates the chance of cracking.Keywords: Iron-based shape-memory alloy, wire-arc additive manufacturing, solidification cracking, inter-layer cold working, machine hammer peening
Procedia PDF Downloads 71249 Laser Paint Stripping on Large Zones on AA 2024 Based Substrates
Authors: Selen Unaldi, Emmanuel Richaud, Matthieu Gervais, Laurent Berthe
Abstract:
Aircrafts are painted with several layers to guarantee their protection from external attacks. For aluminum AA 2024-T3 (metallic structural part of the plane), a protective primer is applied to ensure its corrosion protection. On top of this layer, the top coat is applied for aesthetic aspects. During the lifetime of an aircraft, top coat stripping has an essential role which should be operated as an average of every four years. However, since conventional stripping processes create hazardous disposals and need long hours of labor work, alternative methods have been investigated. Amongst them, laser stripping appears as one of the most promising techniques not only because of the reasons mentioned above but also its controllable and monitorable aspects. The application of a laser beam from the coated side provides stripping, but the depth of the process should be well controlled in order to prevent damage to a substrate and the anticorrosion primer. Apart from that, thermal effects should be taken into account on the painted layers. As an alternative, we worked on developing a process that includes the usage of shock wave propagation to create the stripping via mechanical effects with the application of the beam from the substrate side (back face) of the samples. Laser stripping was applied on thickness-specified samples with a thickness deviation of 10-20%. First, the stripping threshold is determined as a function of power density which is the first flight off of the top coats. After obtaining threshold values, the same power densities were applied to specimens to create large stripping zones with a spot overlap of 10-40%. Layer characteristics were determined on specimens in terms of physicochemical properties and thickness range both before and after laser stripping in order to validate the substrate material health and coating properties. The substrate health is monitored by measuring the roughness of the laser-impacted zones and free surface energy tests (both before and after laser stripping). Also, Hugoniot Elastic Limit (HEL) is determined from VISAR diagnostic on AA 2024-T3 substrates (for the back face surface deformations). In addition, the coating properties are investigated as a function of adhesion levels and anticorrosion properties (neutral salt spray test). The influence of polyurethane top-coat thickness is studied in order to verify the laser stripping process window for industrial aircraft applications.Keywords: aircraft coatings, laser stripping, laser adhesion tests, epoxy, polyurethane
Procedia PDF Downloads 76248 Study of Open Spaces in Urban Residential Clusters in India
Authors: Renuka G. Oka
Abstract:
From chowks to streets to verandahs to courtyards; residential open spaces are very significantly placed in traditional urban neighborhoods of India. At various levels of intersection, the open spaces with their attributes like juxtaposition with the built fabric, scale, climate sensitivity and response, multi-functionality, etc. reflect and respond to the patterns of human interactions. Also, these spaces tend to be quite well utilized. On the other hand, it is a common specter to see an imbalanced utilization of open spaces in newly/recently planned residential clusters. This is maybe due to lack of activity generators around or wrong locations or excess provisions or improper incorporation of aforementioned design attributes. These casual observations suggest the necessity for a systematic study of current residential open spaces. The exploratory study thus attempts to draw lessons through a structured inspection of residential open spaces to understand the effective environment as revealed through their use patterns. Here, residential open spaces are considered in a wider sense to incorporate all the un-built fabric around. These thus, include both use spaces and access space. For the study, open spaces in ten exemplary housing clusters/societies built during the last ten years across India are studied. A threefold inquiry is attempted in this direction. The first relates to identifying and determining the effects of various physical functions like space organization, size, hierarchy, thermal and optical comfort, etc. on the performance of residential open spaces. The second part sets out to understand socio-cultural variations in values, lifestyle, and beliefs which determine activity choices and behavioral preferences of users for respective residential open spaces. The third inquiry further observes the application of these research findings to the design process to derive meaningful and qualitative design advice. However, the study also emphasizes to develop a suitable framework of analysis and to carve out appropriate methods and approaches to probe into these aspects of the inquiry. Given this emphasis, a considerable portion of the research details out the conceptual framework for the study. This framework is supported by an in-depth search of available literature. The findings are worked out for design solutions which integrate the open space systems with the overall design process for residential clusters. The open spaces in residential areas present great complexities both in terms of their use patterns and determinants of their functional responses. The broad aim of the study is, therefore, to arrive at reconsideration of standards and qualitative parameters used by designers – on the basis of more substantial inquiry into the use patterns of open spaces in residential areas.Keywords: open spaces, physical and social determinants, residential clusters, use patterns
Procedia PDF Downloads 147247 Optical Assessment of Marginal Sealing Performance around Restorations Using Swept-Source Optical Coherence Tomography
Authors: Rima Zakzouk, Yasushi Shimada, Yasunori Sumi, Junji Tagami
Abstract:
Background and purpose: The resin composite has become the main material for the restorations of caries in recent years due to aesthetic characteristics, especially with the development of the adhesive techniques. The quality of adhesion to tooth structures is depending on an exchange process between inorganic tooth material and synthetic resin and a micromechanical retention promoted by resin infiltration in partially demineralized dentin. Optical coherence tomography (OCT) is a noninvasive diagnostic method for obtaining cross-sectional images that produce high-resolution of the biological tissue at the micron scale. The aim of this study was to evaluate the gap formation at adhesive/tooth interface of two-step self-etch adhesives that are preceded with or without phosphoric acid pre-etching in different regions of teeth using SS-OCT. Materials and methods: Round tapered cavities (2×2 mm) were prepared in cervical part of bovine incisors teeth and divided into 2 groups (n=10): first group self-etch adhesive (Clearfil SE Bond) was applied for SE group and second group treated with acid etching before applying the self-etch adhesive for PA group. Subsequently, both groups were restored with Estelite Flow Quick Flowable Composite Resin and observed under OCT. Following 5000 thermal cycles, the same section was obtained again for each cavity using OCT at 1310-nm wavelength. Scanning was repeated after two months to monitor the gap progress. Then the gap length was measured using image analysis software, and the statistics analysis were done between both groups using SPSS software. After that, the cavities were sectioned and observed under Confocal Laser Scanning Microscope (CLSM) to confirm the result of OCT. Results: Gaps formed at the bottom of the cavity was longer than the gap formed at the margin and dento-enamel junction in both groups. On the other hand, pre-etching treatment led to damage the DEJ regions creating longer gap. After 2 months the results showed almost progress in the gap length significantly at the bottom regions in both groups. In conclusions, phosphoric acid etching treatment did not reduce the gap lrngth in most regions of the cavity. Significance: The bottom region of tooth was more exposed to gap formation than margin and DEJ regions, The DEJ damaged with phosphoric acid treatment.Keywords: optical coherence tomography, self-etch adhesives, bottom, dento enamel junction
Procedia PDF Downloads 224246 Investigation of Polypropylene Composite Films With Carbon Nanotubes and the Role of β Nucleating Agents for the Improvement of Their Water Vapor Permeability
Authors: Glykeria A. Visvini, George N. Mathioudakis, Amaia Soto Beobide, Aris E. Giannakas, George A. Voyiatzis
Abstract:
Polymeric nanocomposites have generated considerable interest in both academic research and industry because their properties can be tailored by adjusting the type & concentration of nano-inclusions, resulting in complementary and adaptable characteristics. The exceptional and/or unique properties of the nanocomposites, including the high mechanical strength and stiffness, the ease of processing, and their lightweight nature, are attributed to the high surface area, the electrical and/or thermal conductivity of the nano-fillers, which make them appealing materials for a wide range of engineering applications. Polymeric «breathable» membranes enabling water vapor permeability (WVP) can be designed either by using micro/nano-fillers with the ability to interrupt the continuity of the polymer phase generating micro/nano-porous structures or/and by creating micro/nano-pores into the composite material by uniaxial/biaxial stretching. Among the nanofillers, carbon nanotubes (CNTs) exhibit particular high WVP and for this reason, they have already been proposed for gas separation membranes. In a similar context, they could prove to be promising alternative/complementary filler nano-materials, for the development of "breathable" products. Polypropylene (PP) is a commonly utilized thermoplastic polymer matrix in the development of composite films, due to its easy processability and low price, combined with its good chemical & physical properties. PP is known to present several crystalline phases (α, β and γ), depending on the applied treatment process, which have a significant impact on its final properties, particularly in terms of WVP. Specifically, the development of the β-phase in PP in combination with stretching is anticipated to modify the crystalline behavior and extend the microporosity of the polymer matrix exhibiting enhanced WVP. The primary objective of this study is to develop breathable nano-carbon based (functionalized MWCNTs) PP composite membranes, potentially also avoiding the stretching process. This proposed alternative is expected to have a better performance/cost ratio over current stretched PP/CaCO3 composite benchmark membranes. The focus is to investigate the impact of both β-nucleator(s) and nano-carbon fillers on water vapor transmission rate properties of relevant PP nanocomposites.Keywords: carbon nanotubes, nanocomposites, nucleating agents, polypropylene, water vapor permeability
Procedia PDF Downloads 71245 Study on the Use of Manganese-Containing Materials as a Micro Fertilizer Based on the Local Mineral Resources and Industrial Wastes in Hydroponic Systems
Authors: Marine Shavlakadze
Abstract:
Hydroponic greenhouses systems (production of the artificial substrate without soil) are becoming popular in the world. Mostly the system is used to grow vegetables and berries. Different countries are taking action to participate in the development of hydroponic technology and solutions such as EU members, Turkey, Australia, New Zealand, Israel, Scandinavian countries, etc. Many vegetables and berries are grown by hydroponics in Europe. As a result of our research, we have obtained material containing manganese and nitrogen. It became possible to produce this fertilizer by means of one-stage thermal processing, using industrial waste containing manganese (ores and sludges) and mineral substance (ammonium nitrate) that exist in Georgia. The received material is usable as a micro-fertilizer with economic efficiency. It became possible to turn practically water-insoluble manganese dioxide substance into the soluble condition from industrial waste in an indirect way. The ability to use the material as a fertilizer is predetermined by its chemical and phase composition, as the amount of the active component of the material in relation to manganese is 30%. At the same time, the active component elements presented non-ballast sustained action compounds. The studies implemented in Poland and in Georgia by us have shown that the manganese-containing micro-fertilizer- Mn(NO3)2 can provide the plant with nitrate nitrogen, which is a form that can be used for plants, providing the economy and simplicity of the application of fertilizers. Given the fact that the application of the manganese-containing micro-fertilizers significantly increases the productivity and improves the quality of the big number of agricultural products, it is necessary to mention that it is recommended to introduce the manganese containing fertilizers into the following cultures: sugar beet, corn, potato, vegetables, vine grape, fruit, berries, and other cultures. Also, as a result of the study, it was established that the material obtained is the predominant fertilizer for vegetable cultures in the soil. Based on the positive results of the research, we consider it expedient to conduct research in hydroponic systems, which will enable us to provide plants the required amount of manganese; we also introduce nitrogen in solution and regulate the solution of pH, which is one of the main problems in hydroponic production. The findings of our research will be used in hydroponic greenhouse farms to increase the fertility of vegetable crops and, consequently, to get bountiful and high-quality harvests, which will promote the development of hydroponic greenhouses in Georgia as well as abroad.Keywords: hydroponics, micro-fertilizers, manganese-containing materials, industrial wastes
Procedia PDF Downloads 128244 The Role of High-Intensity Focused Ultrasound (HIFU) in the Treatment of Fibroadenomas: A Systematic Review
Authors: Ahmed Gonnah, Omar Masoud, Mohamed Abdel-Wahab, Ahmed ElMosalamy, Abdulrahman Al-Naseem
Abstract:
Introduction: Fibroadenomas are solid, mobile, and non-tender benign breast lumps, with the highest prevalence amongst young women aged between 15 and 35. Symptoms can include discomfort, and they can become problematic, particularly when they enlarge, resulting in many referrals for biopsies, with fibroadenomas accounting for 30-75% of the cases. Diagnosis is based on triple assessment that involves a clinical examination, ultrasound imaging and mammography, as well as core needle biopsies. Current management includes observation for 6-12 months, with the indication of definitive surgery, in cases that are older than 35 years or with fibroadenoma persistence. Serious adverse effects of surgery might include nipple-areolar distortion, scarring and damage to the breast tissue, as well as the risks associated with surgery and anesthesia, making it a non-feasible option. Methods: A literature search was performed on the databases EMBASE. MEDLINE/PubMed, Google scholar and Ovid, for English language papers published between 1st of January 2000 and 17th of March 2021. A structured protocol was employed to devise a comprehensive search strategy with keywords and Boolean operators defined by the research question. The keywords used for the search were ‘HIFU’, ‘High-Intensity Focused Ultrasound’, ‘Fibroadenoma’, ‘Breast’, ‘Lesion’. This review was carried out in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Results: Recently, a thermal ablative technique, High Intensity Focused Ultrasound (HIFU), was found to be a safe, non-invasive, and technically successful alternative, having displayed promising outcomes in reducing the volume of fibroadenomas, pain experienced by patients, and the length of hospitalization. Quality of life improvement was also evidenced, exhibited by the disappearance of symptoms, and enhanced physical activity post-intervention, in addition to patients’ satisfaction with the cosmetic results and future recommendation of the procedure to other patients. Conclusion: Overall, HIFU is a well-tolerated treatment associated with a low risk of complications that can potentially include erythema, skin discoloration and bruising, with the majority of this self-resolving shortly after the procedure.Keywords: ultrasound, HIFU, breast, efficacy, side effects, fibroadenoma
Procedia PDF Downloads 222243 Establishment of High-Temperature Simultaneous Saccharification and Fermentation Process by Co-Culturing of Thermally Adapted Thermosensitive Saccharomyces Cerevisiae and Bacillus amyloliquefaciens
Authors: Ali Azam Talukder, Jamsheda Ferdous Tuli, Tanzina Islam Reba, Shuvra Kanti Dey, Mamoru Yamada
Abstract:
Recent global warming created by various pollutants prompted us to find new energy sources instead of fossil fuels. Fossil fuels are one of the key factors to emit various toxic gases in this planet. To solve this problem, along with the scarcity of the worldwide energy crisis, scientists are looking for various alternative options to mitigate the necessity of required future fuels. In this context, bioethanol can be one of the most suitable alternative energy sources. Bioethanol is a renewable, environment-friendly and carbon-neutral sustainable energy. In our previous study, we identified several bioethanol-producing microbes from the natural fermented sources of Bangladesh. Among them, the strain 4C encoded Saccharomyces cerevisiae produced maximum bioethanol when the fermentation temperature was 25˚C. In this study, we have established high-temperature simultaneous saccharification and fermentation process (HTSSF) by co-culturing of thermally adapted thermosensitive 4C as a fermenting agent and Bacillus amyloliquefaciens (C7), as a saccharifying agent under various physiological conditions or treatments. Conventional methods were applied for cell culture, media preparation and other experimental purposes. High-temperature adaptation of strain 4C was made from 30-42ᵒC, using either YPD or YPS media. In brief, for thermal adaptation, the temperature was periodically increased by 2ᵒC, 1ᵒC and 0.5ᵒC when medium growth temperatures were 30-36ᵒC, 36-40ᵒC, and 40-42ᵒC, respectively, where applicable. Amylase activity and bioethanol content were measured by DNS (3, 5-dinitrosalicylic acid) and solvent extraction and dichromate oxidation method, respectively. Among the various growth parameters like temperatures (30˚C, 37˚C and 42˚C), pHs (5.0, 6.0 and 7.0), carbon sources (5.0-10.0%) and ethanol stress tolerance (0.0-12.0%) etc. were tested, maximum Amylase activity (4.0 IU/ml/min) was recorded for Bacillus amyloliquefaciens (C7) at 42˚C, pH 6.0 and 10% starch. On the other hand, 4.10% bioethanol content was recorded when the thermally adapted strain 4C was co-cultured with C7 at 37ᵒC, pH 6.0 and 10.0% starch for 72 hours at HTSSF process. On the other hand, thermally non-adapted strains gave only 0.5-2.0% bioethanol content under the same physiological conditions. The thermally adapted strain 4C and strain C7, both can tolerate ethanol stress up to 12%. Altogether, a comparative study revealed that our established HTSSF process may be suitable for pilot scale and subsequently at industrial level bioethanol production.Keywords: bioethanol, co-culture, fermentation, saccharification
Procedia PDF Downloads 84242 A Study of Evaporative Heat Loss from the Skin of Baby Elephants (Elephas maximus maximus) at Elephant Transit Home
Authors: G .D. B. N. Kulasaooriya, H. B. S. Ariyarathne, I. Abeygunawardene, A. A. J. Rafarathne, B. V. Perera
Abstract:
Elephant is the largest resident of the wild and has small surface to volume ratio as well as less number of sweat glands which cause challenges to the thermoregulation of this mammal. However, this megaherbivore has adopted specialised meachanisms to maintain its thermal balance through behavioral adaptations, ear flapping and well anastomosed arterioles and venules of the ear. Nevertheless, little is known on the involvement of the skin in the process of thermoregulation. The present study was undertaken to monitor the water evaporation rate from the skin of unrestrained wild elephant calves throughout the day and to understand its importance in the thermoregulation. Seven baby elephants housed in the elephant transit home, Udawalawe were used. Ambient temparature, relative humidity (RH) and radiation heat load was monitored throughout the day of the study period. Similarly, surface temparature of the skin was taken at six points including lateral ear pinna, lateral body and the rump during the same period. The skin water evaporation was also measured from the same sites using cobolt chloride method. The surface are of the skin was determined by assigning geometrical shapes to each body part. The results showed that the ambient temperature gradually increased with the day reaching maximum around 3.00 pm. The relative humidity was lowest early in the morning. The radiation heat load did not show any significant change in the study period. The skin temperature was different among lateral ear pinna, lateral body and the rump where the highest temperature was on the rump and the lowest on the lateral ear pinna. The skin temperature gradually increase with increasing ambient temperature but there was not a strong correlation (R2 =53.53) between these two. The skin temperature had strong correlation with RH (p<0.05 R2 =70.84% ) but a significant relationship was not considered since the radiation heat load was not varying in large scale. The skin evaporative water loss had a weak negative correlation with ambient temperature (correlation coefficient= -0.01) whereas strong positive correlation with RH (correlation coefficient= 25.275 ) and no corelation with radiation heat load. It also appeared that skin water loss increases as the skin temperature increased. In the present study, it was observed that on average, skin of the baby elephant looses 403 g/m2/h of water. Based on these observations it can be concluded that a large volume of water is evaporated from the skin of baby elephants and evaporative heat loss may be contributing significantly to the thermoregulation. However, further investigation on the influence of environmental factors on evaporative heat loss has to be conducted to understand the thermoregulatory mechanisms of the baby elephant.Keywords: thermoregulation, behavioral adaptations, evaporation, elephant
Procedia PDF Downloads 377241 Effects of Stokes Shift and Purcell Enhancement in Fluorescence Assisted Radiative Cooling
Authors: Xue Ma, Yang Fu, Dangyuan Lei
Abstract:
Passive daytime radiative cooling is an emerging technology which has attracted worldwide attention in recent years due to its huge potential in cooling buildings without the use of electricity. Various coating materials with different optical properties have been developed to improve the daytime radiative cooling performance. However, commercial cooling coatings comprising functional fillers with optical bandgaps within the solar spectral range suffers from severe intrinsic absorption, limiting their cooling performance. Fortunately, it has recently been demonstrated that introducing fluorescent materials into polymeric coatings can covert the absorbed sunlight to fluorescent emissions and hence increase the effective solar reflectance and cooling performance. In this paper, we experimentally investigate the key factors for fluorescence-assisted radiative cooling with TiO2-based white coatings. The surrounding TiO2 nanoparticles, which enable spatial and temporal light confinement through multiple Mie scattering, lead to Purcell enhancement of phosphors in the coating. Photoluminescence lifetimes of two phosphors (BaMgAl10O17:Eu2+ and (Sr, Ba)SiO4:Eu2+) exhibit significant reduction of ~61% and ~23%, indicating Purcell factors of 2.6 and 1.3, respectively. Moreover, smaller Stokes shifts of the phosphors are preferred to further diminish solar absorption. Field test of fluorescent cooling coatings demonstrate an improvement of ~4% solar reflectance for the BaMgAl10O17:Eu2+-based fluorescent cooling coating. However, to maximize solar reflectance, a white appearance is introduced based on multiple Mie scattering by the broad size distribution of fillers, which is visually pressurized and aesthetically bored. Besides, most colored pigments absorb visible light significantly and convert it to non-radiative thermal energy, offsetting the cooling effect. Therefore, current colored cooling coatings are facing the compromise between color saturation and cooling effect. To solve this problem, we introduced colored fluorescent materials into white coating based on SiO2 microspheres as a top layer, covering a white cooling coating based on TiO2. Compared with the colored pigments, fluorescent materials could re-emit the absorbed light, reducing the solar absorption introduced by coloration. Our work investigated the scattering properties of SiO2 dielectric spheres with different diameters and detailly discussed their impact on the PL properties of phosphors, paving the way for colored fluorescent-assisted cooling coting to application and industrialization.Keywords: solar reflection, infrared emissivity, mie scattering, photoluminescent emission, radiative cooling
Procedia PDF Downloads 81240 Air Breakdown Voltage Prediction in Post-arcing Conditions for Compact Circuit Breakers
Authors: Jing Nan
Abstract:
The air breakdown voltage in compact circuit breakers is a critical factor in the design and reliability of electrical distribution systems. This voltage determines the threshold at which the air insulation between conductors will fail or 'break down,' leading to an arc. This phenomenon is highly sensitive to the conditions within the breaker, such as the temperature and the distance between electrodes. Typically, air breakdown voltage models have been reliable for predicting failure under standard operational temperatures. However, in conditions post-arcing, where temperatures can soar above 2000K, these models face challenges due to the complex physics of ionization and electron behaviour at such high-energy states. Building upon the foundational understanding that the breakdown mechanism is initiated by free electrons and propelled by electric fields, which lead to ionization and, potentially, to avalanche or streamer formation, we acknowledge the complexity introduced by high-temperature environments. Recognizing the limitations of existing experimental data, a notable research gap exists in the accurate prediction of breakdown voltage at elevated temperatures, typically observed post-arcing, where temperatures exceed 2000K.To bridge this knowledge gap, we present a method that integrates gap distance and high-temperature effects into air breakdown voltage assessment. The proposed model is grounded in the physics of ionization, accounting for the dynamic behaviour of free electrons which, under intense electric fields at elevated temperatures, lead to thermal ionization and potentially reach the threshold for streamer formation as Meek's criterion. Employing the Saha equation, our model calculates equilibrium electron densities, adapting to the atmospheric pressure and the hot temperature regions indicative of post-arc temperature conditions. Our model is rigorously validated against established experimental data, demonstrating substantial improvements in predicting air breakdown voltage in the high-temperature regime. This work significantly improves the predictive power for air breakdown voltage under conditions that closely mimic operational stressors in compact circuit breakers. Looking ahead, the proposed methods are poised for further exploration in alternative insulating media, like SF6, enhancing the model's utility for a broader range of insulation technologies and contributing to the future of high-temperature electrical insulation research.Keywords: air breakdown voltage, high-temperature insulation, compact circuit breakers, electrical discharge, saha equation
Procedia PDF Downloads 83239 Partial M-Sequence Code Families Applied in Spectral Amplitude Coding Fiber-Optic Code-Division Multiple-Access Networks
Authors: Shin-Pin Tseng
Abstract:
Nowadays, numerous spectral amplitude coding (SAC) fiber-optic code-division-multiple-access (FO-CDMA) techniques were appealing due to their capable of providing moderate security and relieving the effects of multiuser interference (MUI). Nonetheless, the performance of the previous network is degraded due to fixed in-phase cross-correlation (IPCC) value. Based on the above problems, a new SAC FO-CDMA network using partial M-sequence (PMS) code is presented in this study. Because the proposed PMS code is originated from M-sequence code, the system using the PMS code could effectively suppress the effects of MUI. In addition, two-code keying (TCK) scheme can applied in the proposed SAC FO-CDMA network and enhance the whole network performance. According to the consideration of system flexibility, simple optical encoders/decoders (codecs) using fiber Bragg gratings (FBGs) were also developed. First, we constructed a diagram of the SAC FO-CDMA network, including (N/2-1) optical transmitters, (N/2-1) optical receivers, and one N×N star coupler for broadcasting transmitted optical signals to arrive at the input port of each optical receiver. Note that the parameter N for the PMS code was the code length. In addition, the proposed SAC network was using superluminescent diodes (SLDs) as light sources, which then can save a lot of system cost compared with the other FO-CDMA methods. For the design of each optical transmitter, it is composed of an SLD, one optical switch, and two optical encoders according to assigned PMS codewords. On the other hand, each optical receivers includes a 1 × 2 splitter, two optical decoders, and one balanced photodiode for mitigating the effect of MUI. In order to simplify the next analysis, the some assumptions were used. First, the unipolarized SLD has flat power spectral density (PSD). Second, the received optical power at the input port of each optical receiver is the same. Third, all photodiodes in the proposed network have the same electrical properties. Fourth, transmitting '1' and '0' has an equal probability. Subsequently, by taking the factors of phase‐induced intensity noise (PIIN) and thermal noise, the corresponding performance was displayed and compared with the performance of the previous SAC FO-CDMA networks. From the numerical result, it shows that the proposed network improved about 25% performance than that using other codes at BER=10-9. This is because the effect of PIIN was effectively mitigated and the received power was enhanced by two times. As a result, the SAC FO-CDMA network using PMS codes has an opportunity to apply in applications of the next-generation optical network.Keywords: spectral amplitude coding, SAC, fiber-optic code-division multiple-access, FO-CDMA, partial M-sequence, PMS code, fiber Bragg grating, FBG
Procedia PDF Downloads 384238 Stability Indicating RP – HPLC Method Development, Validation and Kinetic Study for Amiloride Hydrochloride and Furosemide in Pharmaceutical Dosage Form
Authors: Jignasha Derasari, Patel Krishna M, Modi Jignasa G.
Abstract:
Chemical stability of pharmaceutical molecules is a matter of great concern as it affects the safety and efficacy of the drug product.Stability testing data provides the basis to understand how the quality of a drug substance and drug product changes with time under the influence of various environmental factors. Besides this, it also helps in selecting proper formulation and package as well as providing proper storage conditions and shelf life, which is essential for regulatory documentation. The ICH guideline states that stress testing is intended to identify the likely degradation products which further help in determination of the intrinsic stability of the molecule and establishing degradation pathways, and to validate the stability indicating procedures. A simple, accurate and precise stability indicating RP- HPLC method was developed and validated for simultaneous estimation of Amiloride Hydrochloride and Furosemide in tablet dosage form. Separation was achieved on an Phenomenexluna ODS C18 (250 mm × 4.6 mm i.d., 5 µm particle size) by using a mobile phase consisting of Ortho phosphoric acid: Acetonitrile (50:50 %v/v) at a flow rate of 1.0 ml/min (pH 3.5 adjusted with 0.1 % TEA in Water) isocratic pump mode, Injection volume 20 µl and wavelength of detection was kept at 283 nm. Retention time for Amiloride Hydrochloride and Furosemide was 1.810 min and 4.269 min respectively. Linearity of the proposed method was obtained in the range of 40-60 µg/ml and 320-480 µg/ml and Correlation coefficient was 0.999 and 0.998 for Amiloride hydrochloride and Furosemide, respectively. Forced degradation study was carried out on combined dosage form with various stress conditions like hydrolysis (acid and base hydrolysis), oxidative and thermal conditions as per ICH guideline Q2 (R1). The RP- HPLC method has shown an adequate separation for Amiloride hydrochloride and Furosemide from its degradation products. Proposed method was validated as per ICH guidelines for specificity, linearity, accuracy; precision and robustness for estimation of Amiloride hydrochloride and Furosemide in commercially available tablet dosage form and results were found to be satisfactory and significant. The developed and validated stability indicating RP-HPLC method can be used successfully for marketed formulations. Forced degradation studies help in generating degradants in much shorter span of time, mostly a few weeks can be used to develop the stability indicating method which can be applied later for the analysis of samples generated from accelerated and long term stability studies. Further, kinetic study was also performed for different forced degradation parameters of the same combination, which help in determining order of reaction.Keywords: amiloride hydrochloride, furosemide, kinetic study, stability indicating RP-HPLC method validation
Procedia PDF Downloads 462237 Numerical Investigation of Plasma-Fuel System (PFS) for Coal Ignition and Combustion
Authors: Vladimir Messerle, Alexandr Ustimenko, Oleg Lavrichshev
Abstract:
To enhance the efficiency of solid fuels’ use, to decrease the fuel oil rate in the thermal power plants fuel balance and to minimize harmful emissions, a plasma technology of coal ignition, gasification and incineration is successfully applied. This technology is plasma thermochemical preparation of fuel for burning (PTCPF). In the framework of this concept, some portion of pulverized solid fuel (PF) is separated from the main PF flow and undergone the activation by arc plasma in a specific chamber with plasma torch – PFS. The air plasma flame is a source of heat and additional oxidation, it provides a high-temperature medium enriched with radicals, where the fuel mixture is heated, volatile components of coal are extracted, and carbon is partially gasified. This active blended fuel can ignite the main PF flow supplied into the furnace. This technology provides the boiler start-up and stabilization of PF flame and eliminates the necessity for addition of highly reactive fuel. In the report, a model of PTCPF, implemented as a program PlasmaKinTherm for the PFS calculation is described. The model combines thermodynamic and kinetic methods for describing the process of PTCPF in PFS. The numerical investigation of operational parameters of PFS depending on the electric power of the plasma generator and steam coal ash content revealed the temperature and velocity of gas and coal particles, and concentrations of PTCPF products dependences on the PFS length. Main mechanisms of PTCPF were disclosed. It was found that in the range of electric power of plasma generator from 40 to 100 kW high ash bituminous coal, having consumption 1667 kg/h is ignited stably. High level of temperature (1740 K) and concentration of combustible components (44%) at the PFS exit is a confirmation of it. Augmentation in power of plasma generator results displacement maxima temperatures and speeds of PTCPF products upstream (in the direction of the plasma source). The maximum temperature and velocity vary in a narrow range of values and practically do not depend on the power of the plasma torch. The numerical study of indicators of the process of PTCPF depending on the ash content in the range of its values 20-70% demonstrated that at the exit of PFS concentration of combustible components decreases with an increase in coal ash, the temperature of the gaseous products is increasing, and coal carbon conversion rate is increased to a maximum value when the ash content of 60%, dramatically decreasing with further increase in the ash content.Keywords: coal, efficiency, ignition, numerical modeling, plasma generator, plasma-fuel system
Procedia PDF Downloads 297236 Synthesis of MIPs towards Precursors and Intermediates of Illicit Drugs and Their following Application in Sensing Unit
Authors: K. Graniczkowska, N. Beloglazova, S. De Saeger
Abstract:
The threat of synthetic drugs is one of the most significant current drug problems worldwide. The use of drugs of abuse has increased dramatically during the past three decades. Among others, Amphetamine-Type Stimulants (ATS) are globally the second most widely used drugs after cannabis, exceeding the use of cocaine and heroin. ATS are potent central nervous system (CNS) stimulants, capable of inducing euphoric static similar to cocaine. Recreational use of ATS is widespread, even though warnings of irreversible damage of the CNS were reported. ATS pose a big problem and their production contributes to the pollution of the environment by discharging big volumes of liquid waste to sewage system. Therefore, there is a demand to develop robust and sensitive sensors that can detect ATS and their intermediates in environmental water samples. A rapid and simple test is required. Analysis of environmental water samples (which sometimes can be a harsh environment) using antibody-based tests cannot be applied. Therefore, molecular imprinted polymers (MIPs), which are known as synthetic antibodies, have been chosen for that approach. MIPs are characterized with a high mechanical and thermal stability, show chemical resistance in a broad pH range and various organic or aqueous solvents. These properties make them the preferred type of receptors for application in the harsh conditions imposed by environmental samples. To the best of our knowledge, there are no existing MIPs-based sensors toward amphetamine and its intermediates. Also not many commercial MIPs for this application are available. Therefore, the aim of this study was to compare different techniques to obtain MIPs with high specificity towards ATS and characterize them for following use in a sensing unit. MIPs against amphetamine and its intermediates were synthesized using a few different techniques, such as electro-, thermo- and UV-initiated polymerization. Different monomers, cross linkers and initiators, in various ratios, were tested to obtain the best sensitivity and polymers properties. Subsequently, specificity and selectivity were compared with commercially available MIPs against amphetamine. Different linkers, such as lipoic acid, 3-mercaptopioponic acid and tyramine were examined, in combination with several immobilization techniques, to select the best procedure for attaching particles on sensor surface. Performed experiments allowed choosing an optimal method for the intended sensor application. Stability of MIPs in extreme conditions, such as highly acidic or basic was determined. Obtained results led to the conclusion about MIPs based sensor applicability in sewage system testing.Keywords: amphetamine type stimulants, environment, molecular imprinted polymers, MIPs, sensor
Procedia PDF Downloads 249235 Adaption to Climate Change as a Challenge for the Manufacturing Industry: Finding Business Strategies by Game-Based Learning
Authors: Jan Schmitt, Sophie Fischer
Abstract:
After the Corona pandemic, climate change is a further, long-lasting challenge the society must deal with. An ongoing climate change need to be prevented. Nevertheless, the adoption tothe already changed climate conditionshas to be focused in many sectors. Recently, the decisive role of the economic sector with high value added can be seen in the Corona crisis. Hence, manufacturing industry as such a sector, needs to be prepared for climate change and adaption. Several examples from the manufacturing industry show the importance of a strategic effort in this field: The outsourcing of a major parts of the value chain to suppliers in other countries and optimizing procurement logistics in a time-, storage- and cost-efficient manner within a network of global value creation, can lead vulnerable impacts due to climate-related disruptions. E.g. the total damage costs after the 2011 flood disaster in Thailand, including costs for delivery failures, were estimated at 45 billion US dollars worldwide. German car manufacturers were also affected by supply bottlenecks andhave close its plant in Thailand for a short time. Another OEM must reduce the production output. In this contribution, a game-based learning approach is presented, which should enable manufacturing companies to derive their own strategies for climate adaption out of a mix of different actions. Based on data from a regional study of small, medium and large manufacturing companies in Mainfranken, a strongly industrialized region of northern Bavaria (Germany) the game-based learning approach is designed. Out of this, the actual state of efforts due to climate adaption is evaluated. First, the results are used to collect single actions for manufacturing companies and second, further actions can be identified. Then, a variety of climate adaption activities can be clustered according to the scope of activity of the company. The combination of different actions e.g. the renewal of the building envelope with regard to thermal insulation, its benefits and drawbacks leads to a specific strategy for climate adaption for each company. Within the game-based approach, the players take on different roles in a fictionalcompany and discuss the order and the characteristics of each action taken into their climate adaption strategy. Different indicators such as economic, ecologic and stakeholder satisfaction compare the success of the respective measures in a competitive format with other virtual companies deriving their own strategy. A "play through" climate change scenarios with targeted adaptation actions illustrate the impact of different actions and their combination onthefictional company.Keywords: business strategy, climate change, climate adaption, game-based learning
Procedia PDF Downloads 206234 Assessing the Contribution of Informal Buildings to Energy Inefficiency in Kenya: A Case of Mukuru Slums
Authors: Bessy Thuranira
Abstract:
Buildings, as they are designed and used, may contribute to serious environmental problems because of excessive consumption of energy and other natural resources. Buildings in the informal settlements particularly, due to their unplanned physical structure and design, have significantly contributed the global energy problematic scenario typified by high-level inefficiencies. Energy used in buildings in Africa is estimated to be the highest of the total national electricity consumption. Over the last decade, assessments of energy consumption and efficiency/inefficiency has focused on formal and modern buildings. This study seeks to go off the beaten path, by focusing on energy use in informal settlements. Operationally, it sought to establish the contribution of informal buildings in the overall energy consumption in the city and the country at large. This study was carried out in Mukuru kwa Reuben informal settlement where there is distinct manifestation of different settlement morphologies within a small locality. The research narrowed down to three villages (Mombasa, Kosovo and Railway villages) within the settlement, that were representative of the different slum housing typologies. Due to the unpredictability nature and informality in slums, this study takes a multi-methodology approach. Detailed energy audits and measurements are carried out to predict total building consumption, and document building design and envelope, typology, materials and occupancy levels. Moreover, the study uses semi-structured interviews and to access energy supply, cost, access and consumption patterns. Observations and photographs are also used to shed more light on these parameters. The study reveals the high energy inefficiencies in slum buildings mainly related to sub-standard equipment and appliances, building design and settlement layout, poor access and utilization/consumption patterns of energy. The impacts of this inefficiency are high economic burden to the poor, high levels of pollution, lack of thermal comfort and emissions to the environment. The study highlights a set of urban planning and building design principles that can be used to retrofit slums into more energy efficient settlements. The study explores principles of responsive settlement layouts/plans and appropriate building designs that use the beneficial elements of nature to achieve natural lighting, natural ventilation, and solar control to create thermally comfortable, energy efficient, and environmentally responsive buildings/settlements. As energy efficiency in informal settlements is a relatively less explored area of efficiency, it requires further research and policy recommendations, for which this paper will set a background.Keywords: energy efficiency, informal settlements, renewable energy, settlement layout
Procedia PDF Downloads 131233 Water Desalination by Membrane Distillation with MFI Zeolite Membranes
Authors: Angelo Garofalo, Laura Donato, Maria Concetta Carnevale, Enrico Drioli, Omar Alharbi, Saad Aljlil, Alessandra Criscuoli, Catia Algieri
Abstract:
Nowadays, water scarcity may be considered one of the most important and serious questions concerning our community: in fact, there is a remarkable mismatch between water supply and water demand. Exploitation of natural fresh water resources combined with higher water demand has led to an increased requirement for alternative water resources. In this context, desalination provides such an alternative source, offering water otherwise not accessible for irrigational, industrial and municipal use. Considering the various drawbacks of the polymeric membranes, zeolite membranes represent a potential device for water desalination owing to their high thermal and chemical stability. In this area wide attention was focused on the MFI (silicalite, ZSM-5) membranes, having a pore size lower (about 5.5 Å) than the major kinetic diameters of hydrated ions. In the present work, a scale-up for the preparation of supported silicalite membranes was performed. Therefore, tubular membranes 30 cm long were synthesized by using the secondary growth method coupled with the cross flow seeding procedure. The secondary growth presents two steps: seeding and growth of zeolite crystals on the support. This process, decoupling zeolite nucleation from crystals growth, permits to control the conditions of each step separately. The seeding procedure consists of a cross-flow filtration through a porous support coupled with the support rotation and tilting. The combination of these three different aspects allows a homogeneous and uniform coverage of the support with the zeolite seeds. After characterization by scanning electron microscope (SEM), X-ray diffractometry (XRD) and Energy-dispersive X-ray (EDX) analysis, the prepared membranes were tested by means of single gas permeation and then by Vacuum Membrane Distillation (VMD) using both deionized water and NaCl solutions. The experimental results evidenced the possibility to perform the scale up for the preparation of almost defect free silicalite membranes. VMD tests indicated the possibility to prepare membranes that exhibit interesting performance in terms of fluxes and salt rejections for concentrations from 0.2 M to 0.9 M. Furthermore, it was possible to restore the original performance of the membrane after an identified cleaning procedure. Acknowledgements: The authors gratefully acknowledge the support of the King Abdulaziz City for Science and Technology (KACST) for funding the research Project 895/33 entitled ‘Preparation and Characterization of Zeolite Membranes for Water Treatment’.Keywords: desalination, MFI membranes, secondary growth, vacuum membrane distillation
Procedia PDF Downloads 253232 Photovoltaic-Driven Thermochemical Storage for Cooling Applications to Be Integrated in Polynesian Microgrids: Concept and Efficiency Study
Authors: Franco Ferrucci, Driss Stitou, Pascal Ortega, Franck Lucas
Abstract:
The energy situation in tropical insular regions, as found in the French Polynesian islands, presents a number of challenges, such as high dependence on imported fuel, high transport costs from the mainland and weak electricity grids. Alternatively, these regions have a variety of renewable energy resources, which favor the exploitation of smart microgrids and energy storage technologies. With regards to the electrical energy demand, the high temperatures in these regions during the entire year implies that a large proportion of consumption is used for cooling buildings, even during the evening hours. In this context, this paper presents an air conditioning system driven by photovoltaic (PV) electricity that combines a refrigeration system and a thermochemical storage process. Thermochemical processes are able to store energy in the form of chemical potential with virtually no losses, and this energy can be used to produce cooling during the evening hours without the need to run a compressor (thus no electricity is required). Such storage processes implement thermochemical reactors in which a reversible chemical reaction between a solid compound and a gas takes place. The solid/gas pair used in this study is BaCl2 reacting with ammonia (NH3), which is also the coolant fluid in the refrigeration circuit. In the proposed system, the PV-driven electric compressor is used during the daytime either to run the refrigeration circuit when a cooling demand occurs or to decompose the ammonia-charged salt and remove the gas from thermochemical reactor when no cooling is needed. During the evening, when there is no electricity from solar source, the system changes its configuration and the reactor reabsorbs the ammonia gas from the evaporator and produces the cooling effect. In comparison to classical PV-driven air conditioning units equipped with electrochemical batteries (e.g. Pb, Li-ion), the proposed system has the advantage of having a novel storage technology with a much longer charge/discharge life cycle, and no self-discharge. It also allows a continuous operation of the electric compressor during the daytime, thus avoiding the problems associated with the on-off cycling. This work focuses on the system concept and on the efficiency study of its main components. It also compares the thermochemical with electrochemical storage as well as with other forms of thermal storage, such as latent (ice) and sensible heat (chilled water). The preliminary results show that the system seems to be a promising alternative to simultaneously fulfill cooling and energy storage needs in tropical insular regions.Keywords: microgrid, solar air-conditioning, solid/gas sorption, thermochemical storage, tropical and insular regions
Procedia PDF Downloads 239231 Development of an Ecological Binder by Geopolymerization of Untreated Dredged Sediments
Authors: Lisa Monteiro, Jacqueline Saliba, Nadia Saiyouri, Humberto Y. Godoy
Abstract:
Theevolution of the global environmental context incites companies to reduce their impact by reusing local materials and promoting circular economy. Dredged sediments represent a potential source of materials due to their large volume. Indeed, the dredging operations carried out in Gironde alone generated an annual volume of sediment of approximately 9 million m³. Moreover, on the eve of the evolution of laws concerning dredging practices, the recovery of sediments is necessary to create a viable economy for their management. This thesis work is oriented towards the development of an ecological binder from the fine fraction of untreated dredged sediments. In fact, their physico-chemical properties make them favorable for the synthesis of geopolymer, current competitor of cement, thanks to its lower carbon footprint and environmental impact. However, several obstacles must be overcome before implementing this new family of materials: the use of sediments without thermal or chemical treatment, the absence of a formulation approach, ignorance of the reactions produced, etc. During the first year of the thesis, a physico-chemical characterization of the sediments made it possible to validate their use as precursors forgeopolymerization according to three criteria: their fineness, their mineralogical composition, and the percentage of amorphous phase. Following these results, several formulations have been defined, taking into account the environmental impact. The sediments were activated with an alkaline solution of sodium hydroxide and sodium silicate. Two other formulations with cement and blast furnace slag have been defined for comparison. The results highlighted the possibility of forming geopolymers from untreated and still wet dredged sediments. The development of structural bonds through the formation of hydrated sodium aluminosilicate thus leads to higher strengths at 90 days (4.78 MPa) than a mixture with cement (0.75 MPa). A 30% gain in CO₂ emissions has also been obtained compared to cement. In order to reduce the uncertainties linked to the absence of a formulation approach, to optimize the number of experiments to be carried out in the laboratory, and to obtain an optimal formulation, an analysis by mixing plan was conducted in order to frame the responses according to the proportions of the constituents. Following the obtaining of an optimal binder, the work will focus on the study of the durability and the interspecific variability of the sediments on the mechanical properties by testing the binder developed with different sediments dredged from the Bordeaux estuary. , the Grand Port Maritime of Bayonne, La Rochelle, and the Bassinsd'Arcachon.Keywords: compressive strength, dredged sediments, ecological binder, geopolymers
Procedia PDF Downloads 98230 Changes in Heavy Metals Bioavailability in Manure-Derived Digestates and Subsequent Hydrochars to Be Used as Soil Amendments
Authors: Hellen L. De Castro e Silva, Ana A. Robles Aguilar, Erik Meers
Abstract:
Digestates are residual by-products, rich in nutrients and trace elements, which can be used as organic fertilisers on soils. However, due to the non-digestibility of these elements and reduced dry matter during the anaerobic digestion process, metal concentrations are higher in digestates than in feedstocks, which might hamper their use as fertilisers according to the threshold values of some country policies. Furthermore, there is uncertainty regarding the required assimilated amount of these elements by some crops, which might result in their bioaccumulation. Therefore, further processing of the digestate to obtain safe fertilizing products has been recommended. This research aims to analyze the effect of applying the hydrothermal carbonization process to manure-derived digestates as a thermal treatment to reduce the bioavailability of heavy metals in mono and co-digestates derived from pig manure and maize from contaminated land in France. This study examined pig manure collected from a novel stable system (VeDoWs, province of East Flanders, Belgium) that separates the collection of pig urine and feces, resulting in a solid fraction of manure with high up-concentration of heavy metals and nutrients. Mono-digestion and co-digestion processes were conducted in semi-continuous reactors for 45 days at mesophilic conditions, in which the digestates were dried at 105 °C for 24 hours. Then, hydrothermal carbonization was applied to a 1:10 solid/water ratio to guarantee controlled experimental conditions in different temperatures (180, 200, and 220 °C) and residence times (2 h and 4 h). During the process, the pressure was generated autogenously, and the reactor was cooled down after completing the treatments. The solid and liquid phases were separated through vacuum filtration, in which the solid phase of each treatment -hydrochar- was dried and ground for chemical characterization. Different fractions (exchangeable / adsorbed fraction - F1, carbonates-bound fraction - F2, organic matter-bound fraction - F3, and residual fraction – F4) of some heavy metals (Cd, Cr, Ni, and Cr) have been determined in digestates and derived hydrochars using the modified Community Bureau of Reference (BCR) sequential extraction procedure. The main results indicated a difference in the heavy metals fractionation between digestates and their derived hydrochars; however, the hydrothermal carbonization operating conditions didn’t have remarkable effects on heavy metals partitioning between the hydrochars of the proposed treatments. Based on the estimated potential ecological risk assessment, there was one level decrease (considerate to moderate) when comparing the HMs partitioning in digestates and derived hydrochars.Keywords: heavy metals, bioavailability, hydrothermal treatment, bio-based fertilisers, agriculture
Procedia PDF Downloads 99229 Molecular Dynamics Study of Ferrocene in Low and Room Temperatures
Authors: Feng Wang, Vladislav Vasilyev
Abstract:
Ferrocene (Fe(C5H5)2, i.e., di-cyclopentadienyle iron (FeCp2) or Fc) is a unique example of ‘wrong but seminal’ in chemistry history. It has significant applications in a number of areas such as homogeneous catalysis, polymer chemistry, molecular sensing, and nonlinear optical materials. However, the ‘molecular carousel’ has been a ‘notoriously difficult example’ and subject to long debate for its conformation and properties. Ferrocene is a dynamic molecule. As a result, understanding of the dynamical properties of ferrocene is very important to understand the conformational properties of Fc. In the present study, molecular dynamic (MD) simulations are performed. In the simulation, we use 5 geometrical parameters to define the overall conformation of Fc and all the rest is a thermal noise. The five parameters are defined as: three parameters d---the distance between two Cp planes, α and δ to define the relative positions of the Cp planes, in which α is the angle of the Cp tilt and δ the angle the two Cp plane rotation like a carousel. Two parameters to position the Fe atom between two Cps, i.e., d1 for Fe-Cp1 and d2 for Fe-Cp2 distances. Our preliminary MD simulation discovered the five parameters behave differently. Distances of Fe to the Cp planes show that they are independent, practically identical without correlation. The relative position of two Cp rings, α, indicates that the two Cp planes are most likely not in a parallel position, rather, they tilt in a small angle α≠ 0°. The mean plane dihedral angle δ ≠ 0°. Moreover, δ is neither 0° nor 36°, indicating under those conditions, Fc is neither in a perfect eclipsed structure nor a perfect staggered structure. The simulations show that when the temperature is above 80K, the conformers are virtually in free rotations, A very interesting result from the MD simulation is the five C-Fe bond distances from the same Cp ring. They are surprisingly not identical but in three groups of 2, 2 and 1. We describe the pentagon formed by five carbon atoms as ‘turtle swimming’ for the motion of the Cp rings of Fc as shown in their dynamical animation video. The Fe- C(1) and Fe-C(2) which are identical as ‘the turtle back legs’, Fe-C(3) and Fe-C(4) which are also identical as turtle front paws’, and Fe-C(5) ---’the turtle head’. Such as ‘turtle swimming’ analog may be able to explain the single substituted derivatives of Fc. Again, the mean Fe-C distance obtained from MD simulation is larger than the quantum mechanically calculated Fe-C distances for eclipsed and staggered Fc, with larger deviation with respect to the eclipsed Fc than the staggered Fc. The same trend is obtained for the five Fe-C-H angles from same Cp ring of Fc. The simulated mean IR spectrum at 7K shows split spectral peaks at approximately 470 cm-1 and 488 cm-1, in excellent agreement with quantum mechanically calculated gas phase IR spectrum for eclipsed Fc. As the temperature increases over 80K, the clearly splitting IR spectrum become a very board single peak. Preliminary MD results will be presented.Keywords: ferrocene conformation, molecular dynamics simulation, conformer orientation, eclipsed and staggered ferrocene
Procedia PDF Downloads 216228 Theoretical Study of Gas Adsorption in Zirconium Clusters
Authors: Rasha Al-Saedi, Anthony Meijer
Abstract:
The progress of new porous materials has increased rapidly over the past decade for use in applications such as catalysis, gas storage and removal of environmentally unfriendly species due to their high surface area and high thermal stability. In this work, a theoretical study of the zirconium-based metal organic framework (MOFs) were examined in order to determine their potential for gas adsorption of various guest molecules: CO2, N2, CH4 and H2. The zirconium cluster consists of an inner Zr6O4(OH)4 core in which the triangular faces of the Zr6- octahedron are alternatively capped by O and OH groups which bound to nine formate groups and three benzoate groups linkers. General formula is [Zr(μ-O)4(μ-OH)4(HCOO)9((phyO2C)3X))] where X= CH2OH, CH2NH2, CH2CONH2, n(NH2); (n = 1-3). Three types of adsorption sites on the Zr metal center have been studied, named according to capped chemical groups as the ‘−O site’; the H of (μ-OH) site removed and added to (μ-O) site, ‘–OH site’; (μ-OH) site removed, the ‘void site’ where H2O molecule removed; (μ-OH) from one site and H from other (μ-OH) site, in addition to no defect versions. A series of investigations have been performed aiming to address this important issue. First, density functional theory DFT-B3LYP method with 6-311G(d,p) basis set was employed using Gaussian 09 package in order to evaluate the gas adsorption performance of missing-linker defects in zirconium cluster. Next, study the gas adsorption behaviour on different functionalised zirconium clusters. Those functional groups as mentioned above include: amines, alcohol, amide, in comparison with non-substitution clusters. Then, dispersion-corrected density functional theory (DFT-D) calculations were performed to further understand the enhanced gas binding on zirconium clusters. Finally, study the water effect on CO2 and N2 adsorption. The small functionalized Zr clusters were found to result in good CO2 adsorption over N2, CH4, and H2 due to the quadrupole moment of CO2 while N2, CH4 and H2 weakly polar or non-polar. The adsorption efficiency was determined using the dispersion method where the adsorption binding improved as most of the interactions, for example, van der Waals interactions are missing with the conventional DFT method. The calculated gas binding strengths on the no defect site are higher than those on the −O site, −OH site and the void site, this difference is especially notable for CO2. It has been stated that the enhanced affinity of CO2 of no defect versions is most likely due to the electrostatic interactions between the negatively charged O of CO2 and the positively charged H of (μ-OH) metal site. The uptake of the gas molecule does not enhance in presence of water as the latter binds to Zr clusters more strongly than gas species which attributed to the competition on adsorption sites.Keywords: density functional theory, gas adsorption, metal- organic frameworks, molecular simulation, porous materials, theoretical chemistry
Procedia PDF Downloads 183227 Microfluidic Plasmonic Bio-Sensing of Exosomes by Using a Gold Nano-Island Platform
Authors: Srinivas Bathini, Duraichelvan Raju, Simona Badilescu, Muthukumaran Packirisamy
Abstract:
A bio-sensing method, based on the plasmonic property of gold nano-islands, has been developed for detection of exosomes in a clinical setting. The position of the gold plasmon band in the UV-Visible spectrum depends on the size and shape of gold nanoparticles as well as on the surrounding environment. By adsorbing various chemical entities, or binding them, the gold plasmon band will shift toward longer wavelengths and the shift is proportional to the concentration. Exosomes transport cargoes of molecules and genetic materials to proximal and distal cells. Presently, the standard method for their isolation and quantification from body fluids is by ultracentrifugation, not a practical method to be implemented in a clinical setting. Thus, a versatile and cutting-edge platform is required to selectively detect and isolate exosomes for further analysis at clinical level. The new sensing protocol, instead of antibodies, makes use of a specially synthesized polypeptide (Vn96), to capture and quantify the exosomes from different media, by binding the heat shock proteins from exosomes. The protocol has been established and optimized by using a glass substrate, in order to facilitate the next stage, namely the transfer of the protocol to a microfluidic environment. After each step of the protocol, the UV-Vis spectrum was recorded and the position of gold Localized Surface Plasmon Resonance (LSPR) band was measured. The sensing process was modelled, taking into account the characteristics of the nano-island structure, prepared by thermal convection and annealing. The optimal molar ratios of the most important chemical entities, involved in the detection of exosomes were calculated as well. Indeed, it was found that the results of the sensing process depend on the two major steps: the molar ratios of streptavidin to biotin-PEG-Vn96 and, the final step, the capture of exosomes by the biotin-PEG-Vn96 complex. The microfluidic device designed for sensing of exosomes consists of a glass substrate, sealed by a PDMS layer that contains the channel and a collecting chamber. In the device, the solutions of linker, cross-linker, etc., are pumped over the gold nano-islands and an Ocean Optics spectrometer is used to measure the position of the Au plasmon band at each step of the sensing. The experiments have shown that the shift of the Au LSPR band is proportional to the concentration of exosomes and, thereby, exosomes can be accurately quantified. An important advantage of the method is the ability to discriminate between exosomes having different origins.Keywords: exosomes, gold nano-islands, microfluidics, plasmonic biosensing
Procedia PDF Downloads 171226 Olive Stone Valorization to Its Application on the Ceramic Industry
Authors: M. Martín-Morales, D. Eliche-Quesada, L. Pérez-Villarejo, M. Zamorano
Abstract:
Olive oil is a product of particular importance within the Mediterranean and Spanish agricultural food system, and more specifically in Andalusia, owing to be the world's main production area. Olive oil processing generates olive stones which are dried and cleaned to remove pulp and olive stones fines to produce biofuel characterized to have high energy efficiency in combustion processes. Olive stones fine fraction is not too much appreciated as biofuel, so it is important the study of alternative solutions to be valorized. Some researchers have studied recycling different waste to produce ceramic bricks. The main objective of this study is to investigate the effects of olive stones addition on the properties of fired clay bricks for building construction. Olive stones were substituted by volume (7.5%, 15%, and 25%) to brick raw material in three different sizes (lower than 1 mm, lower than 2 mm and between 1 and 2 mm). In order to obtain comparable results, a series without olive stones was also prepared. The prepared mixtures were compacted in laboratory type extrusion under a pressure of 2.5MPa for rectangular shaped (30 mm x 60 mm x 10 mm). Dried and fired industrial conditions were applied to obtain laboratory brick samples. Mass loss after sintering, bulk density, porosity, water absorption and compressive strength of fired samples were investigated and compared with a sample manufactured without biomass. Results obtained have shown that olive stone addition decreased mechanical properties due to the increase in water absorption, although values tested satisfied the requirements in EN 772-1 about methods of test for masonry units (Part 1: Determination of compressive strength). Finally, important advantages related to the properties of bricks as well as their environmental effects could be obtained with the use of biomass studied to produce ceramic bricks. The increasing of the percentage of olive stones incorporated decreased bulk density and then increased the porosity of bricks. On the one hand, this lower density supposes a weight reduction of bricks to be transported, handled as well as the lightening of building; on the other hand, biomass in clay contributes to auto thermal combustion which involves lower fuel consumption during firing step. Consequently, the production of porous clay bricks using olive stones could reduce atmospheric emissions and improve their life cycle assessment, producing eco-friendly clay bricks.Keywords: clay bricks, olive stones, sustainability, valorization
Procedia PDF Downloads 151225 Winter – Not Spring - Climate Drives Annual Adult Survival in Common Passerines: A Country-Wide, Multi-Species Modeling Exercise
Authors: Manon Ghislain, Timothée Bonnet, Olivier Gimenez, Olivier Dehorter, Pierre-Yves Henry
Abstract:
Climatic fluctuations affect the demography of animal populations, generating changes in population size, phenology, distribution and community assemblages. However, very few studies have identified the underlying demographic processes. For short-lived species, like common passerine birds, are these changes generated by changes in adult survival or in fecundity and recruitment? This study tests for an effect of annual climatic conditions (spring and winter) on annual, local adult survival at very large spatial (a country, 252 sites), temporal (25 years) and biological (25 species) scales. The Constant Effort Site ringing has allowed the collection of capture - mark - recapture data for 100 000 adult individuals since 1989, over metropolitan France, thus documenting annual, local survival rates of the most common passerine birds. We specifically developed a set of multi-year, multi-species, multi-site Bayesian models describing variations in local survival and recapture probabilities. This method allows for a statistically powerful hierarchical assessment (global versus species-specific) of the effects of climate variables on survival. A major part of between-year variations in survival rate was common to all species (74% of between-year variance), whereas only 26% of temporal variation was species-specific. Although changing spring climate is commonly invoked as a cause of population size fluctuations, spring climatic anomalies (mean precipitation or temperature for March-August) do not impact adult survival: only 1% of between-year variation of species survival is explained by spring climatic anomalies. However, for sedentary birds, winter climatic anomalies (North Atlantic Oscillation) had a significant, quadratic effect on adult survival, birds surviving less during intermediate years than during more extreme years. For migratory birds, we do not detect an effect of winter climatic anomalies (Sahel Rainfall). We will analyze the life history traits (migration, habitat, thermal range) that could explain a different sensitivity of species to winter climate anomalies. Overall, we conclude that changes in population sizes for passerine birds are unlikely to be the consequences of climate-driven mortality (or emigration) in spring but could be induced by other demographic parameters, like fecundity.Keywords: Bayesian approach, capture-recapture, climate anomaly, constant effort sites scheme, passerine, seasons, survival
Procedia PDF Downloads 301