Search results for: teaching learning based algorithm
31189 Comparisons between Student Leaning Achievements and Their Problem Solving Skills on Stoichiometry Issue with the Think-Pair-Share Model and Stem Education Method
Authors: P. Thachitasing, N. Jansawang, W. Rakrai, T. Santiboon
Abstract:
The aim of this study is to investigate of the comparing the instructional design models between the Think-Pair-Share and Conventional Learning (5E Inquiry Model) Processes to enhance students’ learning achievements and their problem solving skills on stoichiometry issue for concerning the 2-instructional method with a sample consisted of 80 students in 2 classes at the 11th grade level in Chaturaphak Phiman Ratchadaphisek School. Students’ different learning outcomes in chemistry classes with the cluster random sampling technique were used. Instructional Methods designed with the 40-experimenl student group by Think-Pair-Share process and the 40-controlling student group by the conventional learning (5E Inquiry Model) method. These learning different groups were obtained using the 5 instruments; the 5-lesson instructional plans of Think-Pair-Share and STEM Education Method, students’ learning achievements and their problem solving skills were assessed with the pretest and posttest techniques, students’ outcomes of their instructional the Think-Pair-Share (TPSM) and the STEM Education Methods were compared. Statistically significant was differences with the paired t-test and F-test between posttest and pretest technique of the whole students in chemistry classes were found, significantly. Associations between student learning outcomes in chemistry and two methods of their learning to students’ learning achievements and their problem solving skills also were found. The use of two methods for this study is revealed that the students perceive their learning achievements to their problem solving skills to be differently learning achievements in different groups are guiding practical improvements in chemistry classrooms to assist teacher in implementing effective approaches for improving instructional methods. Students’ learning achievements of mean average scores to their controlling group with the Think-Pair-Share Model (TPSM) are lower than experimental student group for the STEM education method, evidence significantly. The E1/E2 process were revealed evidence of 82.56/80.44, and 83.02/81.65 which results based on criteria are higher than of 80/80 standard level with the IOC, consequently. The predictive efficiency (R2) values indicate that 61% and 67% and indicate that 63% and 67% of the variances in chemistry classes to their learning achievements on posttest in chemistry classes of the variances in students’ problem solving skills to their learning achievements to their chemistry classrooms on Stoichiometry issue with the posttest were attributable to their different learning outcomes for the TPSM and STEMe instructional methods.Keywords: comparisons, students’ learning achievements, think-pare-share model (TPSM), stem education, problem solving skills, chemistry classes, stoichiometry issue
Procedia PDF Downloads 25031188 The Relationship between Mobile Phone Usage and Secondary School Students’ Academic Performance: Work Experience at an International School
Authors: L. N. P. Wedikandage, Mohamed Razmi Zahir
Abstract:
Technology is a global imperative because of its contributions to human existence and because it has improved global socioeconomic relations. As a result, the mobile phone has become the most important mode of communication today. Smartphones, Internet-enabled devices with built-in computer software and applications, are one of the most significant inventions of the twenty-first century. Technology is advantageous to many people, especially those involved in education. It is an important learning tool for today's schoolchildren. It enables students to access online learning platforms and course resources and interact digitally. Senior secondary students, in particular, have some of the most expensive and sophisticated mobile phones, tablets, and iPads capable of connecting to the internet and various social media platforms, other websites, and so on. At present, the use of mobile phones' potential for effective teaching and learning is growing. This is due to the benefits of mobile learning, including the ability to share knowledge without any limits in space or Time and the capacity to facilitate the development of critical thinking, participatory learning, problem-solving, and the development of lifelong communication skills. However, it is yet unclear how mobile devices may affect education and how they may affect opportunities for learning. As a result, the purpose of this research was to ascertain the relationship between mobile phone usage and the academic Performance of secondary-level students at an international school in Sri Lanka. The study's sample consisted of 523 secondary-level students from an international school, ranging from Form 1 to Upper 6. For the study, a survey research design and questionnaires were used. Google Forms was used to create the students' survey. There were three hypotheses tested to find out the relationship between mobile phone usage and academic preference. The findings show that there is a positive relationship between mobile phone usage and academic performance among secondary school students (the number of students obtaining simple passes is significantly higher when mobile phones are being used for more than 7 hours), no relationship between mobile phone usage and academic performance among secondary school students of different parents' occupations, and a relationship between the frequency of mobile phone usage and academic performance among secondary school students.Keywords: mobile phone, academic performance, secondary level, international schools
Procedia PDF Downloads 9231187 The Effects of the Inference Process in Reading Texts in Arabic
Authors: May George
Abstract:
Inference plays an important role in the learning process and it can lead to a rapid acquisition of a second language. When learning a non-native language, i.e., a critical language like Arabic, the students depend on the teacher’s support most of the time to learn new concepts. The students focus on memorizing the new vocabulary and stress on learning all the grammatical rules. Hence, the students became mechanical and cannot produce the language easily. As a result, they are unable to predict the meaning of words in the context by relying heavily on the teacher, in that they cannot link their prior knowledge or even identify the meaning of the words without the support of the teacher. This study explores how the teacher guides students learning during the inference process and what are the processes of learning that can direct student’s inference.Keywords: inference, reading, Arabic, language acquisition
Procedia PDF Downloads 53331186 The Effectiveness of Blended Learning in Pre-Registration Nurse Education: A Mixed Methods Systematic Review and Met Analysis
Authors: Albert Amagyei, Julia Carroll, Amanda R. Amorim Adegboye, Laura Strumidlo, Rosie Kneafsey
Abstract:
Introduction: Classroom-based learning has persisted as the mainstream model of pre-registration nurse education. This model is often rigid, teacher-centered, and unable to support active learning and the practical learning needs of nursing students. Health Education England (HEE), a public body of the Department of Health and Social Care, hypothesises that blended learning (BL) programmes may address health system and nursing profession challenges, such as nursing shortages and lack of digital expertise, by exploring opportunities for providing predominantly online, remote-access study which may increase nursing student recruitment, offering alternate pathways to nursing other than the traditional classroom route. This study will provide evidence for blended learning strategies adopted in nursing education as well as examine nursing student learning experiences concerning the challenges and opportunities related to using blended learning within nursing education. Objective: This review will explore the challenges and opportunities of BL within pre-registration nurse education from the student's perspective. Methods: The search was completed within five databases. Eligible studies were appraised independently by four reviewers. The JBI-convergent segregated approach for mixed methods review was used to assess and synthesize the data. The study’s protocol has been registered with the International Register of Systematic Reviews with registration number// PROSPERO (CRD42023423532). Results: Twenty-seven (27) studies (21 quantitative and 6 qualitative) were included in the review. The study confirmed that BL positively impacts nursing students' learning outcomes, as demonstrated by the findings of the meta-analysis and meta-synthesis. Conclusion: The review compared BL to traditional learning, simulation, laboratory, and online learning on nursing students’ learning and programme outcomes as well as learning behaviour and experience. The results show that BL could effectively improve nursing students’ knowledge, academic achievement, critical skills, and clinical performance as well as enhance learner satisfaction and programme retention. The review findings outline that students’ background characteristics, BL design, and format significantly impact the success of the BL nursing programme.Keywords: nursing student, blended learning, pre-registration nurse education, online learning
Procedia PDF Downloads 5731185 Digital Dialogue Game, Epistemic Beliefs, Argumentation and Learning
Authors: Omid Noroozi, Martin Mulder
Abstract:
The motivational potential of educational games is undeniable especially for teaching topics and skills that are difficult to deal with in traditional educational situations such as argumentation competence. Willingness to argue has an association with student epistemic beliefs, which can influence whether, and the way in which students engage in argumentative discourse activities and critical discussion. The goal of this study was to explore how undergraduate students engage with argumentative discourse activities which have been designed to intensify debate, and whether epistemic beliefs are significant to the outcomes. A pre-test, post-test design was used with students who were assigned to groups of four. They were asked to argue a controversial topic with the aim of exploring various perspectives, and the 'pros and cons' on the topic of 'Genetically Modified Organisms (GMOs)'. The results show that the game facilitated argumentative discourse and a willingness to argue and challenged peers, regardless of students’ epistemic beliefs. Furthermore, the game was evaluated positively in terms of students’ motivation and satisfaction with the learning experience.Keywords: argumentation, attitudinal change, epistemic beliefs, dialogue, digital game objectives and theoretical
Procedia PDF Downloads 40931184 Challenge Based Learning Approach for a Craft Mezcal Kiln Energetic Redesign
Authors: Jonathan A. Sánchez Muñoz, Gustavo Flores Eraña, Juan M. Silva
Abstract:
Mexican Mezcal industry has reached attention during the last decade due to it has been a popular beverage demanded by North American and European markets, reaching popularity due to its crafty character. Despite its wide demand, productive processes are still made with rudimentary equipment, and there is a lack of evidence to improve kiln energy efficiency. Tec21 is a challenge-based learning curricular model implemented by Tecnológico de Monterrey since 2019, where each formation unit requires an industrial partner. “Problem processes solution” is a formation unity designed for mechatronics engineers, where students apply the acquired knowledge in thermofluids and apply electronic. During five weeks, students are immersed in an industrial problem to obtain a proper level of competencies according to formation unit designers. This work evaluates the competencies acquired by the student through qualitative research methodology. Several evaluation instruments (report, essay, and poster) were selected to evaluate etic argumentation, principles of sustainability, implemented actions, process modelling, and redesign feasibility.Keywords: applied electronic, challenge based learning, competencies, mezcal industry, thermofluids
Procedia PDF Downloads 12331183 Unsteady Three-Dimensional Adaptive Spatial-Temporal Multi-Scale Direct Simulation Monte Carlo Solver to Simulate Rarefied Gas Flows in Micro/Nano Devices
Authors: Mirvat Shamseddine, Issam Lakkis
Abstract:
We present an efficient, three-dimensional parallel multi-scale Direct Simulation Monte Carlo (DSMC) algorithm for the simulation of unsteady rarefied gas flows in micro/nanosystems. The algorithm employs a novel spatiotemporal adaptivity scheme. The scheme performs a fully dynamic multi-level grid adaption based on the gradients of flow macro-parameters and an automatic temporal adaptation. The computational domain consists of a hierarchical octree-based Cartesian grid representation of the flow domain and a triangular mesh for the solid object surfaces. The hybrid mesh, combined with the spatiotemporal adaptivity scheme, allows for increased flexibility and efficient data management, rendering the framework suitable for efficient particle-tracing and dynamic grid refinement and coarsening. The parallel algorithm is optimized to run DSMC simulations of strongly unsteady, non-equilibrium flows over multiple cores. The presented method is validated by comparing with benchmark studies and then employed to improve the design of micro-scale hotwire thermal sensors in rarefied gas flows.Keywords: DSMC, oct-tree hierarchical grid, ray tracing, spatial-temporal adaptivity scheme, unsteady rarefied gas flows
Procedia PDF Downloads 30531182 Real-Time Detection of Space Manipulator Self-Collision
Authors: Zhang Xiaodong, Tang Zixin, Liu Xin
Abstract:
In order to avoid self-collision of space manipulators during operation process, a real-time detection method is proposed in this paper. The manipulator is fitted into a cylinder enveloping surface, and then the detection algorithm of collision between cylinders is analyzed. The collision model of space manipulator self-links can be detected by using this algorithm in real-time detection during the operation process. To ensure security of the operation, a safety threshold is designed. The simulation and experiment results verify the effectiveness of the proposed algorithm for a 7-DOF space manipulator.Keywords: space manipulator, collision detection, self-collision, the real-time collision detection
Procedia PDF Downloads 47431181 Identifying Teachers’ Perception of Integrity in School-Based Assessment Practice: A Case Study
Authors: Abd Aziz Bin Abd Shukor, Eftah Binti Moh Hj Abdullah
Abstract:
This case study aims to identify teachers’ perception as regards integrity in School-Ba sed Assessment (PBS) practice. This descriptive study involved 9 teachers from 4 secondary schools in 3 districts in the state of Perak. The respondents had undergone an integrity in PBS Practice interview using a focused group discussion method. The overall findings showed that the teachers believed that integrity in PBS practice could be achieved by adjusting the teaching methods align with learning objectives and the students’ characteristics. Many teachers, parents and student did not understand the best practice of PBS. This would affect the integrity in PBS practice. Teachers did not emphasis the principles and ethics. Their integrity as an innovative public servant may also be affected with the frequently changing assessment system, lack of training and no prior action research. The analysis of findings showed that the teachers viewed that organizational integrity involving the integrity of PBS was difficult to be implemented based on the expectations determined by Malaysia Ministry of Education (KPM). A few elements which assisted in the achievement of PBS integrity were the training, students’ understanding, the parents’ understanding of PBS, environment (involving human resources such as support and appreciation and non-human resources such as technology infrastructure readiness and media). The implications of this study show that teachers, as the PBS implementers, have a strong influence on the integrity of PBS. However, the transformation of behavior involving PBS integrity among teachers requires the stabilisation of support and infrastructure in order to enable the teachers to implement PBS in an ethical manner.Keywords: assessment integrity, integrity, perception, school-based assessment
Procedia PDF Downloads 35631180 Discursively Examination of 8th Grade Students’ Geometric Thinking Levels
Authors: Ferdağ Çulhan, Emine Gaye Çontay
Abstract:
Geometric thinking levels created by Van Hiele are used to determine students' progress in geometric thinking. Many studies have been conducted on geometric thinking levels and they have taken their place in teaching curricula over time. It is thought that geometric thinking levels, which have become so important in teaching, can be examined in depth. In order to make an in-depth analysis, it was decided that the most appropriate management was discourse analysis. In this study, the focus is on examining the geometric thinking levels of 8th grade students from a discursive point of view. Sfard (2008)'s "Commognitive" theory will be used to conduct discursive analysis. The "Global Van Hiele Questionnaire" created by Patkin (2014) and translated into Turkish for this research will be used in the research. The "Global Van Hiele Questionnaire" contains questions from the sub-learning domain of triangles and quadrilaterals, circles and geometric objects. It has a wider scope than many "Van Hiele Questionnaires". “Global Van Hiele Questionnaire” will be applied to 8th grade students. Then, the geometric thinking levels of the students will be determined and interviews will be held with two students from each of the 1st, 2nd and 3rd levels. The interviews will be recorded and the students' discourses will be examined. By evaluating the relations between the students' geometric thinking levels and their discourses, it will be examined how much their discourse reflects their level of thinking. In this way, it is thought that students' geometric thinking processes can be better understood.Keywords: mathematical discourses, commognitive framework, geometric thinking levels, van hiele
Procedia PDF Downloads 13531179 Learning in the Virtual Laboratory via Design of Automation Process for Wooden Hammers Marking
Authors: A. Javorova, J. Oravcova, K. Velisek
Abstract:
The article summarizes the experience of technical subjects teaching methodologies using a number of software products to solve specific assigned tasks described in this paper. Task is about the problems of automation and mechanization in the industry. Specifically, it focuses on introducing automation in the wood industry. The article describes the design of the automation process for marking wooden hammers. Similar problems are solved by students in CA laboratory.Keywords: CA system, education, simulation, subject
Procedia PDF Downloads 29931178 ICT-based Methodologies and Students’ Academic Performance and Retention in Physics: A Case with Newton Laws of Motion
Authors: Gabriel Ocheleka Aniedi A. Udo, Patum Wasinda
Abstract:
The study was carried out to appraise the impact of ICT-based teaching methodologies (video-taped instructions and Power Point presentations) on academic performance and retention of secondary school students in Physics, with particular interest in Newton Laws of Motion. The study was conducted in Cross River State, Nigeria, with a quasi-experimental research design using non-randomised pre-test and post-test control group. The sample for the study consisted of 176 SS2 students drawn from four intact classes of four secondary schools within the study area. Physics Achievement Test (PAT), with a reliability coefficient of 0.85, was used for data collection. Mean and Analysis of Covariance (ANCOVA) was used in the treatment of the obtained data. The results of the study showed that there was a significant difference in the academic performance and retention of students taught using video-taped instructions and those taught using power point presentations. Findings of the study showed that students taught using video-taped instructions had a higher academic performance and retention than those taught using power point presentations. The study concludes that the use of blended ICT-based teaching methods can improve learner’s academic performance and retention.Keywords: video taped instruction (VTI), power point presentation (PPT), academic performance, retention, physics
Procedia PDF Downloads 9831177 Enabling Non-invasive Diagnosis of Thyroid Nodules with High Specificity and Sensitivity
Authors: Sai Maniveer Adapa, Sai Guptha Perla, Adithya Reddy P.
Abstract:
Thyroid nodules can often be diagnosed with ultrasound imaging, although differentiating between benign and malignant nodules can be challenging for medical professionals. This work suggests a novel approach to increase the precision of thyroid nodule identification by combining machine learning and deep learning. The new approach first extracts information from the ultrasound pictures using a deep learning method known as a convolutional autoencoder. A support vector machine, a type of machine learning model, is then trained using these features. With an accuracy of 92.52%, the support vector machine can differentiate between benign and malignant nodules. This innovative technique may decrease the need for pointless biopsies and increase the accuracy of thyroid nodule detection.Keywords: thyroid tumor diagnosis, ultrasound images, deep learning, machine learning, convolutional auto-encoder, support vector machine
Procedia PDF Downloads 6231176 Comprehensive Machine Learning-Based Glucose Sensing from Near-Infrared Spectra
Authors: Bitewulign Mekonnen
Abstract:
Context: This scientific paper focuses on the use of near-infrared (NIR) spectroscopy to determine glucose concentration in aqueous solutions accurately and rapidly. The study compares six different machine learning methods for predicting glucose concentration and also explores the development of a deep learning model for classifying NIR spectra. The objective is to optimize the detection model and improve the accuracy of glucose prediction. This research is important because it provides a comprehensive analysis of various machine-learning techniques for estimating aqueous glucose concentrations. Research Aim: The aim of this study is to compare and evaluate different machine-learning methods for predicting glucose concentration from NIR spectra. Additionally, the study aims to develop and assess a deep-learning model for classifying NIR spectra. Methodology: The research methodology involves the use of machine learning and deep learning techniques. Six machine learning regression models, including support vector machine regression, partial least squares regression, extra tree regression, random forest regression, extreme gradient boosting, and principal component analysis-neural network, are employed to predict glucose concentration. The NIR spectra data is randomly divided into train and test sets, and the process is repeated ten times to increase generalization ability. In addition, a convolutional neural network is developed for classifying NIR spectra. Findings: The study reveals that the SVMR, ETR, and PCA-NN models exhibit excellent performance in predicting glucose concentration, with correlation coefficients (R) > 0.99 and determination coefficients (R²)> 0.985. The deep learning model achieves high macro-averaging scores for precision, recall, and F1-measure. These findings demonstrate the effectiveness of machine learning and deep learning methods in optimizing the detection model and improving glucose prediction accuracy. Theoretical Importance: This research contributes to the field by providing a comprehensive analysis of various machine-learning techniques for estimating glucose concentrations from NIR spectra. It also explores the use of deep learning for the classification of indistinguishable NIR spectra. The findings highlight the potential of machine learning and deep learning in enhancing the prediction accuracy of glucose-relevant features. Data Collection and Analysis Procedures: The NIR spectra and corresponding references for glucose concentration are measured in increments of 20 mg/dl. The data is randomly divided into train and test sets, and the models are evaluated using regression analysis and classification metrics. The performance of each model is assessed based on correlation coefficients, determination coefficients, precision, recall, and F1-measure. Question Addressed: The study addresses the question of whether machine learning and deep learning methods can optimize the detection model and improve the accuracy of glucose prediction from NIR spectra. Conclusion: The research demonstrates that machine learning and deep learning methods can effectively predict glucose concentration from NIR spectra. The SVMR, ETR, and PCA-NN models exhibit superior performance, while the deep learning model achieves high classification scores. These findings suggest that machine learning and deep learning techniques can be used to improve the prediction accuracy of glucose-relevant features. Further research is needed to explore their clinical utility in analyzing complex matrices, such as blood glucose levels.Keywords: machine learning, signal processing, near-infrared spectroscopy, support vector machine, neural network
Procedia PDF Downloads 9731175 Traffic Forecasting for Open Radio Access Networks Virtualized Network Functions in 5G Networks
Authors: Khalid Ali, Manar Jammal
Abstract:
In order to meet the stringent latency and reliability requirements of the upcoming 5G networks, Open Radio Access Networks (O-RAN) have been proposed. The virtualization of O-RAN has allowed it to be treated as a Network Function Virtualization (NFV) architecture, while its components are considered Virtualized Network Functions (VNFs). Hence, intelligent Machine Learning (ML) based solutions can be utilized to apply different resource management and allocation techniques on O-RAN. However, intelligently allocating resources for O-RAN VNFs can prove challenging due to the dynamicity of traffic in mobile networks. Network providers need to dynamically scale the allocated resources in response to the incoming traffic. Elastically allocating resources can provide a higher level of flexibility in the network in addition to reducing the OPerational EXpenditure (OPEX) and increasing the resources utilization. Most of the existing elastic solutions are reactive in nature, despite the fact that proactive approaches are more agile since they scale instances ahead of time by predicting the incoming traffic. In this work, we propose and evaluate traffic forecasting models based on the ML algorithm. The algorithms aim at predicting future O-RAN traffic by using previous traffic data. Detailed analysis of the traffic data was carried out to validate the quality and applicability of the traffic dataset. Hence, two ML models were proposed and evaluated based on their prediction capabilities.Keywords: O-RAN, traffic forecasting, NFV, ARIMA, LSTM, elasticity
Procedia PDF Downloads 23631174 Machine Learning Prediction of Compressive Damage and Energy Absorption in Carbon Fiber-Reinforced Polymer Tubular Structures
Authors: Milad Abbasi
Abstract:
Carbon fiber-reinforced polymer (CFRP) composite structures are increasingly being utilized in the automotive industry due to their lightweight and specific energy absorption capabilities. Although it is impossible to predict composite mechanical properties directly using theoretical methods, various research has been conducted so far in the literature for accurate simulation of CFRP structures' energy-absorbing behavior. In this research, axial compression experiments were carried out on hand lay-up unidirectional CFRP composite tubes. The fabrication method allowed the authors to extract the material properties of the CFRPs using ASTM D3039, D3410, and D3518 standards. A neural network machine learning algorithm was then utilized to build a robust prediction model to forecast the axial compressive properties of CFRP tubes while reducing high-cost experimental efforts. The predicted results have been compared with the experimental outcomes in terms of load-carrying capacity and energy absorption capability. The results showed high accuracy and precision in the prediction of the energy-absorption capacity of the CFRP tubes. This research also demonstrates the effectiveness and challenges of machine learning techniques in the robust simulation of composites' energy-absorption behavior. Interestingly, the proposed method considerably condensed numerical and experimental efforts in the simulation and calibration of CFRP composite tubes subjected to compressive loading.Keywords: CFRP composite tubes, energy absorption, crushing behavior, machine learning, neural network
Procedia PDF Downloads 15731173 Facial Emotion Recognition with Convolutional Neural Network Based Architecture
Authors: Koray U. Erbas
Abstract:
Neural networks are appealing for many applications since they are able to learn complex non-linear relationships between input and output data. As the number of neurons and layers in a neural network increase, it is possible to represent more complex relationships with automatically extracted features. Nowadays Deep Neural Networks (DNNs) are widely used in Computer Vision problems such as; classification, object detection, segmentation image editing etc. In this work, Facial Emotion Recognition task is performed by proposed Convolutional Neural Network (CNN)-based DNN architecture using FER2013 Dataset. Moreover, the effects of different hyperparameters (activation function, kernel size, initializer, batch size and network size) are investigated and ablation study results for Pooling Layer, Dropout and Batch Normalization are presented.Keywords: convolutional neural network, deep learning, deep learning based FER, facial emotion recognition
Procedia PDF Downloads 28231172 The Effectiveness of Gamified Learning on Student Learning in Computer Science Education: A Systematic Review (2010-2018)
Authors: Shurui Bai, Biyun Huang, Khe Foon Hew
Abstract:
Gamification is defined as the use of game design elements in non-game contexts. The primary purpose of using gamification in an educational context is to engage students in school activities such that their likelihood of completion is increased. But how actually effective is gamification in improving student learning? In order to answer this question, this paper provides a systematic review of prior research studies on gamification in K-12 and university contexts limited to computer science discipline. Unlike other published gamification review works, we specifically analyzed comparison-based studies in quasi-experiment, historical control, and randomization rather than studies with mere anecdotal or phenomenological results. The main purpose for this is to discuss possible causal effects of gamified practices on student performance, behavior change, and perceptual skills following an integrative model. Implications for practice are discussed, along with several suggestions for future research studies.Keywords: computer science, gamification, learning performance, systematic review
Procedia PDF Downloads 13731171 Performance Comparison of ADTree and Naive Bayes Algorithms for Spam Filtering
Authors: Thanh Nguyen, Andrei Doncescu, Pierre Siegel
Abstract:
Classification is an important data mining technique and could be used as data filtering in artificial intelligence. The broad application of classification for all kind of data leads to be used in nearly every field of our modern life. Classification helps us to put together different items according to the feature items decided as interesting and useful. In this paper, we compare two classification methods Naïve Bayes and ADTree use to detect spam e-mail. This choice is motivated by the fact that Naive Bayes algorithm is based on probability calculus while ADTree algorithm is based on decision tree. The parameter settings of the above classifiers use the maximization of true positive rate and minimization of false positive rate. The experiment results present classification accuracy and cost analysis in view of optimal classifier choice for Spam Detection. It is point out the number of attributes to obtain a tradeoff between number of them and the classification accuracy.Keywords: classification, data mining, spam filtering, naive bayes, decision tree
Procedia PDF Downloads 41631170 A Greedy Alignment Algorithm Supporting Medication Reconciliation
Authors: David Tresner-Kirsch
Abstract:
Reconciling patient medication lists from multiple sources is a critical task supporting the safe delivery of patient care. Manual reconciliation is a time-consuming and error-prone process, and recently attempts have been made to develop efficiency- and safety-oriented automated support for professionals performing the task. An important capability of any such support system is automated alignment – finding which medications from a list correspond to which medications from a different source, regardless of misspellings, naming differences (e.g. brand name vs. generic), or changes in treatment (e.g. switching a patient from one antidepressant class to another). This work describes a new algorithmic solution to this alignment task, using a greedy matching approach based on string similarity, edit distances, concept extraction and normalization, and synonym search derived from the RxNorm nomenclature. The accuracy of this algorithm was evaluated against a gold-standard corpus of 681 medication records; this evaluation found that the algorithm predicted alignments with 99% precision and 91% recall. This performance is sufficient to support decision support applications for medication reconciliation.Keywords: clinical decision support, medication reconciliation, natural language processing, RxNorm
Procedia PDF Downloads 29031169 Development of a Turbulent Boundary Layer Wall-pressure Fluctuations Power Spectrum Model Using a Stepwise Regression Algorithm
Authors: Zachary Huffman, Joana Rocha
Abstract:
Wall-pressure fluctuations induced by the turbulent boundary layer (TBL) developed over aircraft are a significant source of aircraft cabin noise. Since the power spectral density (PSD) of these pressure fluctuations is directly correlated with the amount of sound radiated into the cabin, the development of accurate empirical models that predict the PSD has been an important ongoing research topic. The sound emitted can be represented from the pressure fluctuations term in the Reynoldsaveraged Navier-Stokes equations (RANS). Therefore, early TBL empirical models (including those from Lowson, Robertson, Chase, and Howe) were primarily derived by simplifying and solving the RANS for pressure fluctuation and adding appropriate scales. Most subsequent models (including Goody, Efimtsov, Laganelli, Smol’yakov, and Rackl and Weston models) were derived by making modifications to these early models or by physical principles. Overall, these models have had varying levels of accuracy, but, in general, they are most accurate under the specific Reynolds and Mach numbers they were developed for, while being less accurate under other flow conditions. Despite this, recent research into the possibility of using alternative methods for deriving the models has been rather limited. More recent studies have demonstrated that an artificial neural network model was more accurate than traditional models and could be applied more generally, but the accuracy of other machine learning techniques has not been explored. In the current study, an original model is derived using a stepwise regression algorithm in the statistical programming language R, and TBL wall-pressure fluctuations PSD data gathered at the Carleton University wind tunnel. The theoretical advantage of a stepwise regression approach is that it will automatically filter out redundant or uncorrelated input variables (through the process of feature selection), and it is computationally faster than machine learning. The main disadvantage is the potential risk of overfitting. The accuracy of the developed model is assessed by comparing it to independently sourced datasets.Keywords: aircraft noise, machine learning, power spectral density models, regression models, turbulent boundary layer wall-pressure fluctuations
Procedia PDF Downloads 14131168 Like a Bridge over Troubled Waters: The Value of Joint Learning Programs in Intergroup Identity-Based Conflict in Israel
Authors: Rachelly Ashwall, Ephraim Tabory
Abstract:
In an attempt to reduce the level of a major identity-based conflict in Israel between Ultra-orthodox and secular Jews, several initiatives in recent years have tried to bring members of the two societies together in facilitated joint discussion forums. Our study analyzes the impact of two types of such programs: joint mediation training classes and confrontation-based learning programs that are designed to facilitate discussions over controversial issues. These issues include claims about an unequal shouldering of national obligations such as military service, laws requiring public observance of the Sabbath, and discrimination against women, among others. The study examines the factors that enabled the two groups to reduce their social distance, and increase their understanding of each other, and develop a recognition and tolerance of the other group's particular social identity. The research conducted over a course of two years involved observations of the activities of the groups, interviews with the participants, and analysis of the social media used by the groups. The findings demonstrate the progression from a mutual initial lack of knowledge about habits, norms, and attitudes of the out-group to an increasing desire to know, understand and more readily accept the identity of a previously rejected outsider. Participants manifested more respect, concern for and even affection for those whose identity initially led them to reject them out of hand. We discuss the implications for seemingly intractable identity-based conflict in fragile societies.Keywords: identity-based conflict, intergroup relations, joint mediation learning, out-group recognition, social identity
Procedia PDF Downloads 25631167 An Investigation into the Views of Distant Science Education Students Regarding Teaching Laboratory Work Online
Authors: Abraham Motlhabane
Abstract:
This research analysed the written views of science education students regarding the teaching of laboratory work using the online mode. The research adopted the qualitative methodology. The qualitative research was aimed at investigating small and distinct groups normally regarded as a single-site study. Qualitative research was used to describe and analyze the phenomena from the student’s perspective. This means the research began with assumptions of the world view that use theoretical lenses of research problems inquiring into the meaning of individual students. The research was conducted with three groups of students studying for Postgraduate Certificate in Education, Bachelor of Education and honors Bachelor of Education respectively. In each of the study programmes, the science education module is compulsory. Five science education students from each study programme were purposively selected to participate in this research. Therefore, 15 students participated in the research. In order to analysis the data, the data were first printed and hard copies were used in the analysis. The data was read several times and key concepts and ideas were highlighted. Themes and patterns were identified to describe the data. Coding as a process of organising and sorting data was used. The findings of the study are very diverse; some students are in favour of online laboratory whereas other students argue that science can only be learnt through hands-on experimentation.Keywords: online learning, laboratory work, views, perceptions
Procedia PDF Downloads 15231166 Participation in Co-Curricular Activities of Undergraduate Nursing Students Attending the Leadership Promoting Program Based on Self-Directed Learning Approach
Authors: Porntipa Taksin, Jutamas Wongchan, Amornrat Karamee
Abstract:
The researchers’ experience of student affairs in 2011-2013, we found that few undergraduate nursing students become student association members who participated in co-curricular activities, they have limited skill of self-directed-learning and leadership. We developed “A Leadership Promoting Program” using Self-Directed Learning concept. The program included six activities: 1) Breaking the ice, Decoding time, Creative SMO, Know me-Understand you, Positive thinking, and Creative dialogue, which include four aspects of these activities: decision-making, implementation, benefits, and evaluation. The one-group, pretest-posttest quasi-experimental research was designed to examine the effects of the program on participation in co-curricular activities. Thirty five students participated in the program. All were members of the board of undergraduate nursing student association of Boromarajonani College of Nursing, Chonburi. All subjects completed the questionnaire about participation in the activities at beginning and at the end of the program. Data were analyzed using descriptive statistics and dependent t-test. The results showed that the posttest scores of all four aspects mean were significantly higher than the pretest scores (t=3.30, p<.01). Three aspects had high mean scores, Benefits (Mean = 3.24, S.D. = 0.83), Decision-making (Mean = 3.21, S.D. = 0.59), and Implementation (Mean=3.06, S.D.=0.52). However, scores on evaluation falls in moderate scale (Mean = 2.68, S.D. = 1.13). Therefore, the Leadership Promoting Program based on Self-Directed Learning Approach could be a method to improve students’ participation in co-curricular activities and leadership.Keywords: participation in co-curricular activities, undergraduate nursing students, leadership promoting program, self-directed learning
Procedia PDF Downloads 35631165 Design Thinking and Project-Based Learning: Opportunities, Challenges, and Possibilities
Authors: Shoba Rathilal
Abstract:
High unemployment rates and a shortage of experienced and qualified employees appear to be a paradox that currently plagues most countries worldwide. In a developing country like South Africa, the rate of unemployment is reported to be approximately 35%, the highest recorded globally. At the same time, a countrywide deficit in experienced and qualified potential employees is reported in South Africa, which is causing fierce rivalry among firms. Employers have reported that graduates are very rarely able to meet the demands of the job as there are gaps in their knowledge and conceptual understanding and other 21st-century competencies, attributes, and dispositions required to successfully negotiate the multiple responsibilities of employees in organizations. In addition, the rates of unemployment and suitability of graduates appear to be skewed by race and social class, the continued effects of a legacy of inequitable educational access. Higher Education in the current technologically advanced and dynamic world needs to serve as an agent of transformation, aspiring to develop graduates to be creative, flexible, critical, and with entrepreneurial acumen. This requires that higher education curricula and pedagogy require a re-envisioning of our selection, sequencing, and pacing of the learning, teaching, and assessment. At a particular Higher education Institution in South Africa, Design Thinking and Project Based learning are being adopted as two approaches that aim to enhance the student experience through the provision of a “distinctive education” that brings together disciplinary knowledge, professional engagement, technology, innovation, and entrepreneurship. Using these methodologies forces the students to solve real-time applied problems using various forms of knowledge and finding innovative solutions that can result in new products and services. The intention is to promote the development of skills for self-directed learning, facilitate the development of self-awareness, and contribute to students being active partners in the application and production of knowledge. These approaches emphasize active and collaborative learning, teamwork, conflict resolution, and problem-solving through effective integration of theory and practice. In principle, both these approaches are extremely impactful. However, at the institution in this study, the implementation of the PBL and DT was not as “smooth” as anticipated. This presentation reports on the analysis of the implementation of these two approaches within higher education curricula at a particular university in South Africa. The study adopts a qualitative case study design. Data were generated through the use of surveys, evaluation feedback at workshops, and content analysis of project reports. Data were analyzed using document analysis, content, and thematic analysis. Initial analysis shows that the forces constraining the implementation of PBL and DT range from the capacity to engage with DT and PBL, both from staff and students, educational contextual realities of higher education institutions, administrative processes, and resources. At the same time, the implementation of DT and PBL was enabled through the allocation of strategic funding and capacity development workshops. These factors, however, could not achieve maximum impact. In addition, the presentation will include recommendations on how DT and PBL could be adapted for differing contexts will be explored.Keywords: design thinking, project based learning, innovative higher education pedagogy, student and staff capacity development
Procedia PDF Downloads 8231164 Evaluation of the Effect of Learning Disabilities and Accommodations on the Prediction of the Exam Performance: Ordinal Decision-Tree Algorithm
Abstract:
Providing students with learning disabilities (LD) with extra time to grant them equal access to the exam is a necessary but insufficient condition to compensate for their LD; there should also be a clear indication that the additional time was actually used. For example, if students with LD use more time than students without LD and yet receive lower grades, this may indicate that a different accommodation is required. If they achieve higher grades but use the same amount of time, then the effectiveness of the accommodation has not been demonstrated. The main goal of this study is to evaluate the effect of including parameters related to LD and extended exam time, along with other commonly-used characteristics (e.g., student background and ability measures such as high-school grades), on the ability of ordinal decision-tree algorithms to predict exam performance. We use naturally-occurring data collected from hundreds of undergraduate engineering students. The sub-goals are i) to examine the improvement in prediction accuracy when the indicator of exam performance includes 'actual time used' in addition to the conventional indicator (exam grade) employed in most research; ii) to explore the effectiveness of extended exam time on exam performance for different courses and for LD students with different profiles (i.e., sets of characteristics). This is achieved by using the patterns (i.e., subgroups) generated by the algorithms to identify pairs of subgroups that differ in just one characteristic (e.g., course or type of LD) but have different outcomes in terms of exam performance (grade and time used). Since grade and time used to exhibit an ordering form, we propose a method based on ordinal decision-trees, which applies a weighted information-gain ratio (WIGR) measure for selecting the classifying attributes. Unlike other known ordinal algorithms, our method does not assume monotonicity in the data. The proposed WIGR is an extension of an information-theoretic measure, in the sense that it adjusts to the case of an ordinal target and takes into account the error severity between two different target classes. Specifically, we use ordinal C4.5, random-forest, and AdaBoost algorithms, as well as an ensemble technique composed of ordinal and non-ordinal classifiers. Firstly, we find that the inclusion of LD and extended exam-time parameters improves prediction of exam performance (compared to specifications of the algorithms that do not include these variables). Secondly, when the indicator of exam performance includes 'actual time used' together with grade (as opposed to grade only), the prediction accuracy improves. Thirdly, our subgroup analyses show clear differences in the effect of extended exam time on exam performance among different courses and different student profiles. From a methodological perspective, we find that the ordinal decision-tree based algorithms outperform their conventional, non-ordinal counterparts. Further, we demonstrate that the ensemble-based approach leverages the strengths of each type of classifier (ordinal and non-ordinal) and yields better performance than each classifier individually.Keywords: actual exam time usage, ensemble learning, learning disabilities, ordinal classification, time extension
Procedia PDF Downloads 10331163 Quality of Service Based Routing Algorithm for Real Time Applications in MANETs Using Ant Colony and Fuzzy Logic
Authors: Farahnaz Karami
Abstract:
Routing is an important, challenging task in mobile ad hoc networks due to node mobility, lack of central control, unstable links, and limited resources. An ant colony has been found to be an attractive technique for routing in Mobile Ad Hoc Networks (MANETs). However, existing swarm intelligence based routing protocols find an optimal path by considering only one or two route selection metrics without considering correlations among such parameters making them unsuitable lonely for routing real time applications. Fuzzy logic combines multiple route selection parameters containing uncertain information or imprecise data in nature, but does not have multipath routing property naturally in order to provide load balancing. The objective of this paper is to design a routing algorithm using fuzzy logic and ant colony that can solve some of routing problems in mobile ad hoc networks, such as nodes energy consumption optimization to increase network lifetime, link failures rate reduction to increase packet delivery reliability and providing load balancing to optimize available bandwidth. In proposed algorithm, the path information will be given to fuzzy inference system by ants. Based on the available path information and considering the parameters required for quality of service (QoS), the fuzzy cost of each path is calculated and the optimal paths will be selected. NS2.35 simulation tools are used for simulation and the results are compared and evaluated with the newest QoS based algorithms in MANETs according to packet delivery ratio, end-to-end delay and routing overhead ratio criterions. The simulation results show significant improvement in the performance of these networks in terms of decreasing end-to-end delay, and routing overhead ratio, and also increasing packet delivery ratio.Keywords: mobile ad hoc networks, routing, quality of service, ant colony, fuzzy logic
Procedia PDF Downloads 6931162 Values in Higher Education: A Case Study of Higher Education Students
Authors: Bahadır Erişti
Abstract:
Values are the behavioral procedures of society based communication and interaction process that includes social and cultural backgrounds. The policy of learning and teaching in higher education is oriented towards constructing knowledge and skills, based on theorist framework of cognitive and psychomotor aspects. This approach makes people not to develop generosity, empathy, affection, solidarity, justice, equality and so on. But the sensorial gains of education system provide the integrity of society interaction. This situation carries out the necessity of values education’s in higher education. The current study aims to consider values education from the viewpoint of students in higher education. Within the framework of the current study, an open ended survey based scenario of higher education students was conducted with the students’ social, cognitive, affective and moral developments. In line with this purpose, the following situations of the higher education system were addressed based on the higher education students’ viewpoint: The views of higher education students’ regarding values that are tried to be gained at the higher education system; The higher education students’ suggestions regarding values education at the higher education system; The views of the higher education students’ regarding values that are imposed at the higher education system. In this study, descriptive qualitative research method was used. The study group of the research is composed of 20 higher education postgraduate students at Curriculum and Instruction Department of Educational Sciences at Anadolu University. An open-ended survey was applied for the purpose of collecting qualitative data. As a result of the study, value preferences, value judgments and value systems of the higher education students were constructed on prioritizes based on social, cultural and economic backgrounds and statues. Multi-dimensional process of value education in higher education need to be constructed on higher education-community-cultural background cooperation. Thus, the act of judgement upon values between higher education students based on the survey seems to be inherent in the system of education itself. The present study highlights the students’ value priorities and importance of values in higher education. If the purpose of the higher education system gains on values, it is possible to enable society to promote humanity.Keywords: higher education, value, values education, values in higher education
Procedia PDF Downloads 34331161 An Indoor Guidance System Combining Near Field Communication and Bluetooth Low Energy Beacon Technologies
Authors: Rung-Shiang Cheng, Wei-Jun Hong, Jheng-Syun Wang, Kawuu W. Lin
Abstract:
Users rely increasingly on Location-Based Services (LBS) and automated navigation/guidance systems nowadays. However, while such services are easily implemented in outdoor environments using Global Positioning System (GPS) technology, a requirement still exists for accurate localization and guidance schemes in indoor settings. Accordingly, the present study presents a methodology based on GPS, Bluetooth Low Energy (BLE) beacons, and Near Field Communication (NFC) technology. Through establishing graphic information and the design of algorithm, this study develops a guidance system for indoor and outdoor on smartphones, with aim to provide users a smart life through this system. The presented system is implemented on a smartphone and evaluated on a student campus environment. The experimental results confirm the ability of the presented app to switch automatically from an outdoor mode to an indoor mode and to guide the user to the requested target destination via the shortest possible route.Keywords: beacon, indoor, BLE, Dijkstra algorithm
Procedia PDF Downloads 30431160 Ensemble Machine Learning Approach for Estimating Missing Data from CO₂ Time Series
Authors: Atbin Mahabbati, Jason Beringer, Matthias Leopold
Abstract:
To address the global challenges of climate and environmental changes, there is a need for quantifying and reducing uncertainties in environmental data, including observations of carbon, water, and energy. Global eddy covariance flux tower networks (FLUXNET), and their regional counterparts (i.e., OzFlux, AmeriFlux, China Flux, etc.) were established in the late 1990s and early 2000s to address the demand. Despite the capability of eddy covariance in validating process modelling analyses, field surveys and remote sensing assessments, there are some serious concerns regarding the challenges associated with the technique, e.g. data gaps and uncertainties. To address these concerns, this research has developed an ensemble model to fill the data gaps of CO₂ flux to avoid the limitations of using a single algorithm, and therefore, provide less error and decline the uncertainties associated with the gap-filling process. In this study, the data of five towers in the OzFlux Network (Alice Springs Mulga, Calperum, Gingin, Howard Springs and Tumbarumba) during 2013 were used to develop an ensemble machine learning model, using five feedforward neural networks (FFNN) with different structures combined with an eXtreme Gradient Boosting (XGB) algorithm. The former methods, FFNN, provided the primary estimations in the first layer, while the later, XGB, used the outputs of the first layer as its input to provide the final estimations of CO₂ flux. The introduced model showed slight superiority over each single FFNN and the XGB, while each of these two methods was used individually, overall RMSE: 2.64, 2.91, and 3.54 g C m⁻² yr⁻¹ respectively (3.54 provided by the best FFNN). The most significant improvement happened to the estimation of the extreme diurnal values (during midday and sunrise), as well as nocturnal estimations, which is generally considered as one of the most challenging parts of CO₂ flux gap-filling. The towers, as well as seasonality, showed different levels of sensitivity to improvements provided by the ensemble model. For instance, Tumbarumba showed more sensitivity compared to Calperum, where the differences between the Ensemble model on the one hand and the FFNNs and XGB, on the other hand, were the least of all 5 sites. Besides, the performance difference between the ensemble model and its components individually were more significant during the warm season (Jan, Feb, Mar, Oct, Nov, and Dec) compared to the cold season (Apr, May, Jun, Jul, Aug, and Sep) due to the higher amount of photosynthesis of plants, which led to a larger range of CO₂ exchange. In conclusion, the introduced ensemble model slightly improved the accuracy of CO₂ flux gap-filling and robustness of the model. Therefore, using ensemble machine learning models is potentially capable of improving data estimation and regression outcome when it seems to be no more room for improvement while using a single algorithm.Keywords: carbon flux, Eddy covariance, extreme gradient boosting, gap-filling comparison, hybrid model, OzFlux network
Procedia PDF Downloads 145