Search results for: semantic differential scale
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8055

Search results for: semantic differential scale

4725 The Relationship among Personality, Culture Personality and Ideal Tourist/Business Destinations

Authors: Tamás Gyulavári, Erzsébet Malota

Abstract:

The main purpose of our study was to investigate the effect of congruence between the perceived self and perceived culture personality on the evaluation of the examined countries as ideal business/tourist destinations. A measure of Culture Personality (CP) has been developed and implemented to assess the perception of French and Turkish culture. Results show that very similar personality structure of both cultures can be extracted along the dimensions of Competence, Interpersonal approach, Aura, Life approach and Rectitude. Regarding the congruence theory, we found that instead of the effect of similarity between the perceived culture personality and actual self, the more positively culture personality is perceived relative to the perceived self, the more positive attitude the individual has toward the country as business and tourist destination.

Keywords: culture personality, ideal business/tourist destination, personality, scale development

Procedia PDF Downloads 412
4724 The Effectiveness of a Six-Week Yoga Intervention on Body Awareness, Warnings of Relapse, and Emotion Regulation among Incarcerated Females

Authors: James Beauchemin

Abstract:

Introduction: The incarceration of people with mental illness and substance use disorders is a major public health issue, with social, clinical, and economic implications. Yoga participation has been associated with numerous psychological benefits; however, there is a paucity of research examining impacts of yoga with incarcerated populations. The purpose of this study was to evaluate effectiveness of a six-week yoga intervention on several mental health-related variables, including emotion regulation, body awareness, and warnings of substance relapse among incarcerated females. Methods: This study utilized a pre-post, three-arm design, with participants assigned to intervention, therapeutic community, or general population groups. A between-groups analysis of covariance (ANCOVA) was conducted across groups to assess intervention effectiveness using the Difficulties in Emotion Regulation Scale (DERS), Scale of Body Connection (SBC), and Warnings of Relapse (AWARE) Questionnaire. Results: ANCOVA results for warnings of relapse (AWARE) revealed significant between-group differences F(2, 80) = 7.15, p = .001; np2 = .152), with significant pairwise comparisons between the intervention group and both the therapeutic community (p = .001) and the general population (p = .005) groups. Similarly, significant differences were found for emotional regulation (DERS) F(2, 83) = 10.521, p = .000; np2 = .278). Pairwise comparisons indicated a significant difference between the intervention and general population (p = .01). Finally, significant differences between the intervention and control groups were found for body awareness (SBC) F(2, 84) = 3.69, p = .029; np2 = .081). Between-group differences were clarified via pairwise comparisons, indicating significant differences between the intervention group and both the therapeutic community (p = .028) and general population groups (p = .020). Implications: Study results suggest that yoga may be an effective addition to integrative mental health and substance use treatment for incarcerated women, and contributes to increasing evidence that holistic interventions may be an important component for treatment with this population. Specifically, given the prevalence of mental health and substance use disorders, findings revealed that changes in body awareness and emotion regulation may be particularly beneficial for incarcerated populations with substance use challenges as a result of yoga participation. From a systemic perspective, this proactive approach may have long-term implications for both physical and psychological well-being for the incarcerated population as a whole, thereby decreasing the need for traditional treatment. By integrating a more holistic, salutogenic model that emphasizes prevention, interventions like yoga may work to improve the wellness of this population, while providing an alternative or complementary treatment option for those with current symptoms.

Keywords: yoga, mental health, incarceration, wellness

Procedia PDF Downloads 145
4723 Computer Aided Diagnosis Bringing Changes in Breast Cancer Detection

Authors: Devadrita Dey Sarkar

Abstract:

Regardless of the many technologic advances in the past decade, increased training and experience, and the obvious benefits of uniform standards, the false-negative rate in screening mammography remains unacceptably high .A computer aided neural network classification of regions of suspicion (ROS) on digitized mammograms is presented in this abstract which employs features extracted by a new technique based on independent component analysis. CAD is a concept established by taking into account equally the roles of physicians and computers, whereas automated computer diagnosis is a concept based on computer algorithms only. With CAD, the performance by computers does not have to be comparable to or better than that by physicians, but needs to be complementary to that by physicians. In fact, a large number of CAD systems have been employed for assisting physicians in the early detection of breast cancers on mammograms. A CAD scheme that makes use of lateral breast images has the potential to improve the overall performance in the detection of breast lumps. Because breast lumps can be detected reliably by computer on lateral breast mammographs, radiologists’ accuracy in the detection of breast lumps would be improved by the use of CAD, and thus early diagnosis of breast cancer would become possible. In the future, many CAD schemes could be assembled as packages and implemented as a part of PACS. For example, the package for breast CAD may include the computerized detection of breast nodules, as well as the computerized classification of benign and malignant nodules. In order to assist in the differential diagnosis, it would be possible to search for and retrieve images (or lesions) with these CAD systems, which would be reliable and useful method for quantifying the similarity of a pair of images for visual comparison by radiologists.

Keywords: CAD(computer-aided design), lesions, neural network, ROS(region of suspicion)

Procedia PDF Downloads 457
4722 Preceramic Polymers Formulations for Potential Additive Manufacturing

Authors: Saja M. Nabat Al-Ajrash, Charles Browning, Rose Eckerle, Li Cao

Abstract:

Three preceramic polymer formulations for potential use in 3D printing technologies were investigated. The polymeric precursors include an allyl hydrido polycarbosilane (SMP-10), SMP-10/1,6-dexanediol diacrylate (HDDA) mixture, and polydimethylsiloxane (PDMS). The rheological property of the polymeric precursors, including the viscosity within a wide shear rate range was compared to determine the applicability in additive manufacturing technology. The structural properties of the polymeric solutions and their photocureability were investigated using Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). Moreover, thermogravimetric analysis (TGA) and X-ray diffraction (XRD) were utilized to study polymeric to ceramic conversion for versatile precursors. The prepared precursor resin proved to have outstanding photo-curing properties and the ability to transform to the silicon carbide phase at temperatures as low as 850 °C. The obtained ceramic was fully dense with nearly linear shrinkage and a shiny, smooth surface after pyrolysis. Furthermore, after pyrolysis to 1350 °C and TGA analysis, PDMS polymer showed the highest onset decomposition temperature and the lowest retained weight (52 wt%), while SMP.10/HDDA showed the lowest onset temperature and ceramic yield (71.7 wt%). In terms of crystallography, the ceramic matrix composite appeared to have three coexisting phases, including silicon carbide, and silicon oxycarbide. The results are very promising to fabricate ceramic materials working at high temperatures with complex geometries.

Keywords: preceramic polymer, silicon carbide, photocuring, allyl hydrido polycarbosilane, SMP-10

Procedia PDF Downloads 131
4721 A Bayesian Parameter Identification Method for Thermorheological Complex Materials

Authors: Michael Anton Kraus, Miriam Schuster, Geralt Siebert, Jens Schneider

Abstract:

Polymers increasingly gained interest in construction materials over the last years in civil engineering applications. As polymeric materials typically show time- and temperature dependent material behavior, which is accounted for in the context of the theory of linear viscoelasticity. Within the context of this paper, the authors show, that some polymeric interlayers for laminated glass can not be considered as thermorheologically simple as they do not follow a simple TTSP, thus a methodology of identifying the thermorheologically complex constitutive bahavioir is needed. ‘Dynamical-Mechanical-Thermal-Analysis’ (DMTA) in tensile and shear mode as well as ‘Differential Scanning Caliometry’ (DSC) tests are carried out on the interlayer material ‘Ethylene-vinyl acetate’ (EVA). A navoel Bayesian framework for the Master Curving Process as well as the detection and parameter identification of the TTSPs along with their associated Prony-series is derived and applied to the EVA material data. To our best knowledge, this is the first time, an uncertainty quantification of the Prony-series in a Bayesian context is shown. Within this paper, we could successfully apply the derived Bayesian methodology to the EVA material data to gather meaningful Master Curves and TTSPs. Uncertainties occurring in this process can be well quantified. We found, that EVA needs two TTSPs with two associated Generalized Maxwell Models. As the methodology is kept general, the derived framework could be also applied to other thermorheologically complex polymers for parameter identification purposes.

Keywords: bayesian parameter identification, generalized Maxwell model, linear viscoelasticity, thermorheological complex

Procedia PDF Downloads 268
4720 Synthesis of Montmorillonite/CuxCd1-xS Nanocomposites and Their Application to the Photodegradation of Methylene Blue

Authors: H. Boukhatem, L. Djouadi, H. Khalaf, R. M. Navarro, F. V. Ganzalez

Abstract:

Synthetic organic dyes are used in various industries, such as textile industry, leather tanning industry, paper production, hair dye production, etc. Wastewaters containing these dyes may be harmful to the environment and living organisms. Therefore, it is very important to remove or degrade these dyes before discharging them into the environment. In addition to standard technologies for the degradation and/or removal of dyes, several new specific technologies, the so-called advanced oxidation processes (AOPs), have been developed to eliminate dangerous compounds from polluted waters. AOPs are all characterized by the same chemical feature: production of radicals (•OH) through a multistep process, although different reaction systems are used. These radicals show little selectivity of attack and are able to oxidize various organic pollutants due to their high oxidative capacity (reduction potential of HO• Eo = 2.8 V). Heterogeneous photocatalysis, as one of the AOPs, could be effective in the oxidation/degradation of organic dyes. A major advantage of using heterogeneous photocatalysis for this purpose is the total mineralization of organic dyes, which results in CO2, H2O and corresponding mineral acids. In this study, nanomaterials based on montmorillonite and CuxCd1-xS with different Cu concentration (0.3 < x < 0.7) were utilized for the degradation of the commercial cationic textile dye Methylene blue (MB), used as a model pollutant. The synthesized nanomaterials were characterized by fourier transform infrared (FTIR) and thermogravimetric-differential thermal analysis (TG–DTA). Test results of photocatalysis of methylene blue under UV-Visible irradiation show that the photoactivity of nanomaterials montmorillonite/ CuxCd1-xS increases with the increasing of Cu concentration. The kinetics of the degradation of the MB dye was described with the Langmuir–Hinshelwood (L–H) kinetic model.

Keywords: heterogeneous photocatalysis, methylene blue, montmorillonite, nanomaterial

Procedia PDF Downloads 378
4719 Exploration of in-situ Product Extraction to Increase Triterpenoid Production in Saccharomyces Cerevisiae

Authors: Mariam Dianat Sabet Gilani, Lars M. Blank, Birgitta E. Ebert

Abstract:

Plant-derived lupane-type, pentacyclic triterpenoids are biologically active compounds that are highly interesting for applications in medical, pharmaceutical, and cosmetic industries. Due to the low abundance of these valuable compounds in their natural sources, and the environmentally harmful downstream process, alternative production methods, such as microbial cell factories, are investigated. Engineered Saccharomyces cerevisiae strains, harboring the heterologous genes for betulinic acid synthesis, can produce up to 2 g L-1 triterpenoids, showing high potential for large-scale production of triterpenoids. One limitation of the microbial synthesis is the intracellular product accumulation. It not only makes cell disruption a necessary step in the downstream processing but also limits productivity and product yield per cell. To overcome these restrictions, the aim of this study is to develop an in-situ extraction method, which extracts triterpenoids into a second organic phase. Such a continuous or sequential product removal from the biomass keeps the cells in an active state and enables extended production time or biomass recycling. After screening of twelve different solvents, selected based on product solubility, biocompatibility, as well as environmental and health impact, isopropyl myristate (IPM) was chosen as a suitable solvent for in-situ product removal from S. cerevisiae. Impedance-based single-cell analysis and off-gas measurement of carbon dioxide emission showed that cell viability and physiology were not affected by the presence of IPM. Initial experiments demonstrated that after the addition of 20 vol % IPM to cultures in the stationary phase, 40 % of the total produced triterpenoids were extracted from the cells into the organic phase. In future experiments, the application of IPM in a repeated batch process will be tested, where IPM is added at the end of each batch run to remove triterpenoids from the cells, allowing the same biocatalysts to be used in several sequential batch steps. Due to its high biocompatibility, the amount of IPM added to the culture can also be increased to more than 20 vol % to extract more than 40 % triterpenoids in the organic phase, allowing the cells to produce more triterpenoids. This highlights the potential for the development of a continuous large-scale process, which allows biocatalysts to produce intracellular products continuously without the necessity of cell disruption and without limitation of the cell capacity.

Keywords: betulinic acid, biocompatible solvent, in-situ extraction, isopropyl myristate, process development, secondary metabolites, triterpenoids, yeast

Procedia PDF Downloads 157
4718 Influence of Microparticles in the Contact Region of Quartz Sand Grains: A Micro-Mechanical Experimental Study

Authors: Sathwik Sarvadevabhatla Kasyap, Kostas Senetakis

Abstract:

The mechanical behavior of geological materials is very complex, and this complexity is related to the discrete nature of soils and rocks. Characteristics of a material at the grain scale such as particle size and shape, surface roughness and morphology, and particle contact interface are critical to evaluate and better understand the behavior of discrete materials. This study investigates experimentally the micro-mechanical behavior of quartz sand grains with emphasis on the influence of the presence of microparticles in their contact region. The outputs of the study provide some fundamental insights on the contact mechanics behavior of artificially coated grains and can provide useful input parameters in the discrete element modeling (DEM) of soils. In nature, the contact interfaces between real soil grains are commonly observed with microparticles. This is usually the case of sand-silt and sand-clay mixtures, where the finer particles may create a coating on the surface of the coarser grains, altering in this way the micro-, and thus the macro-scale response of geological materials. In this study, the micro-mechanical behavior of Leighton Buzzard Sand (LBS) quartz grains, with interference of different microparticles at their contact interfaces is studied in the laboratory using an advanced custom-built inter-particle loading apparatus. Special techniques were adopted to develop the coating on the surfaces of the quartz sand grains so that to establish repeatability of the coating technique. The characterization of the microstructure of coated particles on their surfaces was based on element composition analyses, microscopic images, surface roughness measurements, and single particle crushing strength tests. The mechanical responses such as normal and tangential load – displacement behavior, tangential stiffness behavior, and normal contact behavior under cyclic loading were studied. The behavior of coated LBS particles is compared among different classes of them and with pure LBS (i.e. surface cleaned to remove any microparticles). The damage on the surface of the particles was analyzed using microscopic images. Extended displacements in both normal and tangential directions were observed for coated LBS particles due to the plastic nature of the coating material and this varied with the variation of the amount of coating. The tangential displacement required to reach steady state was delayed due to the presence of microparticles in the contact region of grains under shearing. Increased tangential loads and coefficient of friction were observed for the coated grains in comparison to the uncoated quartz grains.

Keywords: contact interface, microparticles, micro-mechanical behavior, quartz sand

Procedia PDF Downloads 194
4717 Analysis of Teachers' Self Efficacy in Terms of Emotional Intelligence

Authors: Ercan Yilmaz, Ali Murat Sünbül

Abstract:

The aim of the study is to investigate teachers’ self-efficacy with regards to their emotional intelligence. The relational model was used in the study. The participant of the study included 194 teachers from secondary schools in Konya, Turkey. In order to assess teachers’ emotional intelligence, “Trait Emotional Intelligence Questionnaire-short Form was implemented. For teachers’ self-efficacy, “Teachers’ Sense of Self-Efficacy Scale” was used. As a result of the study, a significant relationship is available between teachers’ sense of self-efficacy and their emotional intelligence. Teachers’ emotional intelligence enucleates approximate eighteen percent of the variable in dimension named teachers’ self-efficacy for the students’ involvement. About nineteen percent of the variable in dimension “self-efficacy for teaching strategies is represented through emotional intelligence. Teachers’ emotional intelligence demonstrates about seventeen percent of variable aimed at classroom management.

Keywords: teachers, self-efficacy, emotional intelligence, education

Procedia PDF Downloads 460
4716 Vestibular Schwannoma: A Rare Cause of Trigeminal Nerve Paraesthesia

Authors: Jessie Justice

Abstract:

This is a case report of a vestibular schwannoma presenting with numbness to the left lower lip and tongue and altered taste. The aim of this case is to raise awareness of differential diagnoses for trigeminal nerve paraesthesia and, hence, prompt thorough investigation. A 65-year-old male was referred to the Oral and Maxillofacial department regarding sudden-onset of numbness to his left lower lip and left tongue, with altered taste sensation subsequently developing. The patient was simultaneously being investigated for severe hearing loss in his left ear. On examination, there was altered sensation in the distribution of the left inferior alveolar nerve and left lingual nerve. There was no palpable cervical lymphadenopathy and no intra-oral lesions or dental cause for the symptoms. Due to his hearing loss in the left ear, the patient was sent for magnetic resonance imaging of the internal auditory meatus by the Ear, Nose and Throat (ENT) department, revealing a 2.5cm mass within the left cerebellopontine angle presumed to be a vestibular schwannoma. This led to the diagnosis of trigeminal nerve compression by a medium vestibular schwannoma. Consequently, the patient was followed up by an ENT, who referred him for stereotactic radiosurgery. A literature review regarding vestibular schwannomas presenting with orofacial paraesthesia was then carried out. A review of the literature has shown the incidence of vestibular schwannoma to be 3-5 cases per 100,000. It has been reported that approximately 5% of vestibular schwannoma cases display orofacial dysaesthesia, and about 1-3% of cases exhibit trigeminal neuralgia symptoms. This is a rare case of vestibular schwannoma causing trigeminal nerve paraesthesia. The aim of this study is to raise awareness of alternative causes of trigeminal nerve paraesthesia and the available literature surrounding this.

Keywords: acoustic neuroma, orofacial dysaesthesia, trigeminal nerve paraesthesia, vestibular schwannoma

Procedia PDF Downloads 28
4715 High-Speed Particle Image Velocimetry of the Flow around a Moving Train Model with Boundary Layer Control Elements

Authors: Alexander Buhr, Klaus Ehrenfried

Abstract:

Trackside induced airflow velocities, also known as slipstream velocities, are an important criterion for the design of high-speed trains. The maximum permitted values are given by the Technical Specifications for Interoperability (TSI) and have to be checked in the approval process. For train manufactures it is of great interest to know in advance, how new train geometries would perform in TSI tests. The Reynolds number in moving model experiments is lower compared to full-scale. Especially the limited model length leads to a thinner boundary layer at the rear end. The hypothesis is that the boundary layer rolls up to characteristic flow structures in the train wake, in which the maximum flow velocities can be observed. The idea is to enlarge the boundary layer using roughness elements at the train model head so that the ratio between the boundary layer thickness and the car width at the rear end is comparable to a full-scale train. This may lead to similar flow structures in the wake and better prediction accuracy for TSI tests. In this case, the design of the roughness elements is limited by the moving model rig. Small rectangular roughness shapes are used to get a sufficient effect on the boundary layer, while the elements are robust enough to withstand the high accelerating and decelerating forces during the test runs. For this investigation, High-Speed Particle Image Velocimetry (HS-PIV) measurements on an ICE3 train model have been realized in the moving model rig of the DLR in Göttingen, the so called tunnel simulation facility Göttingen (TSG). The flow velocities within the boundary layer are analysed in a plain parallel to the ground. The height of the plane corresponds to a test position in the EN standard (TSI). Three different shapes of roughness elements are tested. The boundary layer thickness and displacement thickness as well as the momentum thickness and the form factor are calculated along the train model. Conditional sampling is used to analyse the size and dynamics of the flow structures at the time of maximum velocity in the train wake behind the train. As expected, larger roughness elements increase the boundary layer thickness and lead to larger flow velocities in the boundary layer and in the wake flow structures. The boundary layer thickness, displacement thickness and momentum thickness are increased by using larger roughness especially when applied in the height close to the measuring plane. The roughness elements also cause high fluctuations in the form factors of the boundary layer. Behind the roughness elements, the form factors rapidly are approaching toward constant values. This indicates that the boundary layer, while growing slowly along the second half of the train model, has reached a state of equilibrium.

Keywords: boundary layer, high-speed PIV, ICE3, moving train model, roughness elements

Procedia PDF Downloads 311
4714 Cloud Effect on Power Generation of Grid-Connected Small PV Systems

Authors: Yehya Abdellatif, Ahmed Alsalaymeh, Iyad Muslih, Ali Alshduifat

Abstract:

Photovoltaic (PV) power generation systems, mainly small scale, are rapidly being deployed in Jordan. The impact of these systems on the grid has not been studied or analyzed. These systems can cause many technical problems such as reverse power flows and voltage rises in distribution feeders, and real and reactive power transients that affect the operation of the transmission system. To fully understand and address these problems, extensive research, simulation, and case studies are required. To this end, this paper studies the cloud shadow effect on the power generation of a ground mounted PV system installed at the test field of the Renewable Energy Center at the Applied Science University.

Keywords: photovoltaic, cloud effect, MPPT, power transients

Procedia PDF Downloads 602
4713 Preparation of Carbon Nanofiber Reinforced HDPE Using Dialkylimidazolium as a Dispersing Agent: Effect on Thermal and Rheological Properties

Authors: J. Samuel, S. Al-Enezi, A. Al-Banna

Abstract:

High-density polyethylene reinforced with carbon nanofibers (HDPE/CNF) have been prepared via melt processing using dialkylimidazolium tetrafluoroborate (ionic liquid) as a dispersion agent. The prepared samples were characterized by thermogravimetric (TGA) and differential scanning calorimetric (DSC) analyses. The samples blended with imidazolium ionic liquid exhibit higher thermal stability. DSC analysis showed clear miscibility of ionic liquid in the HDPE matrix and showed single endothermic peak. The melt rheological analysis of HDPE/CNF composites was performed using an oscillatory rheometer. The influence of CNF and ionic liquid concentration (ranging from 0, 0.5, and 1 wt%) on the viscoelastic parameters was investigated at 200 °C with an angular frequency range of 0.1 to 100 rad/s. The rheological analysis shows the shear-thinning behavior for the composites. An improvement in the viscoelastic properties was observed as the nanofiber concentration increases. The progress in the modulus values was attributed to the structural rigidity imparted by the high aspect ratio CNF. The modulus values and complex viscosity of the composites increased significantly at low frequencies. Composites blended with ionic liquid exhibit slightly lower values of complex viscosity and modulus over the corresponding HDPE/CNF compositions. Therefore, reduction in melt viscosity is an additional benefit for polymer composite processing as a result of wetting effect by polymer-ionic liquid combinations.

Keywords: high-density polyethylene, carbon nanofibers, ionic liquid, complex viscosity

Procedia PDF Downloads 129
4712 Assessing Pain Using Morbid Motion Monitor System in the Pain Management of Nurse Practitioner

Authors: Mohammad Reza Dawoudi

Abstract:

With the increasing rate of patients suffering from chronic pain, several methods for evaluating of chronic pain are suggested. Motion of morbid has been defined as the rate of pine and it is linked with various co-morbid conditions. This study provides a summary of procedure useful to statistics performing direct behavioral observation in hospital settings. We describe the need for and usefulness of comprehensive “morbid motions” observations; provide a primer on the identification, definition, and assessment of morbid behaviors; and outline and discuss specific statistical procedures, including formulating referral motions, describing and conducting the observation. We also provide practical devices for observing and analyzing the obtained information into a report that guides clinical intervention.

Keywords: assessing pain, DNA modeling, image matching technique, pain scale

Procedia PDF Downloads 416
4711 BiVO₄‑Decorated Graphite Felt as Highly Efficient Negative Electrode for All-Vanadium Redox Flow Batteries

Authors: Daniel Manaye Kabtamu, Anteneh Wodaje Bayeh

Abstract:

With the development and utilization of new energy technology, people’s demand for large-scale energy storage system has become increasingly urgent. Vanadium redox flow battery (VRFB) is one of the most promising technologies for grid-scale energy storage applications because of numerous attractive features, such as long cycle life, high safety, and flexible design. However, the relatively low energy efficiency and high production cost of the VRFB still limit its practical implementations. It is of great attention to enhance its energy efficiency and reduce its cost. One of the main components of VRFB that can impressively impact the efficiency and final cost is the electrode materials, which provide the reactions sites for redox couples (V₂₊/V³⁺ and VO²⁺/VO₂⁺). Graphite felt (GF) is a typical carbon-based material commonly employed as electrode for VRFB due to low-cost, good chemical and mechanical stability. However, pristine GF exhibits insufficient wettability, low specific surface area, and poor kinetics reversibility, leading to low energy efficiency of the battery. Therefore, it is crucial to further modify the GF electrode to improve its electrochemical performance towards VRFB by employing active electrocatalysts, such as less expensive metal oxides. This study successfully fabricates low-cost plate-like bismuth vanadate (BiVO₄) material through a simple one-step hydrothermal route, employed as an electrocatalyst to adorn the GF for use as the negative electrode in VRFB. The experimental results show that BiVO₄-3h exhibits the optimal electrocatalytic activity and reversibility for the vanadium redox couples among all samples. The energy efficiency of the VRFB cell assembled with BiVO₄-decorated GF as the negative electrode is found to be 75.42% at 100 mA cm−2, which is about 10.24% more efficient than that of the cell assembled with heat-treated graphite felt (HT-GF) electrode. The possible reasons for the activity enhancement can be ascribed to the existence of oxygen vacancies in the BiVO₄ lattice structure and the relatively high surface area of BiVO₄, which provide more active sites for facilitating the vanadium redox reactions. Furthermore, the BiVO₄-GF electrode obstructs the competitive irreversible hydrogen evolution reaction on the negative side of the cell, and it also has better wettability. Impressively, BiVO₄-GF as the negative electrode shows good stability over 100 cycles. Thus, BiVO₄-GF is a promising negative electrode candidate for practical VRFB applications.

Keywords: BiVO₄ electrocatalyst, electrochemical energy storage, graphite felt, vanadium redox flow battery

Procedia PDF Downloads 1578
4710 Urban Land Use Type Analysis Based on Land Subsidence Areas Using X-Band Satellite Image of Jakarta Metropolitan City, Indonesia

Authors: Ratih Fitria Putri, Josaphat Tetuko Sri Sumantyo, Hiroaki Kuze

Abstract:

Jakarta Metropolitan City is located on the northwest coast of West Java province with geographical location between 106º33’ 00”-107º00’00”E longitude and 5º48’30”-6º24’00”S latitude. Jakarta urban area has been suffered from land subsidence in several land use type as trading, industry and settlement area. Land subsidence hazard is one of the consequences of urban development in Jakarta. This hazard is caused by intensive human activities in groundwater extraction and land use mismanagement. Geologically, the Jakarta urban area is mostly dominated by alluvium fan sediment. The objectives of this research are to make an analysis of Jakarta urban land use type on land subsidence zone areas. The process of producing safer land use and settlements of the land subsidence areas are very important. Spatial distributions of land subsidence detection are necessary tool for land use management planning. For this purpose, Differential Synthetic Aperture Radar Interferometry (DInSAR) method is used. The DInSAR is complementary to ground-based methods such as leveling and global positioning system (GPS) measurements, yielding information in a wide coverage area even when the area is inaccessible. The data were fine tuned by using X-Band image satellite data from 2010 to 2013 and land use mapping data. Our analysis of land use type that land subsidence movement occurred on the northern part Jakarta Metropolitan City varying from 7.5 to 17.5 cm/year as industry and settlement land use type areas.

Keywords: land use analysis, land subsidence mapping, urban area, X-band satellite image

Procedia PDF Downloads 279
4709 Central Finite Volume Methods Applied in Relativistic Magnetohydrodynamics: Applications in Disks and Jets

Authors: Raphael de Oliveira Garcia, Samuel Rocha de Oliveira

Abstract:

We have developed a new computer program in Fortran 90, in order to obtain numerical solutions of a system of Relativistic Magnetohydrodynamics partial differential equations with predetermined gravitation (GRMHD), capable of simulating the formation of relativistic jets from the accretion disk of matter up to his ejection. Initially we carried out a study on numerical methods of unidimensional Finite Volume, namely Lax-Friedrichs, Lax-Wendroff, Nessyahu-Tadmor method and Godunov methods dependent on Riemann problems, applied to equations Euler in order to verify their main features and make comparisons among those methods. It was then implemented the method of Finite Volume Centered of Nessyahu-Tadmor, a numerical schemes that has a formulation free and without dimensional separation of Riemann problem solvers, even in two or more spatial dimensions, at this point, already applied in equations GRMHD. Finally, the Nessyahu-Tadmor method was possible to obtain stable numerical solutions - without spurious oscillations or excessive dissipation - from the magnetized accretion disk process in rotation with respect to a central black hole (BH) Schwarzschild and immersed in a magnetosphere, for the ejection of matter in the form of jet over a distance of fourteen times the radius of the BH, a record in terms of astrophysical simulation of this kind. Also in our simulations, we managed to get substructures jets. A great advantage obtained was that, with the our code, we got simulate GRMHD equations in a simple personal computer.

Keywords: finite volume methods, central schemes, fortran 90, relativistic astrophysics, jet

Procedia PDF Downloads 462
4708 Easy Method of Synthesis and Functionalzation of Zno Nanoparticules With 3 Aminopropylthrimethoxysilane (APTES)

Authors: Haythem Barrak, Gaetan Laroche, Adel M’nif, Ahmed Hichem Hamzaoui

Abstract:

The use of semiconductor oxides, as chemical or biological, requires their functionalization with appropriate dependent molecules of the substance to be detected. generally, the support materials used are TiO2 and SiO2. In the present work, we used zinc oxide (ZnO) known for its interesting physical properties. The synthesis of nano scale ZnO was performed by co-precipitation at low temperature (60 ° C).To our knowledge, the obtaining of this material at this temperature was carried out for the first time. This shows the low cost of this operation. On the other hand, the surface functionalization of ZnO was performed with (3-aminopropyl) triethoxysilane (APTES) by using a specific method using ethanol for the first time. In addition, the duration of this stage is very low compared to literature. The samples obtained were analyzed by XRD, TEM, DLS, FTIR, and TGA shows that XPS that the operation of grafting of APTES on our support was carried out with success.

Keywords: functionalization, nanoparticle, ZnO, APTES, caractérisation

Procedia PDF Downloads 365
4707 Articles, Delimitation of Speech and Perception

Authors: Nataliya L. Ogurechnikova

Abstract:

The paper aims to clarify the function of articles in the English speech and specify their place and role in the English language, taking into account the use of articles for delimitation of speech. A focus of the paper is the use of the definite and the indefinite articles with different types of noun phrases which comprise either one noun with or without attributes, such as the King, the Queen, the Lion, the Unicorn, a dimple, a smile, a new language, an unknown dialect, or several nouns with or without attributes, such as the King and Queen of Hearts, the Lion and Unicorn, a dimple or smile, a completely isolated language or dialect. It is stated that the function of delimitation is related to perception: the number of speech units in a text correlates with the way the speaker perceives and segments the denotation. The two following combinations of words the house and garden and the house and the garden contain different numbers of speech units, one and two respectively, and reveal two different perception modes which correspond to the use of the definite article in the examples given. Thus, the function of delimitation is twofold, it is related to perception and cognition, on the one hand, and, on the other hand, to grammar, if the subject of grammar is the structure of speech. Analysis of speech units in the paper is not limited by noun phrases and is amplified by discussion of peripheral phenomena which are nevertheless important because they enable to qualify articles as a syntactic phenomenon whereas they are not infrequently described in terms of noun morphology. With this regard attention is given to the history of linguistic studies, specifically to the description of English articles by Niels Haislund, a disciple of Otto Jespersen. A discrepancy is noted between the initial plan of Jespersen who intended to describe articles as a syntactic phenomenon in ‘A Modern English Grammar on Historical Principles’ and the interpretation of articles in terms of noun morphology, finally given by Haislund. Another issue of the paper is correlation between description and denotation, being a traditional aspect of linguistic studies focused on articles. An overview of relevant studies, given in the paper, goes back to the works of G. Frege, which gave rise to a series of scientific works where the meaning of articles was described within the scope of logical semantics. Correlation between denotation and description is treated in the paper as the meaning of article, i.e. a component in its semantic structure, which differs from the function of delimitation and is similar to the meaning of other quantifiers. The paper further explains why the relation between description and denotation, i.e. the meaning of English article, is irrelevant for noun morphology and has nothing to do with nominal categories of the English language.

Keywords: delimitation of speech, denotation, description, perception, speech units, syntax

Procedia PDF Downloads 246
4706 Evaluation of Disease Risk Variables in the Control of Bovine Tuberculosis

Authors: Berrin Şentürk

Abstract:

In this study, due to the recurrence of bovine tuberculosis, in the same areas, the risk factors for the disease were determined and evaluated at the local level. This study was carried out in 32 farms where the disease was detected in the district and center of Samsun province in 2014. Predetermined risk factors, such as farm, environmental and economic risks, were investigated with the survey method. It was predetermined that risks in the three groups are similar to the risk variables of the disease on the global scale. These risk factors that increase the susceptibility of the infection must be understood by the herd owners. The risk-based contagious disease management system approach should be applied for bovine tuberculosis by farmers, animal health professionals and public and private sector decision makers.

Keywords: bovine tuberculosis, disease management, control, outbreak, risk analysis

Procedia PDF Downloads 405
4705 Bringing the World to Net Zero Carbon Dioxide by Sequestering Biomass Carbon

Authors: Jeffrey A. Amelse

Abstract:

Many corporations aspire to become Net Zero Carbon Carbon Dioxide by 2035-2050. This paper examines what it will take to achieve those goals. Achieving Net Zero CO₂ requires an understanding of where energy is produced and consumed, the magnitude of CO₂ generation, and proper understanding of the Carbon Cycle. The latter leads to the distinction between CO₂ and biomass carbon sequestration. Short reviews are provided for prior technologies proposed for reducing CO₂ emissions from fossil fuels or substitution by renewable energy, to focus on their limitations and to show that none offer a complete solution. Of these, CO₂ sequestration is poised to have the largest impact. It will just cost money, scale-up is a huge challenge, and it will not be a complete solution. CO₂ sequestration is still in the demonstration and semi-commercial scale. Transportation accounts for only about 30% of total U.S. energy demand, and renewables account for only a small fraction of that sector. Yet, bioethanol production consumes 40% of U.S. corn crop, and biodiesel consumes 30% of U.S. soybeans. It is unrealistic to believe that biofuels can completely displace fossil fuels in the transportation market. Bioethanol is traced through its Carbon Cycle and shown to be both energy inefficient and inefficient use of biomass carbon. Both biofuels and CO₂ sequestration reduce future CO₂ emissions from continued use of fossil fuels. They will not remove CO₂ already in the atmosphere. Planting more trees has been proposed as a way to reduce atmospheric CO₂. Trees are a temporary solution. When they complete their Carbon Cycle, they die and release their carbon as CO₂ to the atmosphere. Thus, planting more trees is just 'kicking the can down the road.' The only way to permanently remove CO₂ already in the atmosphere is to break the Carbon Cycle by growing biomass from atmospheric CO₂ and sequestering biomass carbon. Sequestering tree leaves is proposed as a solution. Unlike wood, leaves have a short Carbon Cycle time constant. They renew and decompose every year. Allometric equations from the USDA indicate that theoretically, sequestrating only a fraction of the world’s tree leaves can get the world to Net Zero CO₂ without disturbing the underlying forests. How can tree leaves be permanently sequestered? It may be as simple as rethinking how landfills are designed to discourage instead of encouraging decomposition. In traditional landfills, municipal waste undergoes rapid initial aerobic decomposition to CO₂, followed by slow anaerobic decomposition to methane and CO₂. The latter can take hundreds to thousands of years. The first step in anaerobic decomposition is hydrolysis of cellulose to release sugars, which those who have worked on cellulosic ethanol know is challenging for a number of reasons. The key to permanent leaf sequestration may be keeping the landfills dry and exploiting known inhibitors for anaerobic bacteria.

Keywords: carbon dioxide, net zero, sequestration, biomass, leaves

Procedia PDF Downloads 133
4704 MicroRNA Differential Profiling in Hepatitis C Patients Undergoing Major Surgeries: Propofol versus Sevoflurane Anesthesia

Authors: Hala Demerdash, Ola M. Zanaty, Emad Eldin Arida

Abstract:

Background: This study investigated the micoRNA expression changes induced by Sevoflurane and Propofol and their effects on liver functions. Patients and methods: The study was designed as randomized controlled study, carried out on 200 adult patients, scheduled for major surgeries under general anesthesia (GA). Patients were randomly divided into four groups; groups SC and PC included chronic hepatitis C (CHC) patients where SC group are patients receiving Sevoflurane, and PC group are patients receiving Propofol anesthesia. While S and P groups included non- hepatitis patients; S group are patients receiving Sevoflurane and P group are patients receiving Propofol. Anesthesia in Group S and SC patients was maintained by sevoflurane, while anesthesia in Group P and PC patients was maintained by propofol infusion. Blood samples were analyzed for PT, PTT and liver enzymes. Serum samples were analyzed for microRNA before and after surgery. Results: Results show miRNA-122 and miRNA-21 were absent in serum of S and P groups in pre-operative samples. However, they were expressed in SC and PC groups. In post-operative samples; miRNA-122 revealed an increased expression in all groups; with more exaggerated response in SC group. On the other hand miRNA-21 revealed increased expression in both SC and PC groups; a slight expression in S group with absent expression in P group. There was a post-operative negative correlation between miR-122 and ALT (r=-0.46) in SC group and (r=-0.411) in PC group and positive correlation between ALT and miR-21 (r=0.335) in SC group and (r=0.379) in PC group. The amount of blood loss was positively correlated with miR-122 (r=0.366) in SC group and (r=0.384) in PC group. Conclusion: Propofol anesthesia is safer than Sevoflurane anesthesia in patients with CHC. Sevoflurane and Propofol anesthesia affect miRNA expression in both CHC and non-hepatitis patients.

Keywords: anesthesia, chronic hepatitis C, micoRNA, propofol, sevoflurane

Procedia PDF Downloads 346
4703 Evidence of Social Media Addiction and Problematic Internet Use Among High School and University Students in Cyprus

Authors: Costas Christodoulides

Abstract:

Excessive use of social networking sites (SNS) and the Internet by high school pupils and university students, can cause consequences similar to those observed in substance or gambling related addictions, negatively influence individual well-being notwithstanding self-assessments that people make about their life and experiences. The present study examined, for the first time in Cyprus, the levels of problematic use of the Social Media and the Internet among Cypriot pupils and students aiming at contributing to the discussion about the need for a more conclusive policy framework in the island. The Bergen Social Media Addiction Scale (BSMAS) and the Generalized Problematic Internet Use Scale 2 (GPIUS-2) were adapted to a Cypriot version and along with a sociodemographic questionnaire were introduced to a sample of 1059 young persons in order to respectively assess the addiction risk for Social Media Use and the risk of Problematic Internet Use. The sample consisted of 59% females, aged 15 to 35 (M=18.9 years, SD=3.20), 465 of them were high school students and 594 university students. Of 1059 respondents from 4 high-schools and 5 Universities (HEI) in Cyprus, 8.3% of the sample had BSMAS scores suggestive of addiction. Approximately a quarter of the sample (24%), demonstrated GPIUS-2 scores suggestive of high risk for problematic internet use. It is notable that differences seem to exist across gender with the score of the female population (11.1%) reaching levels of addiction to social media more than twice the level of addiction of the male population (4.3%). Also, the female population of high school students seems to be at the most vulnerable position for problematic internet use (28%). The 26% of the sample often or very often used some SNSs to forget of personal problems. The results of this study show that half of those surveyed used the Internet to feel better when they were upset or to escape the isolation they felt. Among the sample population, the study reports that 60% of the pupils and female university students are in agreement with the relevant statements. Conclusively, this study suggests that SNSs addiction levels among pupils and students in Cyprus ought to be an important public health concern. The same if not more alarming is the identified by the study prevalence of problematic Internet use among the same population. These results confirm international trends reported by scholarly research while also suggest that particular categories such as high school pupils and young females may be more exposed to problem SNSs and Internet use. Preventive strategies need first to acknowledge the problem in order to then formulate an effective strategy for prevention and intervention. For relevant authorities it is of primary importance to “exploit” the fact that high schools and universities can be seen as small communities and units potentially available for forging alliances for healthy Social Media and Internet use.

Keywords: problematic internet use, social media addiction, social networking sites, well-being

Procedia PDF Downloads 190
4702 Characterisation of Fractions Extracted from Sorghum Byproducts

Authors: Prima Luna, Afroditi Chatzifragkou, Dimitris Charalampopoulos

Abstract:

Sorghum byproducts, namely bran, stalk, and panicle are examples of lignocellulosic biomass. These raw materials contain large amounts of polysaccharides, in particular hemicelluloses, celluloses, and lignins, which if efficiently extracted, can be utilised for the development of a range of added value products with potential applications in agriculture and food packaging sectors. The aim of this study was to characterise fractions extracted from sorghum bran and stalk with regards to their physicochemical properties that could determine their applicability as food-packaging materials. A sequential alkaline extraction was applied for the isolation of cellulosic, hemicellulosic and lignin fractions from sorghum stalk and bran. Lignin content, phenolic content and antioxidant capacity were also investigated in the case of the lignin fraction. Thermal analysis using differential scanning calorimetry (DSC) and X-Ray Diffraction (XRD) revealed that the glass transition temperature (Tg) of cellulose fraction of the stalk was ~78.33 oC at amorphous state (~65%) and water content of ~5%. In terms of hemicellulose, the Tg value of stalk was slightly lower compared to bran at amorphous state (~54%) and had less water content (~2%). It is evident that hemicelluloses generally showed a lower thermal stability compared to cellulose, probably due to their lack of crystallinity. Additionally, bran had higher arabinose-to-xylose ratio (0.82) than the stalk, a fact that indicated its low crystallinity. Furthermore, lignin fraction had Tg value of ~93 oC at amorphous state (~11%). Stalk-derived lignin fraction contained more phenolic compounds (mainly consisting of p-coumaric and ferulic acid) and had higher lignin content and antioxidant capacity compared to bran-derived lignin fraction.

Keywords: alkaline extraction, bran, cellulose, hemicellulose, lignin, stalk

Procedia PDF Downloads 302
4701 Systemic Functional Linguistics in the Rhetorical Strategies of Persuasion: A Longitudinal Study of Transitivity and Ergativity in the Rhetoric of Saras’ Sustainability Reports

Authors: Antonio Piga

Abstract:

This study explores the correlation between Systemic Functional Linguistics (SFL) and Critical Discourse Analysis (CDA) as tools for analysing the evolution of rhetoric in the communicative strategies adopted in a company’s Reports on social and environmental responsibility. In more specific terms, transitivity and ergativity- concepts from Systemic Functional Linguistics (SFL) - through the lenses of CDA, are employed as a theoretical means for the analysis of a longitudinal study in the communicative strategies employed by Saras SpA pre- and during the Covid-19 pandemic crisis. Saras is an Italian joint-stock company operating in oil refining and power generation. The qualitative and quantitative linguistic analysis carried out through the use of Sketch Engine software aims to identify and explain how rhetoric - and ideology - is constructed and presented through language use in Saras SpA Sustainability Reports. Specific focus is given to communication strategies to local and global communities and stakeholders in the years immediately before and during the Covid-19 pandemic. The rationale behind the study lies in the fact that 2020 and 2021 have been among the most difficult years since the end of World War II. Lives were abruptly turned upside down by the pandemic, which had grave negative effects on people’s health and on the economy. The result has been a threefold crisis involving health, the economy and social tension, with the refining sector being one of the hardest hit, since the oil refining industry was one of the most affected industries due to the general reduction in mobility and oil consumption brought about by the virus-fighting measures. Emphasis is placed on the construction of rhetorical strategies pre- and during the pandemic crisis using the representational process of transitivity and ergativity (SFL), thus revealing the close relationship between the use language in terms of Social Actors and semantic roles of syntactic transformation on the one hand, and ideological assumptions on the other. The results show that linguistic decisions regarding transitivity and ergativity choices play a crucial role in how effective writing achieves its rhetorical objectives in terms of spreading and maintaining dominant and implicit ideologies and underlying persuasive actions, and that some ideological motivation is perpetuated – if not actually overtly or subtly strengthened - in social-environmental Reports issued in the midst of the Covid-19 pandemic crisis.

Keywords: systemic functional linguistics, sustainability, critical discourse analysis, transitivity, ergativity

Procedia PDF Downloads 124
4700 Preparation and Structural Analysis of Nano-Ciprofloxacin by Fourier Transform X-Ray Diffraction, Infra-Red Spectroscopy, and Semi Electron Microscope (SEM)

Authors: Shahriar Ghammamy, Mehrnoosh Saboony

Abstract:

Purpose: To evaluate the spectral specification (IR-XRD and SEM) of nano-ciprofloxacin that prepared by up-down method (satellite mill). Methods: the ciprofloxacin was minimized to nano-scale with satellite mill and its characterization evaluated by Infrared spectroscopy, XRD diffraction and semi electron microscope (SEM). Expectation enhances the antibacterial property of nano-ciprofloxacin in comparison to ciprofloxacin. IR spectrum of nano-ciprofloxacin compared with spectrum of ciprofloxacin, and both of them were almost agreement with a difference: the peaks in spectrum of nano-ciprofloxacin were sharper than peaks in spectrum of ciprofloxacin. X-Ray powder diffraction analysis of nano-ciprofloxacin shows the diameter of particles equal to 90.9nm. (on the basis of Scherer Equation). SEM image shows the global shape for nano-ciprofloxacin.

Keywords: antibiotic, ciprofloxacin, nano, IR, XRD, SEM

Procedia PDF Downloads 517
4699 Preparation and Structural Analysis of Nano Ciprofloxacin by Fourier Transform Infra-Red Spectroscopy, X-Ray Diffraction and Semi Electron Microscope (SEM)

Authors: Shahriar Ghammamy, Mehrnoosh Saboony

Abstract:

Purpose: to evaluate the spectral specification(IR-XRD and SEM) of nano ciprofloxacin that prepared by up-down method (satellite mill). Methods: the ciprofloxacin was minimized to nano-scale with satellite mill and it,s characterization evaluated by Infrared spectroscopy, XRD diffraction and semi electron microscope (SEM). Expectation: to enhance the antibacterial property of nano ciprofloxacin in comparison to ciprofloxacin.IR spectrum of nano ciprofloxacin compared with spectrum of ciprofloxacin, and both of them were almost agreement with a difference: the peaks in spectrum of nano ciprofloxacin was sharper than peaks in spectrum of ciprofloxacin. X-Ray powder diffraction analysis of nano ciprofloxacin showes the diameter of particles equal to 90.9 nm (on the basis of scherrer equation). SEM image showes the global shape for nano ciprofloxacin.

Keywords: antibiotic, ciprofloxacin, nano, IR, XRD, SEM

Procedia PDF Downloads 414
4698 Limit State of Heterogeneous Smart Structures under Unknown Cyclic Loading

Authors: M. Chen, S-Q. Zhang, X. Wang, D. Tate

Abstract:

This paper presents a numerical solution, namely limit and shakedown analysis, to predict the safety state of smart structures made of heterogeneous materials under unknown cyclic loadings, for instance, the flexure hinge in the micro-positioning stage driven by piezoelectric actuator. In combination of homogenization theory and finite-element method (FEM), the safety evaluation problem is converted to a large-scale nonlinear optimization programming for an acceptable bounded loading as the design reference. Furthermore, a general numerical scheme integrated with the FEM and interior-point-algorithm based optimization tool is developed, which makes the practical application possible.

Keywords: limit state, shakedown analysis, homogenization, heterogeneous structure

Procedia PDF Downloads 343
4697 Bridging the Gap: Living Machine in Educational Nature Preserve Center

Authors: Zakeia Benmoussa

Abstract:

Pressure on freshwater systems comes from removing too much water to grow crops; contamination from economic activities, land use practices, and human waste. The paper will be focusing on how water management can influence the design, implementation, and impacts of the ecological principles of biomimicry as sustainable methods in recycling wastewater. At Texas State, United States of America, in particular the lower area of the Trinity River refuge, there is a true example of the diversity to be found in that area, whether when exploring the lands or the waterways. However, as the Trinity River supplies water to the state’s residents, the lower part of the river at Liberty County presents several problem of wastewater discharge in the river. Therefore, conservation efforts are particularly important in the Trinity River basin. Clearly, alternative ways must be considered in order to conserve water to meet future demands. As a result, there should be another system provided rather than the conventional water treatment. Mimicking ecosystem's technologies out of context is not enough, but if we incorporate plants into building architecture, in addition to their beauty, they can filter waste, absorb excess water, and purify air. By providing an architectural proposal center, a living system can be explored through several methods that influence natural resources on the micro-scale in order to impact sustainability on the macro-scale. The center consists of an ecological program of Plant and Water Biomimicry study which becomes a living organism that purifies the river water in a natural way through architecture. Consequently, a rich beautiful nature could be used as an educational destination, observation and adventure, as well as providing unpolluted fresh water to the major cities of Texas. As a result, these facts raise a couple of questions: Why is conservation so rarely practiced by those who must extract a living from the land? Are we sufficiently enlightened to realize that we must now challenge that dogma? Do architects respond to the environment and reflect on it in the correct way through their public projects? The method adopted in this paper consists of general research into careful study of the system of the living machine, in how to integrate it at architectural level, and finally, the consolidation of the all the conclusions formed into design proposal. To summarise, this paper attempts to provide a sustainable alternative perspective in bridging physical and mental interaction with biodiversity to enhance nature by using architecture.

Keywords: Biodiversity, Design with Nature, Sustainable architecture, Waste water treatment.

Procedia PDF Downloads 303
4696 Electrochemical Detection of the Chemotherapy Agent Methotrexate in vitro from Physiological Fluids Using Functionalized Carbon Nanotube past Electrodes

Authors: Shekher Kummari, V. Sunil Kumar, K. Vengatajalabathy Gobi

Abstract:

A simple, cost-effective, reusable and reagent-free electrochemical biosensor is developed with functionalized multiwall carbon nanotube paste electrode (f-CNTPE) for the sensitive and selective determination of the important chemotherapeutic drug methotrexate (MTX), which is widely used for the treatment of various cancer and autoimmune diseases. The electrochemical response of the fabricated electrode towards the detection of MTX is examined by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and square wave voltammetry (SWV). CV studies have shown that f-CNTPE electrode system exhibited an excellent electrocatalytic activity towards the oxidation of MTX in phosphate buffer (0.2 M) compared with a conventional carbon paste electrode (CPE). The oxidation peak current is enhanced by nearly two times in magnitude. Applying the DPV method under optimized conditions, a linear calibration plot is achieved over a wide range of concentration from 4.0×10⁻⁷ M to 5.5×10⁻⁶ M with the detection limit 1.6×10⁻⁷ M. further, by applying the SWV method a parabolic calibration plot was achieved starting from a very low concentration of 1.0×10⁻⁸ M, and the sensor could detect as low as 2.9×10⁻⁹ M MTX in 10 s and 10 nM were detected in steady state current-time analysis. The f-CNTPE shows very good selectivity towards the specific recognition of MTX in the presence of important biological interference. The electrochemical biosensor detects MTX in-vitro directly from pharmaceutical sample, undiluted urine and human blood serum samples at a concentration range 5.0×10⁻⁷ M with good recovery limits.

Keywords: amperometry, electrochemical detection, human blood serum, methotrexate, MWCNT, SWV

Procedia PDF Downloads 312