Search results for: recycling cost estimates
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7188

Search results for: recycling cost estimates

6888 Socioeconomic Burden of Life Long Disease: A Case of Diabetes Care in Bangladesh

Authors: Samira Humaira Habib

Abstract:

Diabetes has profound effects on individuals and their families. If diabetes is not well monitored and managed, then it leads to long-term complications and a large and growing cost to the health care system. Prevalence and socioeconomic burden of diabetes and relative return of investment for the elimination or the reduction of the burden are much more important regarding its cost burden. Various studies regarding the socioeconomic cost burden of diabetes are well explored in developed countries but almost absent in developing countries like Bangladesh. The main objective of the study is to estimate the total socioeconomic burden of diabetes. It is a prospective longitudinal follow up study which is analytical in nature. Primary and secondary data are collected from patients who are undergoing treatment for diabetes at the out-patient department of Bangladesh Institute of Research & Rehabilitation in Diabetes, Endocrine & Metabolic Disorders (BIRDEM). Of the 2115 diabetic subjects, females constitute around 50.35% of the study subject, and the rest are male (49.65%). Among the subjects, 1323 are controlled, and 792 are uncontrolled diabetes. Cost analysis of 2115 diabetic patients shows that the total cost of diabetes management and treatment is US$ 903018 with an average of US$ 426.95 per patient. In direct cost, the investigation and medical treatment at hospital along with investigation constitute most of the cost in diabetes. The average cost of a hospital is US$ 311.79, which indicates an alarming warn for diabetic patients. The indirect cost shows that cost of productivity loss (US$ 51110.1) is higher among the all indirect item. All constitute total indirect cost as US$ 69215.7. The incremental cost of intensive management of uncontrolled diabetes is US$ 101.54 per patient and event-free time gained in this group is 0.55 years and the life years gain is 1.19 years. The incremental cost per event-free year gained is US$ 198.12. The incremental cost of intensive management of the controlled group is US$ 89.54 per patient and event-free time gained is 0.68 years, and the life year gain is 1.12 years. The incremental cost per event-free year gained is US$ 223.34. The EuroQoL difference between the groups is found to be 64.04. The cost-effective ratio is found to be US$ 1.64 cost per effect in case of controlled diabetes and US$ 1.69 cost per effect in case of uncontrolled diabetes. So management of diabetes is much more cost-effective. Cost of young type 1 diabetic patient showed upper socioeconomic class, and with the increase of the duration of diabetes, the cost increased also. The dietary pattern showed macronutrients intake and cost are significantly higher in the uncontrolled group than their counterparts. Proper management and control of diabetes can decrease the cost of care for the long term.

Keywords: cost, cost-effective, chronic diseases, diabetes care, burden, Bangladesh

Procedia PDF Downloads 151
6887 Incorporating Circular Economy into Passive Design Strategies in Tropical Nigeria

Authors: Noah G. Akhimien, Eshrar Latif

Abstract:

The natural environment is in need for an urgent rescue due to dilapidation and recession of resources. Passive design strategies have proven to be one of the effective ways to reduce CO2 emissions and to improve building performance. On the other hand, there is a huge drop in material availability due to poor recycling culture. Consequently, building waste pose environmental hazard due to unrecycled building materials from construction and deconstruction. Buildings are seen to be material banks for a circular economy, therefore incorporating circular economy into passive housing will not only safe guide the climate but also improve resource efficiency. The study focuses on incorporating a circular economy in passive design strategies for an affordable energy and resource efficient residential building in Nigeria. Carbon dioxide (CO2) concentration is still on the increase as buildings are responsible for a significant amount of this emission globally. Therefore, prompt measures need to be taken to combat the effect of global warming and associated threats. Nigeria is rapidly growing in human population, resources on the other hand have receded greatly, and there is an abrupt need for recycling even in the built environment. It is necessary that Nigeria responds to these challenges effectively and efficiently considering building resource and energy. Passive design strategies were assessed using simulations to obtain qualitative and quantitative data which were inferred to case studies as it relates to the Nigeria climate. Building materials were analysed using the ReSOLVE model in order to explore possible recycling phase. This provided relevant information and strategies to illustrate the possibility of circular economy in passive buildings. The study offers an alternative approach, as it is the general principle for the reworking of an economy on ecological lines in passive housing and by closing material loops in circular economy.

Keywords: building, circular, efficiency, environment, sustainability

Procedia PDF Downloads 257
6886 Reduction in the Metabolic Cost of Human Walking Gaits Using Quasi-Passive Upper Body Exoskeleton

Authors: Nafiseh Ebrahimi, Gautham Muthukumaran, Amir Jafari

Abstract:

Human walking gait is considered to be the most efficient biped walking gait. There are various types of gait human follows during locomotion and arm swing is one of the most important factors which controls and differentiates human gaits. Earlier studies declared a 7% reduction in the metabolic cost due to the arm swing. In this research, we compared different types of arm swings in terms of metabolic cost reduction and then suggested, designed, fabricated and tested a quasi-passive upper body exoskeleton to study the metabolic cost reduction in the folded arm walking gate scenarios. Our experimental results validate a 10% reduction in the metabolic cost of walking aided by the application of the proposed exoskeleton.

Keywords: arm swing, MET (metabolic equivalent of a task), calorimeter, oxygen consumption, upper body quasi-passive exoskeleton

Procedia PDF Downloads 161
6885 An Evaluation on the Methodology of Manufacturing High Performance Organophilic Clay at the Most Efficient and Cost Effective Process

Authors: Siti Nur Izati Azmi, Zatil Afifah Omar, Kathi Swaran, Navin Kumar

Abstract:

Organophilic Clays, also known as Organoclays, is used as a viscosifier in Oil based Drilling fluids. Most often, Organophilic clay are produced from modified Sodium and Calcium based Bentonite. Many studies and data show that Organophilic Clay using Hectorite based clays provide the best yield and good fluid loss properties in an oil-based drilling fluid at a higher cost. In terms of the manufacturing process, the two common methods of manufacturing organophilic clays are a Wet Process and a Dry Process. Wet process is known to produce better performance product at a higher cost while Dry Process shorten the production time. Hence, the purpose of this study is to evaluate the various formulation of an organophilic clay and its performance vs. the cost, as well as to determine the most efficient and cost-effective method of manufacturing organophilic clays.

Keywords: organophilic clay, viscosifier, wet process, dry process

Procedia PDF Downloads 232
6884 Financial Burden of Family for the Children with Autism Spectrum Disorder

Authors: M. R. Bhuiyan, S. M. M. Hossain, M. Z. Islam

Abstract:

Autism Spectrum Disorder (ASD) is the fastest growing serious developmental disorder characterized by social deficits, communicative difficulties, and repetitive behaviors. ASD is an emerging public health issue globally which is associated with huge financial burden to the family, community and the nation. The aim of this study was to assess the financial burden of family for the children with Autism spectrum Disorder. This cross-sectional study was carried out from July 2015 to June 2016 among 154 children with ASD to assess the financial burden of family. Data were collected by face-to-face interview with semi-structured questionnaire following systematic random sampling technique. Majority (73.4%) children were male and mean (±SD) age was 6.66 ± 2.97 years. Most (88.8%) of the children were from urban areas with average monthly family income Tk. 41785.71±23936.45. Average monthly direct cost of the children was Tk.17656.49 ± 9984.35, while indirect cost was Tk. 13462.90 ± 9713.54 and total treatment cost was Tk. 23076.62 ± 15341.09. Special education cost (Tk. 4871.00), cost of therapy (Tk. 4124.07) and travel cost (Tk. 3988.31) were the major types of direct cost, while loss of income (Tk.14570.18) was the chief indirect cost incurred by the families. The study found that majority (59.8%) of the children attended special schools were incurred Tk.20001-78700 as total treatment cost, which were statistically significant (p<0.001). Again, families with higher monthly family income incurred higher treatment cost (r=0.526, p<0.05). Difference between mean direct and indirect cost was found significant (t=4.190, df=61, p<0.001). According to the analysis of variance, mean difference of father’s educational status among direct cost (F=10.337, p<0.001) and total treatment cost (F=7.841, p<0.001), which were statistically significant. The study revealed that maximum children with ASD were under five years, three-fourth were male. According to monthly family income, maximum family were in middle class. The study recommends cost effective interventions and financial safety-net measures to reduce the financial burden of families for the children with ASD.

Keywords: autism spectrum disorder, financial burden, direct cost, indirect cost, special education

Procedia PDF Downloads 142
6883 Evaluating the Cost of Quality: A Case Study of a South African Foundry Business

Authors: Chipo Mugova, Zuko Mjobo

Abstract:

The aim of this study was to evaluate the cost of quality (COQ) at a local foundry business to identify the contribution of its units and processes to quality costs within the foundry’s operations. The foundry selected for detailed case study is one of major businesses that have been targeted by the government to produce components for building and re-furbishing wagons and trains. The study aimed at identifying areas in the foundry’s processes in which investment needs to be made to reduce quality costs. This is in alignment with government’s vision of promoting local business to support local markets leading to creation of jobs, and hence reduction of unemployment rate in South Africa. The methodology adopted used cost of quality models. Results from the study indicated that internal failure costs were significantly higher than all other cost of quality categories, taking more than 60% of the business’s income.

Keywords: appraisal costs, cost of quality, failure costs, local content, prevention costs

Procedia PDF Downloads 344
6882 Cancer Burden and Policy Needs in the Democratic Republic of the Congo: A Descriptive Study

Authors: Jean Paul Muambangu Milambo, Peter Nyasulu, John Akudugu, Leonidas Ndayisaba, Joyce Tsoka-Gwegweni, Lebwaze Massamba Bienvenu, Mitshindo Mwambangu Chiro

Abstract:

In 2018, non-communicable diseases (NCDs) were responsible for 48% of deaths in the Democratic Republic of Congo (DRC), with cancer contributing to 5% of these deaths. There is a notable absence of cancer registries, capacity-building activities, budgets, and treatment roadmaps in the DRC. Current cancer estimates are primarily based on mathematical modeling with limited data from neighboring countries. This study aimed to assess cancer subtype prevalence in Kinshasa hospitals and compare these findings with WHO model estimates. Methods: A retrospective observational study was conducted from 2018 to 2020 at HJ Hospitals in Kinshasa. Data were collected using American Cancer Society (ACS) questionnaires and physician logs. Descriptive analysis was performed using STATA version 16 to estimate cancer burden and provide evidence-based recommendations. Results: The results from the chart review at HJ Hospitals in Kinshasa (2018-2020) indicate that out of 6,852 samples, approximately 11.16% were diagnosed with cancer. The distribution of cancer subtypes in this cohort was as follows: breast cancer (33.6%), prostate cancer (21.8%), colorectal cancer (9.6%), lymphoma (4.6%), and cervical cancer (4.4%). These figures are based on histopathological confirmation at the facility and may not fully represent the broader population due to potential selection biases related to geographic and financial accessibility to the hospital. In contrast, the World Health Organization (WHO) model estimates for cancer prevalence in the DRC show different proportions. According to WHO data, the distribution of cancer types is as follows: cervical cancer (15.9%), prostate cancer (15.3%), breast cancer (14.9%), liver cancer (6.8%), colorectal cancer (5.9%), and other cancers (41.2%) (WHO, 2020). Conclusion: The data indicate a rising cancer prevalence in DRC but highlight significant gaps in clinical, biomedical, and genetic cancer data. The establishment of a population-based cancer registry (PBCR) and a defined cancer management pathway is crucial. The current estimates are limited due to data scarcity and inconsistencies in clinical practices. There is an urgent need for multidisciplinary cancer management, integration of palliative care, and improvement in care quality based on evidence-based measures.

Keywords: cancer, risk factors, DRC, gene-environment interactions, survivors

Procedia PDF Downloads 25
6881 Investigation of Wood Chips as Internal Carbon Source Supporting Denitrification Process in Domestic Wastewater Treatment

Authors: Ruth Lorivi, Jianzheng Li, John J. Ambuchi, Kaiwen Deng

Abstract:

Nitrogen removal from wastewater is accomplished by nitrification and denitrification processes. Successful denitrification requires carbon, therefore, if placed after biochemical oxygen demand (BOD) and nitrification process, a carbon source has to be re-introduced into the water. To avoid adding a carbon source, denitrification is usually placed before BOD and nitrification processes. This process however involves recycling the nitrified effluent. In this study wood chips were used as internal carbon source which enabled placement of denitrification after BOD and nitrification process without effluent recycling. To investigate the efficiency of a wood packed aerobic-anaerobic baffled reactor on carbon and nutrients removal from domestic wastewater, a three compartment baffled reactor was presented. Each of the three compartments was packed with 329 g wood chips 1x1cm acting as an internal carbon source for denitrification. The proposed mode of operation was aerobic-anoxic-anaerobic (OAA) with no effluent recycling. The operating temperature, hydraulic retention time (HRT), dissolved oxygen (DO) and pH were 24 ± 2 , 24 h, less than 4 mg/L and 7 ± 1 respectively. The removal efficiencies of chemical oxygen demand (COD), ammonia nitrogen (NH4+-N) and total nitrogen (TN) attained was 99, 87 and 83% respectively. TN removal rate was limited by nitrification as 97% of ammonia converted into nitrate and nitrite was denitrified. These results show that application of wood chips in wastewater treatment processes is an efficient internal carbon source. 

Keywords: aerobic-anaerobic baffled reactor, denitrification, nitrification, wood chip

Procedia PDF Downloads 301
6880 Illegal Anthropogenic Activity Drives Large Mammal Population Declines in an African Protected Area

Authors: Oluseun A. Akinsorotan, Louise K. Gentle, Md. Mofakkarul Islam, Richard W. Yarnell

Abstract:

High levels of anthropogenic activity such as habitat destruction, poaching and encroachment into natural habitat have resulted in significant global wildlife declines. In order to protect wildlife, many protected areas such as national parks have been created. However, it is argued that many protected areas are only protected in name and are often exposed to continued, and often illegal, anthropogenic pressure. In West African protected areas, declines of large mammals have been documented between 1962 and 2008. This study aimed to produce occupancy estimates of the remaining large mammal fauna in the third largest National Park in Nigeria, Old Oyo, and to compare the estimates with historic estimates while also attempting to quantify levels of illegal anthropogenic activity using a multi-disciplinary approach. Large mammal populations and levels of illegal anthropogenic activity were assessed using empirical field data (camera trapping and transect surveys) in combination with data from questionnaires completed by local villagers and park rangers. Four of the historically recorded species in the park, lion (Panthera leo), hunting dog (Lycaon pictus), elephant (Loxodonta africana) and buffalo (Syncerus caffer) were not detected during field studies nor were they reported by respondents. In addition, occupancy estimates of hunters and illegal grazers were higher than the majority of large mammal species inside the park. This finding was reinforced by responses from the villagers and rangers who’s perception was that large mammal densities in the park were declining, and that a large proportion of the local people were entering the park to hunt wild animals and graze their domestic livestock. Our findings also suggest that widespread poverty and a lack of alternative livelihood opportunities, culture of consuming bushmeat, lack of education and awareness of the value of protected areas, and weak law enforcement are some of the reasons for the illegal activity. Law enforcement authorities were often constrained by insufficient on-site personnel and a lack of modern equipment and infrastructure to deter illegal activities. We conclude that there is a need to address the issue of illegal hunting and livestock grazing, via provision of alternative livelihoods, in combination with community outreach programmes that aim to improve conservation education and awareness and develop the capacity of the conservation authorities in order to achieve conservation goals. Our findings have implications for the conservation management of all protected areas that are available for exploitation by local communities.

Keywords: camera trapping, conservation, extirpation, illegal grazing, large mammals, national park, occupancy estimates, poaching

Procedia PDF Downloads 297
6879 Novel Routes to the Synthesis and Functionalization of Metallic and Semiconductor Thin Film and Nanoparticles

Authors: Hanan. Al Chaghouri, Mohammad Azad Malik, P. John Thomas, Paul O’Brien

Abstract:

The process of assembling metal nanoparticles at the interface of two liquids has received a great deal of attention over the past few years due to a wide range of important applications and their unusual properties as compared to bulk materials. We present a low cost, simple and cheap synthesis of metal nanoparticles, core/shell structures and semiconductors followed by assembly of these particles between immiscible liquids. The aim of this talk is divided to three parts: Firstly, to describe the achievement of a closed loop recycling for producing cadmium sulfide as powders and/or nanostructured thin films for solar cells or other optoelectronic devices applications by using a different chain length of commercially available secondary amines of dithiocarbamato complexes. The approach can be extended to other metal sulfides such as those of Zn, Pb, Cu, or Fe and many transition metals and oxides. Secondly, to synthesis significantly cheaper magnetic particles suited for the mass market. Ni/NiO nanoparticles with ferromagnetic properties at room temperature were among the smallest and strongest magnets (5 nm) were made in solution. The applications of this work can be to produce viable storage devices and the other possibility is to disperse these nanocrystals in solution and use it to make ferrofluids which have a number of mature applications. The third part is about preparing and assembling of submicron silver, cobalt and nickel particles by using polyol methods and liquid/liquid interface, respectively. Coinage metals like gold, copper and silver are suitable for plasmonic thin film solar cells because of their low resistivity and strong interactions with visible light waves. Silver is the best choice for solar cell application since it has low absorption losses and high radiative efficiency compared to gold and copper. Assembled cobalt and nickel as films are promising for spintronic, magnetic and magneto-electronic and biomedics.

Keywords: metal nanoparticles, core/shell structures and semiconductors, ferromagnetic properties, closed loop recycling, liquid/liquid interface

Procedia PDF Downloads 464
6878 Effects of Spent Dyebath Recycling on Pollution and Cost of Production in a Cotton Textile Industry

Authors: Dinesh Kumar Sharma, Sanjay Sharma

Abstract:

Textile manufacturing industry uses a substantial amount of chemicals not only in the production processes but also in manufacturing the raw materials. Dyes are the most significant raw material which provides colour to the fabric and yarn. Dyes are produced by using a large amount of chemicals both organic and inorganic in nature. Dyes are further classified as Reactive or Vat Dyes which are mostly used in cotton textiles. In the process of application of dyes to the cotton fiber, yarn or fabric, several auxiliary chemicals are also used in the solution called dyebath to improve the absorption of dyes. There is a very little absorption of dyes and auxiliary chemicals and a residual amount of all these substances is released as the spent dye bath effluent. Because of the wide variety of chemicals used in cotton textile dyes, there is always a risk of harmful effects which may not be apparent immediately but may have an irreversible impact in the long term. Colour imparted by the dyes to the water also has an adverse effect on its public acceptability and the potability. This study has been conducted with an objective to assess the feasibility of reuse of the spent dye bath. Studies have been conducted in two independent industries manufacturing dyed cotton yarn and dyed cotton fabric respectively. These have been referred as Unit-I and Unit-II. The studies included assessment of reduction in pollution levels and the economic benefits of such reuse. The study conclusively establishes that the reuse of spent dyebath results in prevention of pollution, reduction in pollution loads and cost of effluent treatment & production. This pollution prevention technique presents a good preposition for pollution prevention in cotton textile industry.

Keywords: dyes, dyebath, reuse, toxic, pollution, costs

Procedia PDF Downloads 397
6877 Evaluation of the Costs and Benefits of Mumbai Sewage Disposal Project, India

Authors: Indrani Gupta, Leena Vachasiddha, Rakesh Kumar

Abstract:

Municipal Corporation of Greater Mumbai intends to undertake Mumbai Sewage Disposal (MSDP) for improvement of environment in and around Mumbai city. Sewage generated from the city currently gets partly into the inadequate collection system for treatment and the rest into nearby marine water body through drains. This paper addresses the cost benefit analysis of MSDP works for better compliance of sewage treatment and disposal. Cost benefit analysis indicates that the investment in sewage treatment is economically beneficial and will provide immense social, environmental, health and economic benefits. Monetary values of positive benefits such as avoided health costs, enhanced fish catches and improved tourism have been quantified. The total capital cost of the project is estimated to be about INR 51,510 million and operation and maintenance cost is about INR 2240.6 million per year. The cost benefit analysis indicates that a benefit of about 25,882 million per year can be achieved due to the implementation of this project. Other than these benefits, better marine ecosystem quality; higher property cost; improved recreational opportunities were not included because of lack of information.

Keywords: waste water treatment, cost-benefit analysis, health, tourism, fisheries

Procedia PDF Downloads 338
6876 Use of Sewage Sludge Ash as Partial Cement Replacement in the Production of Mortars

Authors: Domagoj Nakic, Drazen Vouk, Nina Stirmer, Mario Siljeg, Ana Baricevic

Abstract:

Wastewater treatment processes generate significant quantities of sewage sludge that need to be adequately treated and disposed. In many EU countries, the problem of adequate disposal of sewage sludge has not been solved, nor is determined by the unique rules, instructions or guidelines. Disposal of sewage sludge is important not only in terms of satisfying the regulations, but the aspect of choosing the optimal wastewater and sludge treatment technology. Among the solutions that seem reasonable, recycling of sewage sludge and its byproducts reaches the top recommendation. Within the framework of sustainable development, recycling of sludge almost completely closes the cycle of wastewater treatment in which only negligible amounts of waste that requires landfilling are being generated. In many EU countries, significant amounts of sewage sludge are incinerated, resulting in a new byproduct in the form of ash. Sewage sludge ash is three to five times less in volume compared to stabilized and dehydrated sludge, but it also requires further management. The combustion process also destroys hazardous organic components in the sludge and minimizes unpleasant odors. The basic objective of the presented research is to explore the possibilities of recycling of the sewage sludge ash as a supplementary cementitious material. This is because of the main oxides present in the sewage sludge ash (SiO2, Al2O3 and Cao, which is similar to cement), so it can be considered as latent hydraulic and pozzolanic material. Physical and chemical characteristics of ashes, generated by sludge collected from different wastewater treatment plants, and incinerated in laboratory conditions at different temperatures, are investigated since it is a prerequisite of its subsequent recycling and the eventual use in other industries. Research was carried out by replacing up to 20% of cement by mass in cement mortar mixes with different obtained ashes and examining characteristics of created mixes in fresh and hardened condition. The mixtures with the highest ash content (20%) showed an average drop in workability of about 15% which is attributed to the increased water requirements when ash was used. Although some mixes containing added ash showed compressive and flexural strengths equivalent to those of reference mixes, generally slight decrease in strength was observed. However, it is important to point out that the compressive strengths always remained above 85% compared to the reference mix, while flexural strengths remained above 75%. Ecological impact of innovative construction products containing sewage sludge ash was determined by analyzing leaching concentrations of heavy metals. Results demonstrate that sewage sludge ash can satisfy technical and environmental criteria for use in cementitious materials which represents a new recycling application for an increasingly important waste material that is normally landfilled. Particular emphasis is placed on linking the composition of generated ashes depending on its origin and applied treatment processes (stage of wastewater treatment, sludge treatment technology, incineration temperature) with the characteristics of the final products. Acknowledgement: This work has been fully supported by Croatian Science Foundation under the project '7927 - Reuse of sewage sludge in concrete industry – from infrastructure to innovative construction products'.

Keywords: cement mortar, recycling, sewage sludge ash, sludge disposal

Procedia PDF Downloads 250
6875 Cost Efficiency of European Cooperative Banks

Authors: Karolína Vozková, Matěj Kuc

Abstract:

This paper analyzes recent trends in cost efficiency of European cooperative banks using efficient frontier analysis. Our methodology is based on stochastic frontier analysis which is run on a set of 649 European cooperative banks using data between 2006 and 2015. Our results show that average inefficiency of European cooperative banks is increasing since 2008, smaller cooperative banks are significantly more efficient than the bigger ones over the whole time period and that share of net fee and commission income to total income surprisingly seems to have no impact on bank cost efficiency.

Keywords: cooperative banks, cost efficiency, efficient frontier analysis, stochastic frontier analysis, net fee and commission income

Procedia PDF Downloads 212
6874 Estimation of Fuel Cost Function Characteristics Using Cuckoo Search

Authors: M. R. Al-Rashidi, K. M. El-Naggar, M. F. Al-Hajri

Abstract:

The fuel cost function describes the electric power generation-cost relationship in thermal plants, hence, it sheds light on economical aspects of power industry. Different models have been proposed to describe this relationship with the quadratic function model being the most popular one. Parameters of second order fuel cost function are estimated in this paper using cuckoo search algorithm. It is a new population based meta-heuristic optimization technique that has been used in this study primarily as an accurate estimation tool. Its main features are flexibility, simplicity, and effectiveness when compared to other estimation techniques. The parameter estimation problem is formulated as an optimization one with the goal being minimizing the error associated with the estimated parameters. A case study is considered in this paper to illustrate cuckoo search promising potential as a valuable estimation and optimization technique.

Keywords: cuckoo search, parameters estimation, fuel cost function, economic dispatch

Procedia PDF Downloads 583
6873 An Approach to Electricity Production Utilizing Waste Heat of a Triple-Pressure Cogeneration Combined Cycle Power Plant

Authors: Soheil Mohtaram, Wu Weidong, Yashar Aryanfar

Abstract:

This research investigates the points with heat recovery potential in a triple-pressure cogeneration combined cycle power plant and determines the amount of waste heat that can be recovered. A modified cycle arrangement is then adopted for accessing thermal potentials. Modeling the energy system is followed by thermodynamic and energetic evaluation, and then the price of the manufactured products is also determined using the Total Revenue Requirement (TRR) method and term economic analysis. The results of optimization are then presented in a Pareto chart diagram by implementing a new model with dual objective functions, which include power cost and produce heat. This model can be utilized to identify the optimal operating point for such power plants based on electricity and heat prices in different regions.

Keywords: heat loss, recycling, unused energy, efficient production, optimization, triple-pressure cogeneration

Procedia PDF Downloads 87
6872 Integrated Evaluation of Green Design and Green Manufacturing Processes Using a Mathematical Model

Authors: Yuan-Jye Tseng, Shin-Han Lin

Abstract:

In this research, a mathematical model for integrated evaluation of green design and green manufacturing processes is presented. To design a product, there can be alternative options to design the detailed components to fulfill the same product requirement. In the design alternative cases, the components of the product can be designed with different materials and detailed specifications. If several design alternative cases are proposed, the different materials and specifications can affect the manufacturing processes. In this paper, a new concept for integrating green design and green manufacturing processes is presented. A green design can be determined based the manufacturing processes of the designed product by evaluating the green criteria including energy usage and environmental impact, in addition to the traditional criteria of manufacturing cost. With this concept, a mathematical model is developed to find the green design and the associated green manufacturing processes. In the mathematical model, the cost items include material cost, manufacturing cost, and green related cost. The green related cost items include energy cost and environmental cost. The objective is to find the decisions of green design and green manufacturing processes to achieve the minimized total cost. In practical applications, the decision-making can be made to select a good green design case and its green manufacturing processes. In this presentation, an example product is illustrated. It shows that the model is practical and useful for integrated evaluation of green design and green manufacturing processes.

Keywords: supply chain management, green supply chain, green design, green manufacturing, mathematical model

Procedia PDF Downloads 811
6871 Reactive Power Cost Evaluation with FACTS Devices in Restructured Power System

Authors: A. S. Walkey, N. P. Patidar

Abstract:

It is not always economical to provide reactive power using synchronous alternators. The cost of reactive power can be minimized by optimal placing of FACTS devices in power systems. In this paper a Particle Swarm Optimization- Sequential Quadratic Programming (PSO-SQP) algorithm is applied to minimize the cost of reactive power generation along with real power generation to alleviate the bus voltage violations. The effectiveness of proposed approach tested on IEEE-14 bus systems. In this paper in addition to synchronous generators, an opportunity of FACTS devices are also proposed to procure the reactive power demands in the power system.

Keywords: reactive power, reactive power cost, voltage security margins, capability curve, FACTS devices

Procedia PDF Downloads 510
6870 Improving Cost and Time Control of Construction Projects Management Practices in Nigeria

Authors: Mustapha Yakubu, Ahmed Usman, Hashim Ambursa

Abstract:

This paper presents the findings of a research which sought to investigate techniques used to improve cost and time control of construction projects management practice in Nigeria. However, there is limited research on issues surrounding the practical usage of these techniques. Data were collected through a questionnaire distributed to construction experts through a survey conducted on the 100 construction organisations and 50 construction consultancy firms in the Nigeria aimed at identifying common project cost and time control practices and factors inhibiting effective project control in practice. The study reveals that despite the vast application of control techniques a high proportion of respondents still experienced cost and time overruns on a significant proportion of their projects. Analysis of the survey results concluded that more effort should be geared at the management of the identified top project control inhibiting factors. This paper has outlined some measures for mitigating these inhibiting factors so that the outcome of project time and cost control can be improved in practice.

Keywords: construction project, cost control, Nigeria, time control

Procedia PDF Downloads 317
6869 The Effects of Aging on the Cost of Operating and Support: An Empirical Study Applied to Weapon Systems

Authors: Byungchae Kim, Jiwoo Nam

Abstract:

Aging of weapon systems can cause the failure and degeneration of components which results in increase of operating and support costs. However, whether this aging effect is significantly strong and it influences a lot on national defense spending due to the rapid increase in operating and support (O&S) costs is questionable. To figure out this, we conduct a literature review analyzing the aging effect of US weapon systems. We also conduct an empirical research using a maintenance database of Korean weapon systems, Defense Logistics Integrated Information System (DAIIS). We run regression of various types of O&S cost on weapon system age to investigate the statistical significance of aging effect and use generalized linear model to find relations between the failure of different priced components and the age. Our major finding is although aging effect exists, its impacts on weapon system cost seem to be not too large considering several characteristics of O&S cost elements not relying on the age.

Keywords: O&S cost, aging effect, weapon system, GLM

Procedia PDF Downloads 147
6868 Estimating Occupancy in Residential Context Using Bayesian Networks for Energy Management

Authors: Manar Amayri, Hussain Kazimi, Quoc-Dung Ngo, Stephane Ploix

Abstract:

A general approach is proposed to determine occupant behavior (occupancy and activity) in residential buildings and to use these estimates for improved energy management. Occupant behaviour is modelled with a Bayesian Network in an unsupervised manner. This algorithm makes use of domain knowledge gathered via questionnaires and recorded sensor data for motion detection, power, and hot water consumption as well as indoor CO₂ concentration. Two case studies are presented which show the real world applicability of estimating occupant behaviour in this way. Furthermore, experiments integrating occupancy estimation and hot water production control show that energy efficiency can be increased by roughly 5% over known optimal control techniques and more than 25% over rule-based control while maintaining the same occupant comfort standards. The efficiency gains are strongly correlated with occupant behaviour and accuracy of the occupancy estimates.

Keywords: energy, management, control, optimization, Bayesian methods, learning theory, sensor networks, knowledge modelling and knowledge based systems, artificial intelligence, buildings

Procedia PDF Downloads 372
6867 Techno-Economic Analysis of the Production of Aniline

Authors: Dharshini M., Hema N. S.

Abstract:

The project for the production of aniline is done by providing 295.46 tons per day of nitrobenzene as feed. The material and energy balance calculations for the different equipment like distillation column, heat exchangers, reactor and mixer are carried out with simulation via DWSIM. The conversion of nitrobenzene to aniline by hydrogenation process is considered to be 96% and the total production of the plant was found to be 215 TPD. The cost estimation of the process is carried out to estimate the feasibility of the plant. The net profit and percentage return of investment is estimated to be ₹27 crores and 24.6%. The payback period was estimated to be 4.05 years and the unit production cost is ₹113/kg. A techno-economic analysis was performed for the production of aniline; the result includes economic analysis and sensitivity analysis of critical factors. From economic analysis, larger the plant scale increases the total capital investment and annual operating cost, even though the unit production cost decreases. Uncertainty analysis was performed to predict the influence of economic factors on profitability and the scenario analysis is one way to quantify uncertainty. In scenario analysis the best-case scenario and the worst-case scenario are compared with the base case scenario. The best-case scenario was found at a feed rate of 120 kmol/hr with a unit production cost of ₹112.05/kg and the worst-case scenario was found at a feed rate of 60 kmol/hr with a unit production cost of ₹115.9/kg. The base case is closely related to the best case by 99.2% in terms of unit production cost. since the unit production cost is less and the profitability is more with less payback time, it is feasible to construct a plant at this capacity.

Keywords: aniline, nitrobenzene, economic analysis, unit production cost

Procedia PDF Downloads 112
6866 Apps Reduce the Cost of Construction

Authors: Ali Mohammadi

Abstract:

Every construction that is done, the most important part of attention for employers and contractors is its cost, and they always try to reduce costs so that they can compete in the market, so they estimate the cost of construction before starting their activities. The costs can be generally divided into four parts: the materials used, the equipment used, the manpower required, and the time required. In this article, we are trying to talk about the three items of equipment, manpower, and time, and examine how the use of apps can reduce the cost of construction, while due to various reasons, it has received less attention in the field of app design. Also, because we intend to use these apps in construction and they are used by engineers and experts, we define these apps as engineering apps because the idea of ​​their design must be by an engineer who works in that field. Also, considering that most engineers are familiar with programming during their studies, they can design the apps they need using simple programming software.

Keywords: layout, as-bilt, monitoring, maps

Procedia PDF Downloads 70
6865 Glycerol-Based Bio-Solvents for Organic Synthesis

Authors: Dorith Tavor, Adi Wolfson

Abstract:

In the past two decades a variety of green solvents have been proposed, including water, ionic liquids, fluorous solvents, and supercritical fluids. However, their implementation in industrial processes is still limited due to their tedious and non-sustainable synthesis, lack of experimental data and familiarity, as well as operational restrictions and high cost. Several years ago we presented, for the first time, the use of glycerol-based solvents as alternative sustainable reaction mediums in both catalytic and non-catalytic organic synthesis. Glycerol is the main by-product from the conversion of oils and fats in oleochemical production. Moreover, in the past decade, its price has substantially decreased due to an increase in supply from the production and use of fatty acid derivatives in the food, cosmetics, and drugs industries and in biofuel synthesis, i.e., biodiesel. The renewable origin, beneficial physicochemical properties and reusability of glycerol-based solvents, enabled improved product yield and selectivity as well as easy product separation and catalyst recycling. Furthermore, their high boiling point and polarity make them perfect candidates for non-conventional heating and mixing techniques such as ultrasound- and microwave-assisted reactions. Finally, in some reactions, such as catalytic transfer-hydrogenation or transesterification, they can also be used simultaneously as both solvent and reactant. In our ongoing efforts to design a viable protocol that will facilitate the acceptance of glycerol and its derivatives as sustainable solvents, pure glycerol and glycerol triacetate (triacetin) as well as various glycerol-triacetin mixtures were tested as sustainable solvents in several representative organic reactions, such as nucleophilic substitution of benzyl chloride to benzyl acetate, Suzuki-Miyaura cross-coupling of iodobenzene and phenylboronic acid, baker’s yeast reduction of ketones, and transfer hydrogenation of olefins. It was found that reaction performance was affected by the glycerol to triacetin ratio, as the solubility of the substrates in the solvent determined product yield. Thereby, employing optimal glycerol to triacetin ratio resulted in maximum product yield. In addition, using glycerol-based solvents enabled easy and successful separation of the products and recycling of the catalysts.

Keywords: glycerol, green chemistry, sustainability, catalysis

Procedia PDF Downloads 626
6864 A Solution for Production Facility Assignment: An Automotive Subcontract Case

Authors: Cihan Çetinkaya, Eren Özceylan, Kerem Elibal

Abstract:

This paper presents a solution method for selection of production facility. The motivation has been taken from a real life case, an automotive subcontractor which has two production facilities at different cities and parts. The problem is to decide which part(s) should be produced at which facility. To the best of our knowledge, until this study, there was no scientific approach about this problem at the firm and decisions were being given intuitively. In this study, some logistic cost parameters have been defined and with these parameters a mathematical model has been constructed. Defined and collected cost parameters are handling cost of parts, shipment cost of parts and shipment cost of welding fixtures. Constructed multi-objective mathematical model aims to minimize these costs while aims to balance the workload between two locations. Results showed that defined model can give optimum solutions in reasonable computing times. Also, this result gave encouragement to develop the model with addition of new logistic cost parameters.

Keywords: automotive subcontract, facility assignment, logistic costs, multi-objective models

Procedia PDF Downloads 369
6863 First Cracking Moments of Hybrid Fiber Reinforced Polymer-Steel Reinforced Concrete Beams

Authors: Saruhan Kartal, Ilker Kalkan

Abstract:

The present paper reports the cracking moment estimates of a set of steel-reinforced, Fiber Reinforced Polymer (FRP)-reinforced and hybrid steel-FRP reinforced concrete beams, calculated from different analytical formulations in the codes, together with the experimental cracking load values. A total of three steel-reinforced, four FRP-reinforced, 12 hybrid FRP-steel over-reinforced and five hybrid FRP-steel under-reinforced concrete beam tests were analyzed within the scope of the study. Glass FRP (GFRP) and Basalt FRP (BFRP) bars were used in the beams as FRP bars. In under-reinforced hybrid beams, rupture of the FRP bars preceded crushing of concrete, while concrete crushing preceded FRP rupture in over-reinforced beams. In both types, steel yielding took place long before the FRP rupture and concrete crushing. The cracking moment mainly depends on two quantities, namely the moment of inertia of the section at the initiation of cracking and the flexural tensile strength of concrete, i.e. the modulus of rupture. In the present study, two different definitions of uncracked moment of inertia, i.e. the gross and the uncracked transformed moments of inertia, were adopted. Two analytical equations for the modulus of rupture (ACI 318M and Eurocode 2) were utilized in the calculations as well as the experimental tensile strength of concrete from prismatic specimen tests. The ACI 318M modulus of rupture expression produced cracking moment estimates closer to the experimental cracking moments of FRP-reinforced and hybrid FRP-steel reinforced concrete beams when used in combination with the uncracked transformed moment of inertia, yet the Eurocode 2 modulus of rupture expression gave more accurate cracking moment estimates in steel-reinforced concrete beams. All of the analytical definitions produced analytical values considerably different from the experimental cracking load values of the solely FRP-reinforced concrete beam specimens.

Keywords: polymer reinforcement, four-point bending, hybrid use of reinforcement, cracking moment

Procedia PDF Downloads 144
6862 An Architecture Framework for Design of Assembly Expert System

Authors: Chee Fai Tan, L. S. Wahidin, S. N. Khalil

Abstract:

Nowadays, manufacturing cost is one of the important factors that will affect the product cost as well as company profit. There are many methods that have been used to reduce the manufacturing cost in order for a company to stay competitive. One of the factors that effect manufacturing cost is the time. Expert system can be used as a method to reduce the manufacturing time. The purpose of the expert system is to diagnose and solve the problem of design of assembly. The paper describes an architecture framework for design of assembly expert system that focuses on commercial vehicle seat manufacturing industry.

Keywords: design of assembly, expert system, vehicle seat, mechanical engineering

Procedia PDF Downloads 443
6861 Mixed Integer Programing for Multi-Tier Rebate with Discontinuous Cost Function

Authors: Y. Long, L. Liu, K. V. Branin

Abstract:

One challenge faced by procurement decision-maker during the acquisition process is how to compare similar products from different suppliers and allocate orders among different products or services. This work focuses on allocating orders among multiple suppliers considering rebate. The objective function is to minimize the total acquisition cost including purchasing cost and rebate benefit. Rebate benefit is complex and difficult to estimate at the ordering step. Rebate rules vary for different suppliers and usually change over time. In this work, we developed a system to collect the rebate policies, standardized the rebate policies and developed two-stage optimization models for ordering allocation. Rebate policy with multi-tiers is considered in modeling. The discontinuous cost function of rebate benefit is formulated for different scenarios. A piecewise linear function is used to approximate the discontinuous cost function of rebate benefit. And a Mixed Integer Programing (MIP) model is built for order allocation problem with multi-tier rebate. A case study is presented and it shows that our optimization model can reduce the total acquisition cost by considering rebate rules.

Keywords: discontinuous cost function, mixed integer programming, optimization, procurement, rebate

Procedia PDF Downloads 265
6860 A Regression Model for Predicting Sugar Crystal Size in a Fed-Batch Vacuum Evaporative Crystallizer

Authors: Sunday B. Alabi, Edikan P. Felix, Aniediong M. Umo

Abstract:

Crystal size distribution is of great importance in the sugar factories. It determines the market value of granulated sugar and also influences the cost of production of sugar crystals. Typically, sugar is produced using fed-batch vacuum evaporative crystallizer. The crystallization quality is examined by crystal size distribution at the end of the process which is quantified by two parameters: the average crystal size of the distribution in the mean aperture (MA) and the width of the distribution of the coefficient of variation (CV). Lack of real-time measurement of the sugar crystal size hinders its feedback control and eventual optimisation of the crystallization process. An attractive alternative is to use a soft sensor (model-based method) for online estimation of the sugar crystal size. Unfortunately, the available models for sugar crystallization process are not suitable as they do not contain variables that can be measured easily online. The main contribution of this paper is the development of a regression model for estimating the sugar crystal size as a function of input variables which are easy to measure online. This has the potential to provide real-time estimates of crystal size for its effective feedback control. Using 7 input variables namely: initial crystal size (Lo), temperature (T), vacuum pressure (P), feed flowrate (Ff), steam flowrate (Fs), initial super-saturation (S0) and crystallization time (t), preliminary studies were carried out using Minitab 14 statistical software. Based on the existing sugar crystallizer models, and the typical ranges of these 7 input variables, 128 datasets were obtained from a 2-level factorial experimental design. These datasets were used to obtain a simple but online-implementable 6-input crystal size model. It seems the initial crystal size (Lₒ) does not play a significant role. The goodness of the resulting regression model was evaluated. The coefficient of determination, R² was obtained as 0.994, and the maximum absolute relative error (MARE) was obtained as 4.6%. The high R² (~1.0) and the reasonably low MARE values are an indication that the model is able to predict sugar crystal size accurately as a function of the 6 easy-to-measure online variables. Thus, the model can be used as a soft sensor to provide real-time estimates of sugar crystal size during sugar crystallization process in a fed-batch vacuum evaporative crystallizer.

Keywords: crystal size, regression model, soft sensor, sugar, vacuum evaporative crystallizer

Procedia PDF Downloads 212
6859 Metal Contamination in an E-Waste Recycling Community in Northeastern Thailand

Authors: Aubrey Langeland, Richard Neitzel, Kowit Nambunmee

Abstract:

Electronic waste, ‘e-waste’, refers generally to discarded electronics and electrical equipment, including products from cell phones and laptops to wires, batteries and appliances. While e-waste represents a transformative source of income in low- and middle-income countries, informal e-waste workers use rudimentary methods to recover materials, simultaneously releasing harmful chemicals into the environment and creating a health hazard for themselves and surrounding communities. Valuable materials such as precious metals, copper, aluminum, ferrous metals, plastic and components are recycled from e-waste. However, persistent organic pollutants such as polychlorinated biphenyls (PCBs) and some polybrominated diphenyl ethers (PBDEs), and heavy metals are toxicants contained within e-waste and are of great concern to human and environmental health. The current study seeks to evaluate the environmental contamination resulting from informal e-waste recycling in a predominantly agricultural community in northeastern Thailand. To accomplish this objective, five types of environmental samples were collected and analyzed for concentrations of eight metals commonly associated with e-waste recycling during the period of July 2016 through July 2017. Rice samples from the community were collected after harvest and analyzed using inductively coupled plasma mass spectrometry (ICP-MS) and gas furnace atomic spectroscopy (GF-AS). Soil samples were collected and analyzed using methods similar to those used in analyzing the rice samples. Surface water samples were collected and analyzed using absorption colorimetry for three heavy metals. Environmental air samples were collected using a sampling pump and matched-weight PVC filters, then analyzed using Inductively Coupled Argon Plasma-Atomic Emission Spectroscopy (ICAP-AES). Finally, surface wipe samples were collected from surfaces in homes where e-waste recycling activities occur and were analyzed using ICAP-AES. Preliminary1 results indicate that some rice samples have concentrations of lead and cadmium significantly higher than limits set by the United States Department of Agriculture (USDA) and the World Health Organization (WHO). Similarly, some soil samples show levels of copper, lead and cadmium more than twice the maximum permissible level set by the USDA and WHO, and significantly higher than other areas of Thailand. Surface water samples indicate that areas near e-waste recycling activities, particularly the burning of e-waste products, result in increased levels of cadmium, lead and copper in surface waters. This is of particular concern given that many of the surface waters tested are used in irrigation of crops. Surface wipe samples measured concentrations of metals commonly associated with e-waste, suggesting a danger of ingestion of metals during cooking and other activities. Of particular concern is the relevance of surface contamination of metals to child health. Finally, air sampling showed that the burning of e-waste presents a serious health hazard to workers and the environment through inhalation and deposition2. Our research suggests a need for improved methods of e-waste recycling that allows workers to continue this valuable revenue stream in a sustainable fashion that protects both human and environmental health. 1Statistical analysis to be finished in October 2017 due to follow-up field studies occurring in July and August 2017. 2Still awaiting complete analytic results.

Keywords: e-waste, environmental contamination, informal recycling, metals

Procedia PDF Downloads 363