Search results for: probability of false alarm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1682

Search results for: probability of false alarm

1382 Development of an Interactive and Robust Image Analysis and Diagnostic Tool in R for Early Detection of Cervical Cancer

Authors: Kumar Dron Shrivastav, Ankan Mukherjee Das, Arti Taneja, Harpreet Singh, Priya Ranjan, Rajiv Janardhanan

Abstract:

Cervical cancer is one of the most common cancer among women worldwide which can be cured if detected early. Manual pathology which is typically utilized at present has many limitations. The current gold standard for cervical cancer diagnosis is exhaustive and time-consuming because it relies heavily on the subjective knowledge of the oncopathologists which leads to mis-diagnosis and missed diagnosis resulting false negative and false positive. To reduce time and complexities associated with early diagnosis, we require an interactive diagnostic tool for early detection particularly in developing countries where cervical cancer incidence and related mortality is high. Incorporation of digital pathology in place of manual pathology for cervical cancer screening and diagnosis can increase the precision and strongly reduce the chances of error in a time-specific manner. Thus, we propose a robust and interactive cervical cancer image analysis and diagnostic tool, which can categorically process both histopatholgical and cytopathological images to identify abnormal cells in the least amount of time and settings with minimum resources. Furthermore, incorporation of a set of specific parameters that are typically referred to for identification of abnormal cells with the help of open source software -’R’ is one of the major highlights of the tool. The software has the ability to automatically identify and quantify the morphological features, color intensity, sensitivity and other parameters digitally to differentiate abnormal from normal cells, which may improve and accelerate screening and early diagnosis, ultimately leading to timely treatment of cervical cancer.

Keywords: cervical cancer, early detection, digital Pathology, screening

Procedia PDF Downloads 178
1381 An Exploratory Study on 'Sub-Region Life Circle' in Chinese Big Cities Based on Human High-Probability Daily Activity: Characteristic and Formation Mechanism as a Case of Wuhan

Authors: Zhuoran Shan, Li Wan, Xianchun Zhang

Abstract:

With an increasing trend of regionalization and polycentricity in Chinese contemporary big cities, “sub-region life circle” turns to be an effective method on rational organization of urban function and spatial structure. By the method of questionnaire, network big data, route inversion on internet map, GIS spatial analysis and logistic regression, this article makes research on characteristic and formation mechanism of “sub-region life circle” based on human high-probability daily activity in Chinese big cities. Firstly, it shows that “sub-region life circle” has been a new general spatial sphere of residents' high-probability daily activity and mobility in China. Unlike the former analysis of the whole metropolitan or the micro community, “sub-region life circle” has its own characteristic on geographical sphere, functional element, spatial morphology and land distribution. Secondly, according to the analysis result with Binary Logistic Regression Model, the research also shows that seven factors including land-use mixed degree and bus station density impact the formation of “sub-region life circle” most, and then analyzes the index critical value of each factor. Finally, to establish a smarter “sub-region life circle”, this paper indicates that several strategies including jobs-housing fit, service cohesion and space reconstruction are the keys for its spatial organization optimization. This study expands the further understanding of cities' inner sub-region spatial structure based on human daily activity, and contributes to the theory of “life circle” in urban's meso-scale.

Keywords: sub-region life circle, characteristic, formation mechanism, human activity, spatial structure

Procedia PDF Downloads 301
1380 Improving Order Quantity Model with Emergency Safety Stock (ESS)

Authors: Yousef Abu Nahleh, Alhasan Hakami, Arun Kumar, Fugen Daver

Abstract:

This study considers the problem of calculating safety stocks in disaster situations inventory systems that face demand uncertainties. Safety stocks are essential to make the supply chain, which is controlled by forecasts of customer needs, in response to demand uncertainties and to reach predefined goal service levels. To solve the problem of uncertainties due to the disaster situations affecting the industry sector, the concept of Emergency Safety Stock (ESS) was proposed. While there exists a huge body of literature on determining safety stock levels, this literature does not address the problem arising due to the disaster and dealing with the situations. In this paper, the problem of improving the Order Quantity Model to deal with uncertainty of demand due to disasters is managed by incorporating a new idea called ESS which is based on the probability of disaster occurrence and uses probability matrix calculated from the historical data.

Keywords: Emergency Safety Stocks, safety stocks, Order Quantity Model, supply chain

Procedia PDF Downloads 349
1379 Effect of Correlation of Random Variables on Structural Reliability Index

Authors: Agnieszka Dudzik

Abstract:

The problem of correlation between random variables in the structural reliability analysis has been extensively discussed in literature on the subject. The cases taken under consideration were usually related to correlation between random variables from one side of ultimate limit state: correlation between particular loads applied on structure or correlation between resistance of particular members of a structure as a system. It has been proved that positive correlation between these random variables reduces the reliability of structure and increases the probability of failure. In the paper, the problem of correlation between random variables from both side of the limit state equation will be taken under consideration. The simplest case where these random variables are of the normal distributions will be concerned. The case when a degree of that correlation is described by the covariance or the coefficient of correlation will be used. Special attention will be paid on questions: how much that correlation changes the reliability level and can it be ignored. In reliability analysis will be used well-known methods for assessment of the failure probability: based on the Hasofer-Lind reliability index and Monte Carlo method adapted to the problem of correlation. The main purpose of this work will be a presentation how correlation of random variables influence on reliability index of steel bar structures. Structural design parameters will be defined as deterministic values and random variables. The latter will be correlated. The criterion of structural failure will be expressed by limit functions related to the ultimate and serviceability limit state. In the description of random variables will be used only for the normal distribution. Sensitivity of reliability index to the random variables will be defined. If the reliability index sensitivity due to the random variable X will be low when compared with other variables, it can be stated that the impact of this variable on failure probability is small. Therefore, in successive computations, it can be treated as a deterministic parameter. Sensitivity analysis leads to simplify the description of the mathematical model, determine the new limit functions and values of the Hasofer-Lind reliability index. In the examples, the NUMPRESS software will be used in the reliability analysis.

Keywords: correlation of random variables, reliability index, sensitivity of reliability index, steel structure

Procedia PDF Downloads 238
1378 The Use of Random Set Method in Reliability Analysis of Deep Excavations

Authors: Arefeh Arabaninezhad, Ali Fakher

Abstract:

Since the deterministic analysis methods fail to take system uncertainties into account, probabilistic and non-probabilistic methods are suggested. Geotechnical analyses are used to determine the stress and deformation caused by construction; accordingly, many input variables which depend on ground behavior are required for geotechnical analyses. The Random Set approach is an applicable reliability analysis method when comprehensive sources of information are not available. Using Random Set method, with relatively small number of simulations compared to fully probabilistic methods, smooth extremes on system responses are obtained. Therefore random set approach has been proposed for reliability analysis in geotechnical problems. In the present study, the application of random set method in reliability analysis of deep excavations is investigated through three deep excavation projects which were monitored during the excavating process. A finite element code is utilized for numerical modeling. Two expected ranges, from different sources of information, are established for each input variable, and a specific probability assignment is defined for each range. To determine the most influential input variables and subsequently reducing the number of required finite element calculations, sensitivity analysis is carried out. Input data for finite element model are obtained by combining the upper and lower bounds of the input variables. The relevant probability share of each finite element calculation is determined considering the probability assigned to input variables present in these combinations. Horizontal displacement of the top point of excavation is considered as the main response of the system. The result of reliability analysis for each intended deep excavation is presented by constructing the Belief and Plausibility distribution function (i.e. lower and upper bounds) of system response obtained from deterministic finite element calculations. To evaluate the quality of input variables as well as applied reliability analysis method, the range of displacements extracted from models has been compared to the in situ measurements and good agreement is observed. The comparison also showed that Random Set Finite Element Method applies to estimate the horizontal displacement of the top point of deep excavation. Finally, the probability of failure or unsatisfactory performance of the system is evaluated by comparing the threshold displacement with reliability analysis results.

Keywords: deep excavation, random set finite element method, reliability analysis, uncertainty

Procedia PDF Downloads 268
1377 Modeling the Risk Perception of Pedestrians Using a Nested Logit Structure

Authors: Babak Mirbaha, Mahmoud Saffarzadeh, Atieh Asgari Toorzani

Abstract:

Pedestrians are the most vulnerable road users since they do not have a protective shell. One of the most common collisions for them is pedestrian-vehicle at intersections. In order to develop appropriate countermeasures to improve safety for them, researches have to be conducted to identify the factors that affect the risk of getting involved in such collisions. More specifically, this study investigates factors such as the influence of walking alone or having a baby while crossing the street, the observable age of pedestrian, the speed of pedestrians and the speed of approaching vehicles on risk perception of pedestrians. A nested logit model was used for modeling the behavioral structure of pedestrians. The results show that the presence of more lanes at intersections and not being alone especially having a baby while crossing, decrease the probability of taking a risk among pedestrians. Also, it seems that teenagers show more risky behaviors in crossing the street in comparison to other age groups. Also, the speed of approaching vehicles was considered significant. The probability of risk taking among pedestrians decreases by increasing the speed of approaching vehicle in both the first and the second lanes of crossings.

Keywords: pedestrians, intersection, nested logit, risk

Procedia PDF Downloads 187
1376 Human-Machine Cooperation in Facial Comparison Based on Likelihood Scores

Authors: Lanchi Xie, Zhihui Li, Zhigang Li, Guiqiang Wang, Lei Xu, Yuwen Yan

Abstract:

Image-based facial features can be classified into category recognition features and individual recognition features. Current automated face recognition systems extract a specific feature vector of different dimensions from a facial image according to their pre-trained neural network. However, to improve the efficiency of parameter calculation, an algorithm generally reduces the image details by pooling. The operation will overlook the details concerned much by forensic experts. In our experiment, we adopted a variety of face recognition algorithms based on deep learning, compared a large number of naturally collected face images with the known data of the same person's frontal ID photos. Downscaling and manual handling were performed on the testing images. The results supported that the facial recognition algorithms based on deep learning detected structural and morphological information and rarely focused on specific markers such as stains and moles. Overall performance, distribution of genuine scores and impostor scores, and likelihood ratios were tested to evaluate the accuracy of biometric systems and forensic experts. Experiments showed that the biometric systems were skilled in distinguishing category features, and forensic experts were better at discovering the individual features of human faces. In the proposed approach, a fusion was performed at the score level. At the specified false accept rate, the framework achieved a lower false reject rate. This paper contributes to improving the interpretability of the objective method of facial comparison and provides a novel method for human-machine collaboration in this field.

Keywords: likelihood ratio, automated facial recognition, facial comparison, biometrics

Procedia PDF Downloads 130
1375 Disaster Probability Analysis of Banghabandhu Multipurpose Bridge for Train Accidents and Its Socio-Economic Impact on Bangladesh

Authors: Shahab Uddin, Kazi M. Uddin, Hamamah Sadiqa

Abstract:

The paper deals with the Banghabandhu Multipurpose Bridge (BMB), the 11th longest bridge in the world was constructed in 1998 aimed at contributing to promote economic development in Bangladesh. In recent years, however, the high incidence of traffic accidents and injuries at the bridge sites looms as a great safety concern. Investigation into the derailment of nine bogies out of thirteen of Dinajpur-bound intercity train ‘Drutajan Express ’were derailed and inclined on the Banghabandhu Multipurpose Bridge on 28 April 2014. The train accident in Bridge will be deep concern for both structural safety of bridge and people than other vehicles accident. In this study we analyzed the disaster probability of the Banghabandhu Multipurpose Bridge for accidents by checking the fitness of Bridge structure. We found that train accident impact is more risky than other vehicles accidents. We also found that socio-economic impact on Bangladesh will be deep concerned.

Keywords: train accident, derailment, disaster, socio-economic

Procedia PDF Downloads 302
1374 Profit-Based Artificial Neural Network (ANN) Trained by Migrating Birds Optimization: A Case Study in Credit Card Fraud Detection

Authors: Ashkan Zakaryazad, Ekrem Duman

Abstract:

A typical classification technique ranks the instances in a data set according to the likelihood of belonging to one (positive) class. A credit card (CC) fraud detection model ranks the transactions in terms of probability of being fraud. In fact, this approach is often criticized, because firms do not care about fraud probability but about the profitability or costliness of detecting a fraudulent transaction. The key contribution in this study is to focus on the profit maximization in the model building step. The artificial neural network proposed in this study works based on profit maximization instead of minimizing the error of prediction. Moreover, some studies have shown that the back propagation algorithm, similar to other gradient–based algorithms, usually gets trapped in local optima and swarm-based algorithms are more successful in this respect. In this study, we train our profit maximization ANN using the Migrating Birds optimization (MBO) which is introduced to literature recently.

Keywords: neural network, profit-based neural network, sum of squared errors (SSE), MBO, gradient descent

Procedia PDF Downloads 475
1373 Dynamic Reroute Modeling for Emergency Evacuation: Case Study of Brunswick City, Germany

Authors: Yun-Pang Flötteröd, Jakob Erdmann

Abstract:

The human behaviors during evacuations are quite complex. One of the critical behaviors which affect the efficiency of evacuation is route choice. Therefore, the respective simulation modeling work needs to function properly. In this paper, Simulation of Urban Mobility’s (SUMO) current dynamic route modeling during evacuation, i.e. the rerouting functions, is examined with a real case study. The result consistency of the simulation and the reality is checked as well. Four influence factors (1) time to get information, (2) probability to cancel a trip, (3) probability to use navigation equipment, and (4) rerouting and information updating period are considered to analyze possible traffic impacts during the evacuation and to examine the rerouting functions in SUMO. Furthermore, some behavioral characters of the case study are analyzed with use of the corresponding detector data and applied in the simulation. The experiment results show that the dynamic route modeling in SUMO can deal with the proposed scenarios properly. Some issues and function needs related to route choice are discussed and further improvements are suggested.

Keywords: evacuation, microscopic traffic simulation, rerouting, SUMO

Procedia PDF Downloads 194
1372 Dynamics of Adiabatic Rapid Passage in an Open Rabi Dimer Model

Authors: Justin Zhengjie Tan, Yang Zhao

Abstract:

Adiabatic Rapid Passage, a popular method of achieving population inversion, is studied in a Rabi dimer model in the presence of noise which acts as a dissipative environment. The integration of the multi-Davydov D2 Ansatz into the time-dependent variational framework enables us to model the intricate quantum system accurately. By influencing the system with a driving field strength resonant with the energy spacing, the probability of adiabatic rapid passage, which is modelled after the Landau Zener model, can be derived along with several other observables, such as the photon population. The effects of a dissipative environment can be reproduced by coupling the system to a common phonon mode. By manipulating the strength and frequency of the driving field, along with the coupling strength of the phonon mode to the qubits, we are able to control the qubits and photon dynamics and subsequently increase the probability of Adiabatic Rapid Passage happening.

Keywords: quantum electrodynamics, adiabatic rapid passage, Landau-Zener transitions, dissipative environment

Procedia PDF Downloads 87
1371 Modeling of Glycine Transporters in Mammalian Using the Probability Approach

Authors: K. S. Zaytsev, Y. R. Nartsissov

Abstract:

Glycine is one of the key inhibitory neurotransmitters in Central nervous system (CNS) meanwhile glycinergic transmission is highly dependable on its appropriate reuptake from synaptic cleft. Glycine transporters (GlyT) of types 1 and 2 are the enzymes providing glycine transport back to neuronal and glial cells along with Na⁺ and Cl⁻ co-transport. The distribution and stoichiometry of GlyT1 and GlyT2 differ in details, and GlyT2 is more interesting for the research as it reuptakes glycine to neuron cells, whereas GlyT1 is located in glial cells. In the process of GlyT2 activity, the translocation of the amino acid is accompanied with binding of both one chloride and three sodium ions consequently (two sodium ions for GlyT1). In the present study, we developed a computer simulator of GlyT2 and GlyT1 activity based on known experimental data for quantitative estimation of membrane glycine transport. The trait of a single protein functioning was described using the probability approach where each enzyme state was considered separately. Created scheme of transporter functioning realized as a consequence of elemental steps allowed to take into account each event of substrate association and dissociation. Computer experiments using up-to-date kinetic parameters allowed receiving the number of translocated glycine molecules, Na⁺ and Cl⁻ ions per time period. Flexibility of developed software makes it possible to evaluate glycine reuptake pattern in time under different internal characteristics of enzyme conformational transitions. We investigated the behavior of the system in a wide range of equilibrium constant (from 0.2 to 100), which is not determined experimentally. The significant influence of equilibrium constant in the range from 0.2 to 10 on the glycine transfer process is shown. The environmental conditions such as ion and glycine concentrations are decisive if the values of the constant are outside the specified range.

Keywords: glycine, inhibitory neurotransmitters, probability approach, single protein functioning

Procedia PDF Downloads 119
1370 Probability Sampling in Matched Case-Control Study in Drug Abuse

Authors: Surya R. Niraula, Devendra B Chhetry, Girish K. Singh, S. Nagesh, Frederick A. Connell

Abstract:

Background: Although random sampling is generally considered to be the gold standard for population-based research, the majority of drug abuse research is based on non-random sampling despite the well-known limitations of this kind of sampling. Method: We compared the statistical properties of two surveys of drug abuse in the same community: one using snowball sampling of drug users who then identified “friend controls” and the other using a random sample of non-drug users (controls) who then identified “friend cases.” Models to predict drug abuse based on risk factors were developed for each data set using conditional logistic regression. We compared the precision of each model using bootstrapping method and the predictive properties of each model using receiver operating characteristics (ROC) curves. Results: Analysis of 100 random bootstrap samples drawn from the snowball-sample data set showed a wide variation in the standard errors of the beta coefficients of the predictive model, none of which achieved statistical significance. One the other hand, bootstrap analysis of the random-sample data set showed less variation, and did not change the significance of the predictors at the 5% level when compared to the non-bootstrap analysis. Comparison of the area under the ROC curves using the model derived from the random-sample data set was similar when fitted to either data set (0.93, for random-sample data vs. 0.91 for snowball-sample data, p=0.35); however, when the model derived from the snowball-sample data set was fitted to each of the data sets, the areas under the curve were significantly different (0.98 vs. 0.83, p < .001). Conclusion: The proposed method of random sampling of controls appears to be superior from a statistical perspective to snowball sampling and may represent a viable alternative to snowball sampling.

Keywords: drug abuse, matched case-control study, non-probability sampling, probability sampling

Procedia PDF Downloads 493
1369 Analytical Slope Stability Analysis Based on the Statistical Characterization of Soil Shear Strength

Authors: Bernardo C. P. Albuquerque, Darym J. F. Campos

Abstract:

Increasing our ability to solve complex engineering problems is directly related to the processing capacity of computers. By means of such equipments, one is able to fast and accurately run numerical algorithms. Besides the increasing interest in numerical simulations, probabilistic approaches are also of great importance. This way, statistical tools have shown their relevance to the modelling of practical engineering problems. In general, statistical approaches to such problems consider that the random variables involved follow a normal distribution. This assumption tends to provide incorrect results when skew data is present since normal distributions are symmetric about their means. Thus, in order to visualize and quantify this aspect, 9 statistical distributions (symmetric and skew) have been considered to model a hypothetical slope stability problem. The data modeled is the friction angle of a superficial soil in Brasilia, Brazil. Despite the apparent universality, the normal distribution did not qualify as the best fit. In the present effort, data obtained in consolidated-drained triaxial tests and saturated direct shear tests have been modeled and used to analytically derive the probability density function (PDF) of the safety factor of a hypothetical slope based on Mohr-Coulomb rupture criterion. Therefore, based on this analysis, it is possible to explicitly derive the failure probability considering the friction angle as a random variable. Furthermore, it is possible to compare the stability analysis when the friction angle is modelled as a Dagum distribution (distribution that presented the best fit to the histogram) and as a Normal distribution. This comparison leads to relevant differences when analyzed in light of the risk management.

Keywords: statistical slope stability analysis, skew distributions, probability of failure, functions of random variables

Procedia PDF Downloads 339
1368 CE Method for Development of Japan's Stochastic Earthquake Catalogue

Authors: Babak Kamrani, Nozar Kishi

Abstract:

Stochastic catalog represents the events module of the earthquake loss estimation models. It includes series of events with different magnitudes and corresponding frequencies/probabilities. For the development of the stochastic catalog, random or uniform sampling methods are used to sample the events from the seismicity model. For covering all the Magnitude Frequency Distribution (MFD), a huge number of events should be generated for the above-mentioned methods. Characteristic Event (CE) method chooses the events based on the interest of the insurance industry. We divide the MFD of each source into bins. We have chosen the bins based on the probability of the interest by the insurance industry. First, we have collected the information for the available seismic sources. Sources are divided into Fault sources, subduction, and events without specific fault source. We have developed the MFD for each of the individual and areal source based on the seismicity of the sources. Afterward, we have calculated the CE magnitudes based on the desired probability. To develop the stochastic catalog, we have introduced uncertainty to the location of the events too.

Keywords: stochastic catalogue, earthquake loss, uncertainty, characteristic event

Procedia PDF Downloads 300
1367 Error Probability of Multi-User Detection Techniques

Authors: Komal Babbar

Abstract:

Multiuser Detection is the intelligent estimation/demodulation of transmitted bits in the presence of Multiple Access Interference. The authors have presented the Bit-error rate (BER) achieved by linear multi-user detectors: Matched filter (which treats the MAI as AWGN), Decorrelating and MMSE. In this work, authors investigate the bit error probability analysis for Matched filter, decorrelating, and MMSE. This problem arises in several practical CDMA applications where the receiver may not have full knowledge of the number of active users and their signature sequences. In particular, the behavior of MAI at the output of the Multi-user detectors (MUD) is examined under various asymptotic conditions including large signal to noise ratio; large near-far ratios; and a large number of users. In the last section Authors also shows Matlab Simulation results for Multiuser detection techniques i.e., Matched filter, Decorrelating, MMSE for 2 users and 10 users.

Keywords: code division multiple access, decorrelating, matched filter, minimum mean square detection (MMSE) detection, multiple access interference (MAI), multiuser detection (MUD)

Procedia PDF Downloads 528
1366 Mathematics Anxiety among Male and Female Students

Authors: Wern Lin Yeo, Choo Kim Tan, Sook Ling Lew

Abstract:

Mathematics anxiety refers to the feeling of anxious when one having difficulties in solving mathematical problem. Mathematics anxiety is the most common type of anxiety among other types of anxiety which occurs among the students. However, level of anxiety among males and females are different. There were few past study were conducted to determine the relationship of anxiety and gender but there were still did not have an exact results. Hence, the purpose of this study is to determine the relationship of anxiety level between male and female undergraduates at a private university in Malaysia. Convenient sampling method used in this study in which the students were selected based on the grouping assigned by the faculty. There were 214 undergraduates who registered the probability courses had participated in this study. Mathematics Anxiety Rating Scale (MARS) was the instrument used in study which used to determine students’ anxiety level towards probability. Reliability and validity of instrument was done before the major study was conducted. In the major study, students were given briefing about the study conducted. Participation of this study were voluntary. Students were given consent form to determine whether they agree to participate in the study. Duration of two weeks were given for students to complete the given online questionnaire. The data collected will be analyzed using Statistical Package for the Social Sciences (SPSS) to determine the level of anxiety. There were three anxiety level, i.e., low, average and high. Students’ anxiety level were determined based on their scores obtained compared with the mean and standard deviation. If the scores obtained were below mean and standard deviation, the anxiety level was low. If the scores were at below and above the mean and between one standard deviation, the anxiety level was average. If the scores were above the mean and greater than one standard deviation, the anxiety level was high. Results showed that both of the gender were having average anxiety level. Males having high frequency of three anxiety level which were low, average and high anxiety level as compared to females. Hence, the mean values obtained for males (M = 3.62) was higher than females (M = 3.42). In order to be significant of anxiety level among the gender, the p-value should be less than .05. The p-value obtained in this study was .117. However, this value was greater than .05. Thus, there was no significant difference of anxiety level among the gender. In other words, there was no relationship of anxiety level with the gender.

Keywords: anxiety level, gender, mathematics anxiety, probability and statistics

Procedia PDF Downloads 291
1365 A Recognition Method of Ancient Yi Script Based on Deep Learning

Authors: Shanxiong Chen, Xu Han, Xiaolong Wang, Hui Ma

Abstract:

Yi is an ethnic group mainly living in mainland China, with its own spoken and written language systems, after development of thousands of years. Ancient Yi is one of the six ancient languages in the world, which keeps a record of the history of the Yi people and offers documents valuable for research into human civilization. Recognition of the characters in ancient Yi helps to transform the documents into an electronic form, making their storage and spreading convenient. Due to historical and regional limitations, research on recognition of ancient characters is still inadequate. Thus, deep learning technology was applied to the recognition of such characters. Five models were developed on the basis of the four-layer convolutional neural network (CNN). Alpha-Beta divergence was taken as a penalty term to re-encode output neurons of the five models. Two fully connected layers fulfilled the compression of the features. Finally, at the softmax layer, the orthographic features of ancient Yi characters were re-evaluated, their probability distributions were obtained, and characters with features of the highest probability were recognized. Tests conducted show that the method has achieved higher precision compared with the traditional CNN model for handwriting recognition of the ancient Yi.

Keywords: recognition, CNN, Yi character, divergence

Procedia PDF Downloads 165
1364 Optimized Dynamic Bayesian Networks and Neural Verifier Test Applied to On-Line Isolated Characters Recognition

Authors: Redouane Tlemsani, Redouane, Belkacem Kouninef, Abdelkader Benyettou

Abstract:

In this paper, our system is a Markovien system which we can see it like a Dynamic Bayesian Networks. One of the major interests of these systems resides in the complete training of the models (topology and parameters) starting from training data. The Bayesian Networks are representing models of dubious knowledge on complex phenomena. They are a union between the theory of probability and the graph theory in order to give effective tools to represent a joined probability distribution on a set of random variables. The representation of knowledge bases on description, by graphs, relations of causality existing between the variables defining the field of study. The theory of Dynamic Bayesian Networks is a generalization of the Bayesians networks to the dynamic processes. Our objective amounts finding the better structure which represents the relationships (dependencies) between the variables of a dynamic bayesian network. In applications in pattern recognition, one will carry out the fixing of the structure which obliges us to admit some strong assumptions (for example independence between some variables).

Keywords: Arabic on line character recognition, dynamic Bayesian network, pattern recognition, networks

Procedia PDF Downloads 619
1363 An Analysis of a Queueing System with Heterogeneous Servers Subject to Catastrophes

Authors: M. Reni Sagayaraj, S. Anand Gnana Selvam, R. Reynald Susainathan

Abstract:

This study analyzed a queueing system with blocking and no waiting line. The customers arrive according to a Poisson process and the service times follow exponential distribution. There are two non-identical servers in the system. The queue discipline is FCFS, and the customers select the servers on fastest server first (FSF) basis. The service times are exponentially distributed with parameters μ1 and μ2 at servers I and II, respectively. Besides, the catastrophes occur in a Poisson manner with rate γ in the system. When server I is busy or blocked, the customer who arrives in the system leaves the system without being served. Such customers are called lost customers. The probability of losing a customer was computed for the system. The explicit time dependent probabilities of system size are obtained and a numerical example is presented in order to show the managerial insights of the model. Finally, the probability that arriving customer finds system busy and average number of server busy in steady state are obtained numerically.

Keywords: queueing system, blocking, poisson process, heterogeneous servers, queue discipline FCFS, busy period

Procedia PDF Downloads 507
1362 An Experimental Investigation of the Cognitive Noise Influence on the Bistable Visual Perception

Authors: Alexander E. Hramov, Vadim V. Grubov, Alexey A. Koronovskii, Maria K. Kurovskaуa, Anastasija E. Runnova

Abstract:

The perception of visual signals in the brain was among the first issues discussed in terms of multistability which has been introduced to provide mechanisms for information processing in biological neural systems. In this work the influence of the cognitive noise on the visual perception of multistable pictures has been investigated. The study includes an experiment with the bistable Necker cube illusion and the theoretical background explaining the obtained experimental results. In our experiments Necker cubes with different wireframe contrast were demonstrated repeatedly to different people and the probability of the choice of one of the cubes projection was calculated for each picture. The Necker cube was placed at the middle of a computer screen as black lines on a white background. The contrast of the three middle lines centered in the left middle corner was used as one of the control parameter. Between two successive demonstrations of Necker cubes another picture was shown to distract attention and to make a perception of next Necker cube more independent from the previous one. Eleven subjects, male and female, of the ages 20 through 45 were studied. The choice of the Necker cube projection was detected with the Electroencephalograph-recorder Encephalan-EEGR-19/26, Medicom MTD. To treat the experimental results we carried out theoretical consideration using the simplest double-well potential model with the presence of noise that led to the Fokker-Planck equation for the probability density of the stochastic process. At the first time an analytical solution for the probability of the selection of one of the Necker cube projection for different values of wireframe contrast have been obtained. Furthermore, having used the results of the experimental measurements with the help of the method of least squares we have calculated the value of the parameter corresponding to the cognitive noise of the person being studied. The range of cognitive noise parameter values for studied subjects turned to be [0.08; 0.55]. It should be noted, that experimental results have a good reproducibility, the same person being studied repeatedly another day produces very similar data with very close levels of cognitive noise. We found an excellent agreement between analytically deduced probability and the results obtained in the experiment. A good qualitative agreement between theoretical and experimental results indicates that even such a simple model allows simulating brain cognitive dynamics and estimating important cognitive characteristic of the brain, such as brain noise.

Keywords: bistability, brain, noise, perception, stochastic processes

Procedia PDF Downloads 445
1361 Employers’ Preferences when Employing Solo Self-employed: a Vignette Study in the Netherlands

Authors: Lian Kösters, Wendy Smits, Raymond Montizaan

Abstract:

The number of solo self-employed in the Netherlands has been increasing for years. The relative increase is among the largest in the EU. To explain this increase, most studies have focused on the supply side, workers who offer themselves as solo self-employed. The number of studies that focus on the demand side, the employer who hires the solo self-employed, is still scarce. Studies into employer behaviour conducted until now show that employers mainly choose self-employed workers when they have a temporary need for specialist knowledge, but also during projects or production peaks. These studies do not provide insight into the employers’ considerations for different contract types. In this study, interviews with employers were conducted, and available literature was consulted to provide an overview of the several factors employers use to compare different contract types. That input was used to set up a vignette study. This was carried out at the end of 2021 among almost 1000 business owners, HR managers, and business leaders of Dutch companies. Each respondent was given two sets of five fictitious candidates for two possible positions in their organization. They were asked to rank these candidates. The positions varied with regard to the type of tasks (core tasks or support tasks) and the time it took to train new people for the position. The respondents were asked additional questions about the positions, such as the required level of education, the duration, and the degree of predictability of tasks. The fictitious candidates varied, among other things, in the type of contract on which they would come to work for the organization. The results were analyzed using a rank-ordered logit analysis. This vignette setup makes it possible to see which factors are most important for employers when choosing to hire a solo self-employed person compared to other contracts. The results show that there are no indications that employers would want to hire solo self-employed workers en masse. They prefer regular employee contracts. The probability of being chosen with a solo self-employed contract over someone who comes to work as a temporary employee is 32 percent. This probability is even lower than for on-call and temporary agency workers. For a permanent contract, this probability is 46 percent. The results provide indications that employers consider knowledge and skills more important than the solo self-employed contract and that this can compensate. A solo self-employed candidate with 10 years of work experience has a 63 percent probability of being found attractive by an employer compared to a temporary employee without work experience. This suggests that employers are willing to give someone a less attractive contract for the employer if the worker so wishes. The results also show that the probability that a solo self-employed person is preferred over a candidate with a temporary employee contract is somewhat higher in business economics, administrative and technical professions. No significant results were found for factors where it was expected that solo self-employed workers are preferred more often, such as for unpredictable or temporary work.

Keywords: employer behaviour, rank-ordered logit analysis, solo self-employment, temporary contract, vignette study

Procedia PDF Downloads 73
1360 Wireless Transmission of Big Data Using Novel Secure Algorithm

Authors: K. Thiagarajan, K. Saranya, A. Veeraiah, B. Sudha

Abstract:

This paper presents a novel algorithm for secure, reliable and flexible transmission of big data in two hop wireless networks using cooperative jamming scheme. Two hop wireless networks consist of source, relay and destination nodes. Big data has to transmit from source to relay and from relay to destination by deploying security in physical layer. Cooperative jamming scheme determines transmission of big data in more secure manner by protecting it from eavesdroppers and malicious nodes of unknown location. The novel algorithm that ensures secure and energy balance transmission of big data, includes selection of data transmitting region, segmenting the selected region, determining probability ratio for each node (capture node, non-capture and eavesdropper node) in every segment, evaluating the probability using binary based evaluation. If it is secure transmission resume with the two- hop transmission of big data, otherwise prevent the attackers by cooperative jamming scheme and transmit the data in two-hop transmission.

Keywords: big data, two-hop transmission, physical layer wireless security, cooperative jamming, energy balance

Procedia PDF Downloads 491
1359 Study of Seismic Damage Reinforced Concrete Frames in Variable Height with Logistic Statistic Function Distribution

Authors: P. Zarfam, M. Mansouri Baghbaderani

Abstract:

In seismic design, the proper reaction to the earthquake and the correct and accurate prediction of its subsequent effects on the structure are critical. Choose a proper probability distribution, which gives a more realistic probability of the structure's damage rate, is essential in damage discussions. With the development of design based on performance, analytical method of modal push over as an inexpensive, efficacious, and quick one in the estimation of the structures' seismic response is broadly used in engineering contexts. In this research three concrete frames of 3, 6, and 13 stories are analyzed in non-linear modal push over by 30 different earthquake records by OpenSEES software, then the detriment indexes of roof's displacement and relative displacement ratio of the stories are calculated by two parameters: peak ground acceleration and spectra acceleration. These indexes are used to establish the value of damage relations with log-normal distribution and logistics distribution. Finally the value of these relations is compared and the effect of height on the mentioned damage relations is studied, too.

Keywords: modal pushover analysis, concrete structure, seismic damage, log-normal distribution, logistic distribution

Procedia PDF Downloads 247
1358 Convex Restrictions for Outage Constrained MU-MISO Downlink under Imperfect Channel State Information

Authors: A. Preetha Priyadharshini, S. B. M. Priya

Abstract:

In this paper, we consider the MU-MISO downlink scenario, under imperfect channel state information (CSI). The main issue in imperfect CSI is to keep the probability of each user achievable outage rate below the given threshold level. Such a rate outage constraints present significant and analytical challenges. There are many probabilistic methods are used to minimize the transmit optimization problem under imperfect CSI. Here, decomposition based large deviation inequality and Bernstein type inequality convex restriction methods are used to perform the optimization problem under imperfect CSI. These methods are used for achieving improved output quality and lower complexity. They provide a safe tractable approximation of the original rate outage constraints. Based on these method implementations, performance has been evaluated in the terms of feasible rate and average transmission power. The simulation results are shown that all the two methods offer significantly improved outage quality and lower computational complexity.

Keywords: imperfect channel state information, outage probability, multiuser- multi input single output, channel state information

Procedia PDF Downloads 814
1357 The Best Prediction Data Mining Model for Breast Cancer Probability in Women Residents in Kabul

Authors: Mina Jafari, Kobra Hamraee, Saied Hossein Hosseini

Abstract:

The prediction of breast cancer disease is one of the challenges in medicine. In this paper we collected 528 records of women’s information who live in Kabul including demographic, life style, diet and pregnancy data. There are many classification algorithm in breast cancer prediction and tried to find the best model with most accurate result and lowest error rate. We evaluated some other common supervised algorithms in data mining to find the best model in prediction of breast cancer disease among afghan women living in Kabul regarding to momography result as target variable. For evaluating these algorithms we used Cross Validation which is an assured method for measuring the performance of models. After comparing error rate and accuracy of three models: Decision Tree, Naive Bays and Rule Induction, Decision Tree with accuracy of 94.06% and error rate of %15 is found the best model to predicting breast cancer disease based on the health care records.

Keywords: decision tree, breast cancer, probability, data mining

Procedia PDF Downloads 140
1356 A Rule Adumbrated: Bailment on Terms

Authors: David Gibbs-Kneller

Abstract:

Only parties to a contract can enforce it. This is the privity of the contract. Carriage contracts frequently involve intermediated relationships. While the carrier and cargo-owner will agree on a contract for carriage, there is no privity or consideration between the cargo-owner and third parties. To overcome this, the contract utilizes ‘bailment on terms’ or the rule in Morris. Morris v C W Martin & Sons Ltd is authority for the following: A sub-bailee and bailor may rely on terms of a bailment where the bailor has consented to sub-bailment “on terms”. Bailment on terms can play a significant part in making litigation decisions and determining liability. It is used in standard form contracts and courts have also strived to find consent to bailment on terms in agreements so as to avoid the consequences of privity of contract. However, what this paper exposes is the false legal basis for this model. Lord Denning gave an account adumbrated of the law of bailments to justify the rule in Morris. What Lord Denning was really doing was objecting to the doctrine of privity. To do so, he wrongly asserted there was a lacuna in law that meant third parties could not avail themselves upon terms of a contract. Next, he provided a false analogy between purely contractual rights and possessory liens. Finally, he gave accounts of authorities to say they supported the rule in Morris when they did not. Surprisingly, subsequent case law on the point has not properly engaged with this reasoning. The Pioneer Container held that since the rule in Morris lay in bailments, the decision is not dependent on the doctrine of privity. Yet the basis for this statement was Morris. Once these reasons have been discounted, all bailment on terms rests on is the claim that the law of bailments is an independent source of law. Bailment on terms should not be retained, for it is contrary to established principles in the law of property, tort, and contract. That undermines the certainty of those principles by risking their collapse because there is nothing that keeps bailment on terms within the confines of bailments only. As such, bailment on terms is not good law and should not be used in standard form contracts or by the courts as a means of determining liability. If bailment on terms is a pragmatic rule to retain, it is recommended that rules governing carriage contracts should be amended.

Keywords: bailment, carriage of goods, contract law, privity

Procedia PDF Downloads 210
1355 Mathematical Model of Corporate Bond Portfolio and Effective Border Preview

Authors: Sergey Podluzhnyy

Abstract:

One of the most important tasks of investment and pension fund management is building decision support system which helps to make right decision on corporate bond portfolio formation. Today there are several basic methods of bond portfolio management. They are duration management, immunization and convexity management. Identified methods have serious disadvantage: they do not take into account credit risk or insolvency risk of issuer. So, identified methods can be applied only for management and evaluation of high-quality sovereign bonds. Applying article proposes mathematical model for building an optimal in case of risk and yield corporate bond portfolio. Proposed model takes into account the default probability in formula of assessment of bonds which results to more correct evaluation of bonds prices. Moreover, applied model provides tools for visualization of the efficient frontier of corporate bonds portfolio taking into account the exposure to credit risk, which will increase the quality of the investment decisions of portfolio managers.

Keywords: corporate bond portfolio, default probability, effective boundary, portfolio optimization task

Procedia PDF Downloads 318
1354 Safety Status of Stations and Tunnels of Tehran Line 4 Urban and Suburb Railways (Subway) Against Fire Risks

Authors: Yousefi Aryian, Ghanbaripour Amir naser

Abstract:

Record of 2 million trips during a day by subway makes it the most application and the most efficient branch of public transportation. Great safety, energy consumption reduction, appropriate speed, and lower prices for passengers in comparison with private cars or buses, are some reasons for this remarkable statics. This increasing popularity compels the author to evaluate the safety of subway stations and tunnels against fire and fire extinguishing systems in Tehran subway network and then compare some of its safety parameters to other countries. This paper assessed the methods and systems used in different parts of Tehran subway and then by comparing the facilities and equipment necessary to declare and extinguish the fire, the solutions and world standards (NFPA) are explored.

Keywords: subway station, tunnel, fire alarm, extinguishing fire, NFPA standards

Procedia PDF Downloads 481
1353 Characterization of Sorption Behavior and Mass Transfer Properties of Four Central Africa Tropical Woods

Authors: Merlin Simo Tagne, Romain Rémond

Abstract:

This study provides the sorption isotherm, its hysteresis and their mass transfer properties of four Central Africa Tropical woods largely used for building construction: frake, lotofa, sapelle and ayous. Characterization of these three species in particular and Central Africa tropical woods, in general, was necessary to develop conservation and treatment of wood after first transformation using the drying. Isotherms were performed using a dynamic vapor sorption apparatus (Surface Measurement Systems) at 20 and 40°C. The mass diffusivity was determined in steady state using a specific vapometer. Permeability was determined using a specialized device developed to measure over a wide range of permeability values. Permeability and mass transfer properties are determined in the tangential direction with a ‘false’ quartersawn cutting (sapelle and lotofa) and in the radial direction with a ‘false’ flatsawn cutting (ayous and frake). The sample of sapelle, ayous and frake are heartwood when lotofa contains as well as heartwood than sapwood. Results obtained showed that the temperature effect on sorption behavior was low than relative humidity effect. We also observed a low difference between the sorption behavior of our woods and hysteresis of sorption decreases when the temperature increases. Hailwood-Horrobin model’s predicts the isotherms of adsorption and desorption of ours woods and parameters of this model are proposed. Results on the characterization of mass transfer properties showed that, in the steady state, mass diffusivity decreases exponentially when basal density increases. In the phase of desorption, mass diffusivity is great than in the phase of adsorption. The permeability of ours woods are greater than Australian hardwoods but lower than temperate woods. It is difficult to define a relationship between permeability and mass diffusivity.

Keywords: tropical woods, sorption isotherm, diffusion coefficient, gas permeability, Central Africa

Procedia PDF Downloads 497