Search results for: mutation detection
3374 Autogenous Diabetic Retinopathy Censor for Ophthalmologists - AKSHI
Authors: Asiri Wijesinghe, N. D. Kodikara, Damitha Sandaruwan
Abstract:
The Diabetic Retinopathy (DR) is a rapidly growing interrogation around the world which can be annotated by abortive metabolism of glucose that causes long-term infection in human retina. This is one of the preliminary reason of visual impairment and blindness of adults. Information on retinal pathological mutation can be recognized using ocular fundus images. In this research, we are mainly focused on resurrecting an automated diagnosis system to detect DR anomalies such as severity level classification of DR patient (Non-proliferative Diabetic Retinopathy approach) and vessel tortuosity measurement of untwisted vessels to assessment of vessel anomalies (Proliferative Diabetic Retinopathy approach). Severity classification method is obtained better results according to the precision, recall, F-measure and accuracy (exceeds 94%) in all formats of cross validation. In ROC (Receiver Operating Characteristic) curves also visualized the higher AUC (Area Under Curve) percentage (exceeds 95%). User level evaluation of severity capturing is obtained higher accuracy (85%) result and fairly better values for each evaluation measurements. Untwisted vessel detection for tortuosity measurement also carried out the good results with respect to the sensitivity (85%), specificity (89%) and accuracy (87%).Keywords: fundus image, exudates, microaneurisms, hemorrhages, tortuosity, diabetic retinopathy, optic disc, fovea
Procedia PDF Downloads 3443373 The Role of Ideophones: Phonological and Morphological Characteristics in Literature
Authors: Cristina Bahón Arnaiz
Abstract:
Many Asian languages, such as Korean and Japanese, are well-known for their wide use of sound symbolic words or ideophones. This is a very particular characteristic which enriches its lexicon hugely. Ideophones are a class of sound symbolic words that utilize sound symbolism to express aspects, states, emotions, or conditions that can be experienced through the senses, such as shape, color, smell, action or movement. Ideophones have very particular characteristics in terms of sound symbolism and morphology, which distinguish them from other words. The phonological characteristics of ideophones are vowel ablaut or vowel gradation and consonant mutation. In the case of Korean, there are light vowels and dark vowels. Depending on the type of vowel that is used, the meaning will slightly change. Consonant mutation, also known as consonant ablaut, contributes to the level of intensity, emphasis, and volume of an expression. In addition to these phonological characteristics, there is one main morphological singularity, which is reduplication and it carries the meaning of continuity, repetition, intensity, emphasis, and plurality. All these characteristics play an important role in both linguistics and literature as they enhance the meaning of what is trying to be expressed with incredible semantic detail, expressiveness, and rhythm. The following study will analyze the ideophones used in a single paragraph of a Korean novel, which add incredible yet subtle detail to the meaning of the words, and advance the expressiveness and rhythm of the text. The results from analyzing one paragraph from a novel, after presenting the phonological and morphological characteristics of Korean ideophones, will evidence the important role that ideophones play in literature.Keywords: ideophones, mimetic words, phonomimes, phenomimes, psychomimes, sound symbolism
Procedia PDF Downloads 1503372 Timely Detection and Identification of Abnormalities for Process Monitoring
Authors: Hyun-Woo Cho
Abstract:
The detection and identification of multivariate manufacturing processes are quite important in order to maintain good product quality. Unusual behaviors or events encountered during its operation can have a serious impact on the process and product quality. Thus they should be detected and identified as soon as possible. This paper focused on the efficient representation of process measurement data in detecting and identifying abnormalities. This qualitative method is effective in representing fault patterns of process data. In addition, it is quite sensitive to measurement noise so that reliable outcomes can be obtained. To evaluate its performance a simulation process was utilized, and the effect of adopting linear and nonlinear methods in the detection and identification was tested with different simulation data. It has shown that the use of a nonlinear technique produced more satisfactory and more robust results for the simulation data sets. This monitoring framework can help operating personnel to detect the occurrence of process abnormalities and identify their assignable causes in an on-line or real-time basis.Keywords: detection, monitoring, identification, measurement data, multivariate techniques
Procedia PDF Downloads 2373371 Evolving Digital Circuits for Early Stage Breast Cancer Detection Using Cartesian Genetic Programming
Authors: Zahra Khalid, Gul Muhammad Khan, Arbab Masood Ahmad
Abstract:
Cartesian Genetic Programming (CGP) is explored to design an optimal circuit capable of early stage breast cancer detection. CGP is used to evolve simple multiplexer circuits for detection of malignancy in the Fine Needle Aspiration (FNA) samples of breast. The data set used is extracted from Wisconsins Breast Cancer Database (WBCD). A range of experiments were performed, each with different set of network parameters. The best evolved network detected malignancy with an accuracy of 99.14%, which is higher than that produced with most of the contemporary non-linear techniques that are computational expensive than the proposed system. The evolved network comprises of simple multiplexers and can be implemented easily in hardware without any further complications or inaccuracy, being the digital circuit.Keywords: breast cancer detection, cartesian genetic programming, evolvable hardware, fine needle aspiration
Procedia PDF Downloads 2163370 Down-Regulated Gene Expression of GKN1 and GKN2 as Diagnostic Markers for Gastric Cancer
Authors: Amer A. Hasan, Mehri Igci, Ersin Borazan, Rozhgar A. Khailany, Emine Bayraktar, Ahmet Arslan
Abstract:
Gastric cancer (GC) has high morbidity and fatality rate in various countries and is still one of the most frequent and deadly diseases. Novel mitogenic and motogenic Gastrokine1 (GKN1) and Gastrokine 2 (GKN2) genes that are highly expressed in the normal stomach epithelium and plays an important role in maintaining the integrity and homeostasis of stomach mucosal epithelial cells. Significant loss of copy number and mRNA transcript of GKN1 and GKN2 gene expression were frequently observed in all types of gastric cancer. In this study, 47 paired samples that were grouped according to the types of gastric cancer and the clinical characteristics of the patients, including gender and average of age were investigated with gene expression analysis and mutation screening by monetering RT-PCR, SSCP and nucleotide sequencing techniques. Both GKN1 and GKN2 genes were observed significantly reduced found by (Wilcoxon signed rank test; p<0.05). As a result of gene screening, no mutation (no different genotype) was detected. It is considered that gene mutations are not the cause of inactivation of gastrokines. In conclusion, the mRNA expression level of GKN1 and GKN2 genes statistically was decreased regardless the gender, age or cancer type of patients. Reduced of gastrokine genes seems to occur at the initial steps of cancer development. In order to understand the investigation between gastric cancer and diagnostic biomarker; further analysis is necessary.Keywords: gastric cancer, diagnostic biomarker, nucleotide sequencing, semi-quantitative RT-PCR
Procedia PDF Downloads 4723369 An Advanced YOLOv8 for Vehicle Detection in Intelligent Traffic Management
Authors: A. Degale Desta, Cheng Jian
Abstract:
Background: Vehicle detection accuracy is critical to intelligent transportation systems and autonomous driving. The state-of-the-art object identification technology YOLOv8 has shown significant gains in efficiency and detection accuracy. This study uses the BDD100K dataset, which is renowned for its extensive and varied annotations, to assess how well YOLOv8 performs in vehicle detection. Objectives: The primary objective of this research is to assess YOLOv8's performance in intelligent transportation system vehicle identification and its ability to accurately identify cars in urban environments for safety prioritization. Methods: The primary objective of this research is to assess YOLOv8's performance in intelligent transportation system vehicle identification and its ability to accurately identify cars in urban environments for safety prioritization. Results: The results show that YOLOv8 achieves high mAP, recall, precision, and F1-score values, indicating state-of-the-art performance. This suggests that YOLOv8 can identify cars in complex urban environments with a high degree of accuracy and reliable results in a variety of traffic scenarios. Conclusion: The results indicate that YOLOv8 is a useful tool for enhancing vehicle detection accuracy in intelligent transportation systems, hence advancing urban public safety and security. The model's demonstrated performance shows how well it may be incorporated into autonomous driving applications to improve situational awareness and responsiveness.Keywords: vehicle detection, YOLOv8, BDD100K, object detection, deep learning
Procedia PDF Downloads 123368 Refactoring Object Oriented Software through Community Detection Using Evolutionary Computation
Authors: R. Nagarani
Abstract:
An intrinsic property of software in a real-world environment is its need to evolve, which is usually accompanied by the increase of software complexity and deterioration of software quality, making software maintenance a tough problem. Refactoring is regarded as an effective way to address this problem. Many refactoring approaches at the method and class level have been proposed. But the extent of research on software refactoring at the package level is less. This work presents a novel approach to refactor the package structures of object oriented software using genetic algorithm based community detection. It uses software networks to represent classes and their dependencies. It uses a constrained community detection algorithm to obtain the optimized community structures in software networks, which also correspond to the optimized package structures. It finally provides a list of classes as refactoring candidates by comparing the optimized package structures with the real package structures.Keywords: community detection, complex network, genetic algorithm, package, refactoring
Procedia PDF Downloads 4203367 Using Deep Learning for the Detection of Faulty RJ45 Connectors on a Radio Base Station
Authors: Djamel Fawzi Hadj Sadok, Marrone Silvério Melo Dantas Pedro Henrique Dreyer, Gabriel Fonseca Reis de Souza, Daniel Bezerra, Ricardo Souza, Silvia Lins, Judith Kelner
Abstract:
A radio base station (RBS), part of the radio access network, is a particular type of equipment that supports the connection between a wide range of cellular user devices and an operator network access infrastructure. Nowadays, most of the RBS maintenance is carried out manually, resulting in a time consuming and costly task. A suitable candidate for RBS maintenance automation is repairing faulty links between devices caused by missing or unplugged connectors. A suitable candidate for RBS maintenance automation is repairing faulty links between devices caused by missing or unplugged connectors. This paper proposes and compares two deep learning solutions to identify attached RJ45 connectors on network ports. We named connector detection, the solution based on object detection, and connector classification, the one based on object classification. With the connector detection, we get an accuracy of 0:934, mean average precision 0:903. Connector classification, get a maximum accuracy of 0:981 and an AUC of 0:989. Although connector detection was outperformed in this study, this should not be viewed as an overall result as connector detection is more flexible for scenarios where there is no precise information about the environment and the possible devices. At the same time, the connector classification requires that information to be well-defined.Keywords: radio base station, maintenance, classification, detection, deep learning, automation
Procedia PDF Downloads 2023366 Traffic Sign Recognition System Using Convolutional Neural NetworkDevineni
Authors: Devineni Vijay Bhaskar, Yendluri Raja
Abstract:
We recommend a model for traffic sign detection stranded on Convolutional Neural Networks (CNN). We first renovate the unique image into the gray scale image through with support vector machines, then use convolutional neural networks with fixed and learnable layers for revealing and understanding. The permanent layer can reduction the amount of attention areas to notice and crop the limits very close to the boundaries of traffic signs. The learnable coverings can rise the accuracy of detection significantly. Besides, we use bootstrap procedures to progress the accuracy and avoid overfitting problem. In the German Traffic Sign Detection Benchmark, we obtained modest results, with an area under the precision-recall curve (AUC) of 99.49% in the group “Risk”, and an AUC of 96.62% in the group “Obligatory”.Keywords: convolutional neural network, support vector machine, detection, traffic signs, bootstrap procedures, precision-recall curve
Procedia PDF Downloads 1233365 Medical Advances in Diagnosing Neurological and Genetic Disorders
Authors: Simon B. N. Thompson
Abstract:
Retinoblastoma is a rare type of childhood genetic cancer that affects children worldwide. The diagnosis is often missed due to lack of education and difficulty in presentation of the tumor. Frequently, the tumor on the retina is noticed by photography when the red-eye flash, commonly seen in normal eyes, is not produced. Instead, a yellow or white colored patch is seen or the child has a noticeable strabismus. Early detection can be life-saving though often results in removal of the affected eye. Remaining functioning in the healthy eye when the child is young has resulted in super-vision and high or above-average intelligence. Technological advancement of cameras has helped in early detection. Brain imaging has also made possible early detection of neurological diseases and, together with the monitoring of cortisol levels and yawning frequency, promises to be the next new early diagnostic tool for the detection of neurological diseases where cortisol insufficiency is particularly salient, such as multiple sclerosis and Cushing’s disease.Keywords: cortisol, neurological disease, retinoblastoma, Thompson cortisol hypothesis, yawning
Procedia PDF Downloads 3863364 Semi-Supervised Outlier Detection Using a Generative and Adversary Framework
Authors: Jindong Gu, Matthias Schubert, Volker Tresp
Abstract:
In many outlier detection tasks, only training data belonging to one class, i.e., the positive class, is available. The task is then to predict a new data point as belonging either to the positive class or to the negative class, in which case the data point is considered an outlier. For this task, we propose a novel corrupted Generative Adversarial Network (CorGAN). In the adversarial process of training CorGAN, the Generator generates outlier samples for the negative class, and the Discriminator is trained to distinguish the positive training data from the generated negative data. The proposed framework is evaluated using an image dataset and a real-world network intrusion dataset. Our outlier-detection method achieves state-of-the-art performance on both tasks.Keywords: one-class classification, outlier detection, generative adversary networks, semi-supervised learning
Procedia PDF Downloads 1533363 AI-Powered Models for Real-Time Fraud Detection in Financial Transactions to Improve Financial Security
Authors: Shanshan Zhu, Mohammad Nasim
Abstract:
Financial fraud continues to be a major threat to financial institutions across the world, causing colossal money losses and undermining public trust. Fraud prevention techniques, based on hard rules, have become ineffective due to evolving patterns of fraud in recent times. Against such a background, the present study probes into distinct methodologies that exploit emergent AI-driven techniques to further strengthen fraud detection. We would like to compare the performance of generative adversarial networks and graph neural networks with other popular techniques, like gradient boosting, random forests, and neural networks. To this end, we would recommend integrating all these state-of-the-art models into one robust, flexible, and smart system for real-time anomaly and fraud detection. To overcome the challenge, we designed synthetic data and then conducted pattern recognition and unsupervised and supervised learning analyses on the transaction data to identify which activities were fishy. With the use of actual financial statistics, we compare the performance of our model in accuracy, speed, and adaptability versus conventional models. The results of this study illustrate a strong signal and need to integrate state-of-the-art, AI-driven fraud detection solutions into frameworks that are highly relevant to the financial domain. It alerts one to the great urgency that banks and related financial institutions must rapidly implement these most advanced technologies to continue to have a high level of security.Keywords: AI-driven fraud detection, financial security, machine learning, anomaly detection, real-time fraud detection
Procedia PDF Downloads 443362 Electrochemical Anodic Oxidation Synthesis of TiO2 nanotube as Perspective Electrode for the Detection of Phenyl Hydrazine
Authors: Sadia Ameen, M. Nazim, Hyumg-Kee Seo, Hyung-Shik Shin
Abstract:
TiO2 nanotube (NT) arrays were grown on titanium (Ti) foil substrate by electrochemical anodic oxidation and utilized as working electrode to fabricate a highly sensitive and reproducible chemical sensor for the detection of harmful phenyl hydrazine chemical. The fabricated chemical sensor based on TiO2 NT arrays electrode exhibited high sensitivity of ~40.9 µA.mM-1.cm-2 and detection limit of ~0.22 µM with short response time (10s).Keywords: TiO2 NT, phenyl hydrazine, chemical sensor, sensitivity, electrocatalytic properties
Procedia PDF Downloads 5013361 Sensing Mechanism of Nano-Toxic Ions Using Quartz Crystal Microbalance
Authors: Chanho Park, Juneseok You, Kuewhan Jang, Sungsoo Na
Abstract:
Detection technique of nanotoxic materials is strongly imperative, because nano-toxic materials can harmfully influence human health and environment as their engineering applications are growing rapidly in recent years. In present work, we report the DNA immobilized quartz crystal microbalance (QCM) based sensor for detection of nano-toxic materials such as silver ions, Hg2+ etc. by using functionalization of quartz crystal with a target-specific DNA. Since the mass of a target material is comparable to that of an atom, the mass change caused by target binding to DNA on the quartz crystal is so small that it is practically difficult to detect the ions at low concentrations. In our study, we have demonstrated fast and in situ detection of nanotoxic materials using quartz crystal microbalance. We report the label-free and highly sensitive detection of silver ion for present case, which is a typical nano-toxic material by using QCM and silver-specific DNA. The detection is based on the measurement of frequency shift of Quartz crystal from constitution of the cytosine-Ag+-cytosine binding. It is shown that the silver-specific DNA measured frequency shift by QCM enables the capturing of silver ions below 100pM. The results suggest that DNA-based detection opens a new avenue for the development of a practical water-testing sensor.Keywords: nano-toxic ions, quartz crystal microbalance, frequency shift, target-specific DNA
Procedia PDF Downloads 3223360 A Proposed Optimized and Efficient Intrusion Detection System for Wireless Sensor Network
Authors: Abdulaziz Alsadhan, Naveed Khan
Abstract:
In recent years intrusions on computer network are the major security threat. Hence, it is important to impede such intrusions. The hindrance of such intrusions entirely relies on its detection, which is primary concern of any security tool like Intrusion Detection System (IDS). Therefore, it is imperative to accurately detect network attack. Numerous intrusion detection techniques are available but the main issue is their performance. The performance of IDS can be improved by increasing the accurate detection rate and reducing false positive. The existing intrusion detection techniques have the limitation of usage of raw data set for classification. The classifier may get jumble due to redundancy, which results incorrect classification. To minimize this problem, Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA), and Local Binary Pattern (LBP) can be applied to transform raw features into principle features space and select the features based on their sensitivity. Eigen values can be used to determine the sensitivity. To further classify, the selected features greedy search, back elimination, and Particle Swarm Optimization (PSO) can be used to obtain a subset of features with optimal sensitivity and highest discriminatory power. These optimal feature subset used to perform classification. For classification purpose, Support Vector Machine (SVM) and Multilayer Perceptron (MLP) used due to its proven ability in classification. The Knowledge Discovery and Data mining (KDD’99) cup dataset was considered as a benchmark for evaluating security detection mechanisms. The proposed approach can provide an optimal intrusion detection mechanism that outperforms the existing approaches and has the capability to minimize the number of features and maximize the detection rates.Keywords: Particle Swarm Optimization (PSO), Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA), Local Binary Pattern (LBP), Support Vector Machine (SVM), Multilayer Perceptron (MLP)
Procedia PDF Downloads 3673359 An Efficient Clustering Technique for Copy-Paste Attack Detection
Authors: N. Chaitawittanun, M. Munlin
Abstract:
Due to rapid advancement of powerful image processing software, digital images are easy to manipulate and modify by ordinary people. Lots of digital images are edited for a specific purpose and more difficult to distinguish form their original ones. We propose a clustering method to detect a copy-move image forgery of JPEG, BMP, TIFF, and PNG. The process starts with reducing the color of the photos. Then, we use the clustering technique to divide information of measuring data by Hausdorff Distance. The result shows that the purposed methods is capable of inspecting the image file and correctly identify the forgery.Keywords: image detection, forgery image, copy-paste, attack detection
Procedia PDF Downloads 3383358 Green Synthesis of Silver Nanoparticles by Olive Leaf Extract: Application in the Colorimetric Detection of Fe+3 Ions
Authors: Nasibeh Azizi Khereshki
Abstract:
Olive leaf (OL) extract as a green reductant agent was utilized for the biogenic synthesis of silver nanoparticles (Ag NPs) for the first time in this study, and then its performance was evaluated for colorimetric detection of Fe3+ in different media. Some analytical methods were used to characterize the nanosensor. The effective sensing parameters were optimized by central composite design (CCD) combined with response surface methodology (RSM) application. Then, the prepared material's applicability in antibacterial and optical chemical sensing for naked-eye detection of Fe3+ ions in aqueous solutions were evaluated. Furthermore, OL-Ag NPs-loaded paper strips were successfully applied to the colorimetric visualization of Fe3+. The colorimetric probe based on OL-AgNPs illustrated excellent selectivity and sensitivity towards Fe3+ ions, with LOD and LOQ of 0.81 μM and 2.7 μM, respectively. In addition, the developed method was applied to detect Fe3+ ions in real water samples and validated with a 95% confidence level against a reference spectroscopic method.Keywords: Ag NPs, colorimetric detection, Fe(III) ions, green synthesis, olive leaves
Procedia PDF Downloads 803357 Early Detection of Breast Cancer in Digital Mammograms Based on Image Processing and Artificial Intelligence
Authors: Sehreen Moorat, Mussarat Lakho
Abstract:
A method of artificial intelligence using digital mammograms data has been proposed in this paper for detection of breast cancer. Many researchers have developed techniques for the early detection of breast cancer; the early diagnosis helps to save many lives. The detection of breast cancer through mammography is effective method which detects the cancer before it is felt and increases the survival rate. In this paper, we have purposed image processing technique for enhancing the image to detect the graphical table data and markings. Texture features based on Gray-Level Co-Occurrence Matrix and intensity based features are extracted from the selected region. For classification purpose, neural network based supervised classifier system has been used which can discriminate between benign and malignant. Hence, 68 digital mammograms have been used to train the classifier. The obtained result proved that automated detection of breast cancer is beneficial for early diagnosis and increases the survival rates of breast cancer patients. The proposed system will help radiologist in the better interpretation of breast cancer.Keywords: medical imaging, cancer, processing, neural network
Procedia PDF Downloads 2603356 Deep Learning and Accurate Performance Measure Processes for Cyber Attack Detection among Web Logs
Authors: Noureddine Mohtaram, Jeremy Patrix, Jerome Verny
Abstract:
As an enormous number of online services have been developed into web applications, security problems based on web applications are becoming more serious now. Most intrusion detection systems rely on each request to find the cyber-attack rather than on user behavior, and these systems can only protect web applications against known vulnerabilities rather than certain zero-day attacks. In order to detect new attacks, we analyze the HTTP protocols of web servers to divide them into two categories: normal attacks and malicious attacks. On the other hand, the quality of the results obtained by deep learning (DL) in various areas of big data has given an important motivation to apply it to cybersecurity. Deep learning for attack detection in cybersecurity has the potential to be a robust tool from small transformations to new attacks due to its capability to extract more high-level features. This research aims to take a new approach, deep learning to cybersecurity, to classify these two categories to eliminate attacks and protect web servers of the defense sector which encounters different web traffic compared to other sectors (such as e-commerce, web app, etc.). The result shows that by using a machine learning method, a higher accuracy rate, and a lower false alarm detection rate can be achieved.Keywords: anomaly detection, HTTP protocol, logs, cyber attack, deep learning
Procedia PDF Downloads 2133355 A High Performance Piano Note Recognition Scheme via Precise Onset Detection and Segmented Short-Time Fourier Transform
Authors: Sonali Banrjee, Swarup Kumar Mitra, Aritra Acharyya
Abstract:
A piano note recognition method has been proposed by the authors in this paper. The authors have used a comprehensive method for onset detection of each note present in a piano piece followed by segmented short-time Fourier transform (STFT) for the identification of piano notes. The performance evaluation of the proposed method has been carried out in different harsh noisy environments by adding different levels of additive white Gaussian noise (AWGN) having different signal-to-noise ratio (SNR) in the original signal and evaluating the note detection error rate (NDER) of different piano pieces consisting of different number of notes at different SNR levels. The NDER is found to be remained within 15% for all piano pieces under consideration when the SNR is kept above 8 dB.Keywords: AWGN, onset detection, piano note, STFT
Procedia PDF Downloads 1603354 An Erudite Technique for Face Detection and Recognition Using Curvature Analysis
Authors: S. Jagadeesh Kumar
Abstract:
Face detection and recognition is an authoritative technology for image database management, video surveillance, and human computer interface (HCI). Face recognition is a rapidly nascent method, which has been extensively discarded in forensics such as felonious identification, tenable entree, and custodial security. This paper recommends an erudite technique using curvature analysis (CA) that has less false positives incidence, operative in different light environments and confiscates the artifacts that are introduced during image acquisition by ring correction in polar coordinate (RCP) method. This technique affronts mean and median filtering technique to remove the artifacts but it works in polar coordinate during image acquisition. Investigational fallouts for face detection and recognition confirms decent recitation even in diagonal orientation and stance variation.Keywords: curvature analysis, ring correction in polar coordinate method, face detection, face recognition, human computer interaction
Procedia PDF Downloads 2873353 A Review of Intelligent Fire Management Systems to Reduce Wildfires
Authors: Nomfundo Ngombane, Topside E. Mathonsi
Abstract:
Remote sensing and satellite imaging have been widely used to detect wildfires; nevertheless, the technologies present some limitations in terms of early wildfire detection as the technologies are greatly influenced by weather conditions and can miss small fires. The fires need to have spread a few kilometers for the technologies to provide accurate detection. The South African Advanced Fire Information System uses MODIS (Moderate Resolution Imaging Spectroradiometer) as satellite imaging. MODIS has limitations as it can exclude small fires and can fall short in validating fire vulnerability. Thus in the future, a Machine Learning algorithm will be designed and implemented for the early detection of wildfires. A simulator will be used to evaluate the effectiveness of the proposed solution, and the results of the simulation will be presented.Keywords: moderate resolution imaging spectroradiometer, advanced fire information system, machine learning algorithm, detection of wildfires
Procedia PDF Downloads 803352 Facility Detection from Image Using Mathematical Morphology
Authors: In-Geun Lim, Sung-Woong Ra
Abstract:
As high resolution satellite images can be used, lots of studies are carried out for exploiting these images in various fields. This paper proposes the method based on mathematical morphology for extracting the ‘horse's hoof shaped object’. This proposed method can make an automatic object detection system to track the meaningful object in a large satellite image rapidly. Mathematical morphology process can apply in binary image, so this method is very simple. Therefore this method can easily extract the ‘horse's hoof shaped object’ from any images which have indistinct edges of the tracking object and have different image qualities depending on filming location, filming time, and filming environment. Using the proposed method by which ‘horse's hoof shaped object’ can be rapidly extracted, the performance of the automatic object detection system can be improved dramatically.Keywords: facility detection, satellite image, object, mathematical morphology
Procedia PDF Downloads 3823351 X-Corner Detection for Camera Calibration Using Saddle Points
Authors: Abdulrahman S. Alturki, John S. Loomis
Abstract:
This paper discusses a corner detection algorithm for camera calibration. Calibration is a necessary step in many computer vision and image processing applications. Robust corner detection for an image of a checkerboard is required to determine intrinsic and extrinsic parameters. In this paper, an algorithm for fully automatic and robust X-corner detection is presented. Checkerboard corner points are automatically found in each image without user interaction or any prior information regarding the number of rows or columns. The approach represents each X-corner with a quadratic fitting function. Using the fact that the X-corners are saddle points, the coefficients in the fitting function are used to identify each corner location. The automation of this process greatly simplifies calibration. Our method is robust against noise and different camera orientations. Experimental analysis shows the accuracy of our method using actual images acquired at different camera locations and orientations.Keywords: camera calibration, corner detector, edge detector, saddle points
Procedia PDF Downloads 4093350 Analysis of Facial Expressions with Amazon Rekognition
Authors: Kashika P. H.
Abstract:
The development of computer vision systems has been greatly aided by the efficient and precise detection of images and videos. Although the ability to recognize and comprehend images is a strength of the human brain, employing technology to tackle this issue is exceedingly challenging. In the past few years, the use of Deep Learning algorithms to treat object detection has dramatically expanded. One of the key issues in the realm of image recognition is the recognition and detection of certain notable people from randomly acquired photographs. Face recognition uses a way to identify, assess, and compare faces for a variety of purposes, including user identification, user counting, and classification. With the aid of an accessible deep learning-based API, this article intends to recognize various faces of people and their facial descriptors more accurately. The purpose of this study is to locate suitable individuals and deliver accurate information about them by using the Amazon Rekognition system to identify a specific human from a vast image dataset. We have chosen the Amazon Rekognition system, which allows for more accurate face analysis, face comparison, and face search, to tackle this difficulty.Keywords: Amazon rekognition, API, deep learning, computer vision, face detection, text detection
Procedia PDF Downloads 1073349 Deep Learning Approaches for Accurate Detection of Epileptic Seizures from Electroencephalogram Data
Authors: Ramzi Rihane, Yassine Benayed
Abstract:
Epilepsy is a chronic neurological disorder characterized by recurrent, unprovoked seizures resulting from abnormal electrical activity in the brain. Timely and accurate detection of these seizures is essential for improving patient care. In this study, we leverage the UK Bonn University open-source EEG dataset and employ advanced deep-learning techniques to automate the detection of epileptic seizures. By extracting key features from both time and frequency domains, as well as Spectrogram features, we enhance the performance of various deep learning models. Our investigation includes architectures such as Long Short-Term Memory (LSTM), Bidirectional LSTM (Bi-LSTM), 1D Convolutional Neural Networks (1D-CNN), and hybrid CNN-LSTM and CNN-BiLSTM models. The models achieved impressive accuracies: LSTM (98.52%), Bi-LSTM (98.61%), CNN-LSTM (98.91%), CNN-BiLSTM (98.83%), and CNN (98.73%). Additionally, we utilized a data augmentation technique called SMOTE, which yielded the following results: CNN (97.36%), LSTM (97.01%), Bi-LSTM (97.23%), CNN-LSTM (97.45%), and CNN-BiLSTM (97.34%). These findings demonstrate the effectiveness of deep learning in capturing complex patterns in EEG signals, providing a reliable and scalable solution for real-time seizure detection in clinical environments.Keywords: electroencephalogram, epileptic seizure, deep learning, LSTM, CNN, BI-LSTM, seizure detection
Procedia PDF Downloads 153348 Improving Lane Detection for Autonomous Vehicles Using Deep Transfer Learning
Authors: Richard O’Riordan, Saritha Unnikrishnan
Abstract:
Autonomous Vehicles (AVs) are incorporating an increasing number of ADAS features, including automated lane-keeping systems. In recent years, many research papers into lane detection algorithms have been published, varying from computer vision techniques to deep learning methods. The transition from lower levels of autonomy defined in the SAE framework and the progression to higher autonomy levels requires increasingly complex models and algorithms that must be highly reliable in their operation and functionality capacities. Furthermore, these algorithms have no room for error when operating at high levels of autonomy. Although the current research details existing computer vision and deep learning algorithms and their methodologies and individual results, the research also details challenges faced by the algorithms and the resources needed to operate, along with shortcomings experienced during their detection of lanes in certain weather and lighting conditions. This paper will explore these shortcomings and attempt to implement a lane detection algorithm that could be used to achieve improvements in AV lane detection systems. This paper uses a pre-trained LaneNet model to detect lane or non-lane pixels using binary segmentation as the base detection method using an existing dataset BDD100k followed by a custom dataset generated locally. The selected roads will be modern well-laid roads with up-to-date infrastructure and lane markings, while the second road network will be an older road with infrastructure and lane markings reflecting the road network's age. The performance of the proposed method will be evaluated on the custom dataset to compare its performance to the BDD100k dataset. In summary, this paper will use Transfer Learning to provide a fast and robust lane detection algorithm that can handle various road conditions and provide accurate lane detection.Keywords: ADAS, autonomous vehicles, deep learning, LaneNet, lane detection
Procedia PDF Downloads 1063347 BodeACD: Buffer Overflow Vulnerabilities Detecting Based on Abstract Syntax Tree, Control Flow Graph, and Data Dependency Graph
Authors: Xinghang Lv, Tao Peng, Jia Chen, Junping Liu, Xinrong Hu, Ruhan He, Minghua Jiang, Wenli Cao
Abstract:
As one of the most dangerous vulnerabilities, effective detection of buffer overflow vulnerabilities is extremely necessary. Traditional detection methods are not accurate enough and consume more resources to meet complex and enormous code environment at present. In order to resolve the above problems, we propose the method for Buffer overflow detection based on Abstract syntax tree, Control flow graph, and Data dependency graph (BodeACD) in C/C++ programs with source code. Firstly, BodeACD constructs the function samples of buffer overflow that are available on Github, then represents them as code representation sequences, which fuse control flow, data dependency, and syntax structure of source code to reduce information loss during code representation. Finally, BodeACD learns vulnerability patterns for vulnerability detection through deep learning. The results of the experiments show that BodeACD has increased the precision and recall by 6.3% and 8.5% respectively compared with the latest methods, which can effectively improve vulnerability detection and reduce False-positive rate and False-negative rate.Keywords: vulnerability detection, abstract syntax tree, control flow graph, data dependency graph, code representation, deep learning
Procedia PDF Downloads 1703346 Manufacturing Anomaly Detection Using a Combination of Gated Recurrent Unit Network and Random Forest Algorithm
Authors: Atinkut Atinafu Yilma, Eyob Messele Sefene
Abstract:
Anomaly detection is one of the essential mechanisms to control and reduce production loss, especially in today's smart manufacturing. Quick anomaly detection aids in reducing the cost of production by minimizing the possibility of producing defective products. However, developing an anomaly detection model that can rapidly detect a production change is challenging. This paper proposes Gated Recurrent Unit (GRU) combined with Random Forest (RF) to detect anomalies in the production process in real-time quickly. The GRU is used as a feature detector, and RF as a classifier using the input features from GRU. The model was tested using various synthesis and real-world datasets against benchmark methods. The results show that the proposed GRU-RF outperforms the benchmark methods with the shortest time taken to detect anomalies in the production process. Based on the investigation from the study, this proposed model can eliminate or reduce unnecessary production costs and bring a competitive advantage to manufacturing industries.Keywords: anomaly detection, multivariate time series data, smart manufacturing, gated recurrent unit network, random forest
Procedia PDF Downloads 1223345 Using Bidirectional Encoder Representations from Transformers to Extract Topic-Independent Sentiment Features for Social Media Bot Detection
Authors: Maryam Heidari, James H. Jones Jr.
Abstract:
Millions of online posts about different topics and products are shared on popular social media platforms. One use of this content is to provide crowd-sourced information about a specific topic, event or product. However, this use raises an important question: what percentage of information available through these services is trustworthy? In particular, might some of this information be generated by a machine, i.e., a bot, instead of a human? Bots can be, and often are, purposely designed to generate enough volume to skew an apparent trend or position on a topic, yet the consumer of such content cannot easily distinguish a bot post from a human post. In this paper, we introduce a model for social media bot detection which uses Bidirectional Encoder Representations from Transformers (Google Bert) for sentiment classification of tweets to identify topic-independent features. Our use of a Natural Language Processing approach to derive topic-independent features for our new bot detection model distinguishes this work from previous bot detection models. We achieve 94\% accuracy classifying the contents of data as generated by a bot or a human, where the most accurate prior work achieved accuracy of 92\%.Keywords: bot detection, natural language processing, neural network, social media
Procedia PDF Downloads 116