Search results for: mixed effect logistic regression model
31721 The Effect of Leadership Style on Employee Engagement in Ethiopian Airlines
Authors: Mahlet Nigussie Worku
Abstract:
The main purpose of this study was to examine the effects of different leadership styles on employee engagement in Ethiopian Airlines headquarters located in Addis Ababa. Specific objectives of the study were stated to examine the effects of five leadership styles, namely transformational, transactional, democratic, lassies fair and autocratic leadership styles on employees’ engagement. The study was conducted on 288 sample sizes, and a simple random sampling technique was employed. The quantitative findings were presented and analyzed by table, ANOVA, bivariate correlation and regression model through SPSS software version 23. Out of 288 total distributed questionnaires, 280 were returned, and 8 of the returned were rejected due to missing data, while the remaining 280 responses were used for data analysis. Data was analyzed using the Statistical Package for Social Sciences (SPSS). The study employed both descriptive and explanatory research design. Correlation and regression were used to analyze the relationship and its effect between leadership Style and employee engagement. The regression results showed that transformational, transactional and democratic leadership Styles have significant contributions to employee engagement. Similarly, the transformational, transactional land democratic leadership style had a positive and strong correlation with employee engagement. However, lassies-fair and autocratic leadership styles showed a negative and insignificant effect on employee engagement. Finally, based on the findings, workable recommendations and implications for further studies were forwarded.Keywords: leadership, autocratic leadership style, democratic leadership style, employee engagement
Procedia PDF Downloads 9931720 Modeling the Impacts of Road Construction on Lands Values
Authors: Maha Almumaiz, Harry Evdorides
Abstract:
Change in land value typically occurs when a new interurban road construction causes an increase in accessibility; this change in the adjacent lands values differs according to land characteristics such as geographic location, land use type, land area and sale time (appraisal time). A multiple regression model is obtained to predict the percent change in land value (CLV) based on four independent variables namely land distance from the constructed road, area of land, nature of land use and time from the works completion of the road. The random values of percent change in land value were generated using Microsoft Excel with a range of up to 35%. The trend of change in land value with the four independent variables was determined from the literature references. The statistical analysis and model building process has been made by using the IBM SPSS V23 software. The Regression model suggests, for lands that are located within 3 miles as the straight distance from the road, the percent CLV is between (0-35%) which is depending on many factors including distance from the constructed road, land use, land area and time from works completion of the new road.Keywords: interurban road, land use types, new road construction, percent CLV, regression model
Procedia PDF Downloads 26631719 Numerical Analysis of Laminar Mixed Convection within a Complex Geometry
Authors: Y. Lasbet, A. L. Boukhalkhal, K. Loubar
Abstract:
The study of mixed convection is, usually, focused on the straight channels in which the onset of the mixed convection is well defined as function of the ratio between Grashof number and Reynolds number, Gr/Re. This is not the case for a complex channel wherein the mixed convection is not sufficiently examined in the literature. Our paper focuses on the study of the mixed convection in a complex geometry in which our main contribution reveals that the critical value of the ratio Gr/Re for the onset of the mixed convection increases highly in the type of geometry contrary to the straight channel. Furthermore, the accentuated secondary flow in this geometry prevents the thermal stratification in the flow and consequently the buoyancy driven becomes negligible. To perform these objectives, a numerical study in complex geometry for several values of the ratio Gr/Re with prescribed wall heat flux (H2), was realized by using the CFD code.Keywords: complex geometry, heat transfer, laminar flow, mixed convection, Nusselt number
Procedia PDF Downloads 49531718 The Effect Of Leadership Style On Employee Engagment In Ethiopian Airlines
Authors: Mahlet Nigussie Worku
Abstract:
The main purpose of this study was to examine the effects of different leadership styles on employee engagement in Ethiopian Airlines head quarter located in Addis Ababa. Specific objectives of the study were stated to examine the effects of five leadership styles namely transformational, transactional, democratic, lassies fair and autocratic leadership styles on employees’ engagement. The study was conducted on 288 sample size and a simple random sampling technique was employed. The quantitative findings were presented and analyzed by table, ANOVA, bivariate correlation and regression model through SPSS software version 23. Out of 288 total distributed questionnaires 280 were returned and 8 of the returned were rejected due to missing data while the remaining 280 responses were used for data analysis. Data was analyzed using the Statistical Package for Social Sciences (SPSS). The study employed both descriptive and explanatory research design. Correlation and regression were used to analyze the relationship and its effect between leadership Style and employee’s engagement. The regression results showed that transformational, transactional and democratic leadership Styles have significant contribution for employee’s engagement. Similarly transformational, transactional land democratic leadership style had a positive and strong correlation with employee’s engagement. However lassies-fair and autocratic leadership style showed negative and insignificant effect on employee engagement. Finally, based on the findings, workable recommendations and implications for further studies were forwardedKeywords: leadership, leadership style, employee engagement, autocratic leadership styles
Procedia PDF Downloads 7731717 EarlyWarning for Financial Stress Events:A Credit-Regime Switching Approach
Abstract:
We propose a new early warning model for predicting financial stress events for a given future time. In this model, we examine whether credit conditions play an important role as a nonlinear propagator of shocks when predicting the likelihood of occurrence of financial stress events for a given future time. This propagation takes the form of a threshold regression in which a regime change occurs if credit conditions cross a critical threshold. Given the new early warning model for financial stress events, we evaluate the performance of this model and currently available alternatives, such as the model from signal extraction approach, and linear regression model. In-sample forecasting results indicate that the three types of models are useful tools for predicting financial stress events while none of them outperforms others across all criteria considered. The out-of-sample forecasting results suggest that the credit-regime switching model performs better than the two others across all criteria and all forecasting horizons considered.Keywords: cut-off probability, early warning model, financial crisis, financial stress, regime-switching model, forecasting horizons
Procedia PDF Downloads 43631716 Is Socio-Economic Characteristic is Associated with Health-Related Quality of Life among Elderly: Evidence from SAGE Data in India
Authors: Mili Dutta, Lokender Prashad
Abstract:
Introduction: Population ageing is a phenomenon that can be observed around the globe. The health-related quality of life (HRQOL) is a measurement of health status of an individual, and it describes the effect of physical and mental health disorders on the well-being of a person. The present study is aimed to describe the influence of socio-economic characteristics of elderly on their health-related quality of life in India. Methods: EQ-5D instrument and population-based EQ-5D index score has been measured to access the HRQOL among elderly. Present study utilized the Study on Global Ageing and Adult Health (SAGE) data which was conducted in 2007 in India. Multiple Logistic Regression model and Multivariate Linear Regression model has been employed. Result: In the present study, it was found that the female are more likely to have problems in mobility (OR=1.41, 95% Cl: 1.14 to 1.74), self-care (OR=1.26, 95% Cl: 1.01 to 1.56) and pain or discomfort (OR=1.50, 95% Cl: 1.16 to 1.94). Elderly residing in rural area are more likely to have problems in pain/discomfort (OR=1.28, 95% Cl: 1.01 to 1.62). More older and non-working elderly are more likely whereas higher educated and highest wealth quintile elderly are less likely to have problems in all the dimensions of EQ-5D viz. mobility, self-care, usual activity, pain/discomfort and anxiety/depression. The present study has also shown that oldest old people, residing in rural area and currently not working elderly are more likely to report low EQ-5D index score whereas elderly with high education level and high wealth quintile are more likely to report high EQ-5D index score than their counterparts. Conclusion: The present study has found EQ-5D instrument as the valid measure for assessing the HRQOL of elderly in India. The study indicates socio-economic characteristics of elderly such as female, more older people, residing in rural area, non-educated, poor and currently non-working as the major risk groups of having poor HRQOL in India. Findings of the study will be helpful for the programmes and policy makers, researchers, academician and social workers who are working in the field of ageing.Keywords: ageing, HRQOL, India, EQ-5D, SAGE, socio-economic characteristics
Procedia PDF Downloads 40231715 Risk Factors for Defective Autoparts Products Using Bayesian Method in Poisson Generalized Linear Mixed Model
Authors: Pitsanu Tongkhow, Pichet Jiraprasertwong
Abstract:
This research investigates risk factors for defective products in autoparts factories. Under a Bayesian framework, a generalized linear mixed model (GLMM) in which the dependent variable, the number of defective products, has a Poisson distribution is adopted. Its performance is compared with the Poisson GLM under a Bayesian framework. The factors considered are production process, machines, and workers. The products coded RT50 are observed. The study found that the Poisson GLMM is more appropriate than the Poisson GLM. For the production Process factor, the highest risk of producing defective products is Process 1, for the Machine factor, the highest risk is Machine 5, and for the Worker factor, the highest risk is Worker 6.Keywords: defective autoparts products, Bayesian framework, generalized linear mixed model (GLMM), risk factors
Procedia PDF Downloads 57031714 Model of Transhipment and Routing Applied to the Cargo Sector in Small and Medium Enterprises of Bogotá, Colombia
Authors: Oscar Javier Herrera Ochoa, Ivan Dario Romero Fonseca
Abstract:
This paper presents a design of a model for planning the distribution logistics operation. The significance of this work relies on the applicability of this fact to the analysis of small and medium enterprises (SMEs) of dry freight in Bogotá. Two stages constitute this implementation: the first one is the place where optimal planning is achieved through a hybrid model developed with mixed integer programming, which considers the transhipment operation based on a combined load allocation model as a classic transshipment model; the second one is the specific routing of that operation through the heuristics of Clark and Wright. As a result, an integral model is obtained to carry out the step by step planning of the distribution of dry freight for SMEs in Bogotá. In this manner, optimum assignments are established by utilizing transshipment centers with that purpose of determining the specific routing based on the shortest distance traveled.Keywords: transshipment model, mixed integer programming, saving algorithm, dry freight transportation
Procedia PDF Downloads 23331713 Cigarette Smoking and Alcohol Use among Mauritian Adolescents: Analysis of 2017 WHO Global School-Based Student Health Survey
Authors: Iyanujesu Adereti, Tajudeen Basiru, Ayodamola Olanipekun
Abstract:
Background: Substance abuse among adolescents is of public health concern globally. Despite being the most abused by adolescents, there are limited studies on the prevalence of alcohol use and cigarette smoking among adolescents in Mauritius. Objectives: To determine the prevalence of cigarette smoking, alcohol use and associated correlates among school-going adolescents in Mauritius. Methodology: Data obtained from 2017 WHO Global School-based Student Health Survey (GSHS) survey of 3,012 school-going adolescents in Mauritius was analyzed using STATA. Descriptive statistics were used to obtain prevalence. Bivariate and multivariate logistic regression analysis was used to evaluate predictors of cigarette smoking and alcohol use. Results: Prevalence of alcohol consumption and cigarette smoking were 26.0% and 17.1%, respectively. Smoking and alcohol use was more prevalent among males, younger adolescents, and those in higher school grades (p-value <.000). In multivariable logistic regression, male gender was associated with a higher risk of cigarette smoking (adjusted Odds Ratio (aOR) [95%Confidence Interval (CI)]= 1.51[1.06-2.14]) but lower risk of alcohol use (aOR[95%CI]= 0.69[0.53-0.90]) while older age (mid and late adolescence) and parental smoking were found to be associated with increased risk of alcohol use (aOR[95%CI]= 1.94[1.34-2.99] and 1.36[1.05-1.78] respectively). Marijuana use, truancy, being in a fight and suicide ideation were associated with increased odds of alcohol use (aOR[95%CI]= 3.82[3.39-6.09]; 2.15[1.62-2.87]; 1.83[1.34-2.49] and 1.93[1.38-2.69] respectively) and cigarette smoking (aOR[95%CI]= 17.28[10.4 - 28.51]; 1.73[1.21-2. 49]; 1.67[1.14-2.45] and 2.17[1.43-3.28] respectively) while involvement in sexual activity was associated with reduced risk of alcohol use (aOR[95%CI]= 0.50[0.37-0.68]) and cigarette smoking (aOR[95%CI]= 0.47[0.33-0.69]). Parental support and parental monitoring were uniquely associated with lower risk of cigarette smoking (aOR[95%CI]= 0.69[0.47-0.99] and 0.62[0.43-0.91] respectively). Conclusion: The high prevalence of alcohol use and cigarette smoking in this study shows the need for the government of Mauritius to enhance policies that will help address this issue putting into accounts the various risk and protective factors.Keywords: adolescent health, alcohol use, cigarette smoking, global school-based student health survey
Procedia PDF Downloads 25331712 Comparison of Multivariate Adaptive Regression Splines and Random Forest Regression in Predicting Forced Expiratory Volume in One Second
Authors: P. V. Pramila , V. Mahesh
Abstract:
Pulmonary Function Tests are important non-invasive diagnostic tests to assess respiratory impairments and provides quantifiable measures of lung function. Spirometry is the most frequently used measure of lung function and plays an essential role in the diagnosis and management of pulmonary diseases. However, the test requires considerable patient effort and cooperation, markedly related to the age of patients esulting in incomplete data sets. This paper presents, a nonlinear model built using Multivariate adaptive regression splines and Random forest regression model to predict the missing spirometric features. Random forest based feature selection is used to enhance both the generalization capability and the model interpretability. In the present study, flow-volume data are recorded for N= 198 subjects. The ranked order of feature importance index calculated by the random forests model shows that the spirometric features FVC, FEF 25, PEF,FEF 25-75, FEF50, and the demographic parameter height are the important descriptors. A comparison of performance assessment of both models prove that, the prediction ability of MARS with the `top two ranked features namely the FVC and FEF 25 is higher, yielding a model fit of R2= 0.96 and R2= 0.99 for normal and abnormal subjects. The Root Mean Square Error analysis of the RF model and the MARS model also shows that the latter is capable of predicting the missing values of FEV1 with a notably lower error value of 0.0191 (normal subjects) and 0.0106 (abnormal subjects). It is concluded that combining feature selection with a prediction model provides a minimum subset of predominant features to train the model, yielding better prediction performance. This analysis can assist clinicians with a intelligence support system in the medical diagnosis and improvement of clinical care.Keywords: FEV, multivariate adaptive regression splines pulmonary function test, random forest
Procedia PDF Downloads 31131711 Parametric Approach for Reserve Liability Estimate in Mortgage Insurance
Authors: Rajinder Singh, Ram Valluru
Abstract:
Chain Ladder (CL) method, Expected Loss Ratio (ELR) method and Bornhuetter-Ferguson (BF) method, in addition to more complex transition-rate modeling, are commonly used actuarial reserving methods in general insurance. There is limited published research about their relative performance in the context of Mortgage Insurance (MI). In our experience, these traditional techniques pose unique challenges and do not provide stable claim estimates for medium to longer term liabilities. The relative strengths and weaknesses among various alternative approaches revolve around: stability in the recent loss development pattern, sufficiency and reliability of loss development data, and agreement/disagreement between reported losses to date and ultimate loss estimate. CL method results in volatile reserve estimates, especially for accident periods with little development experience. The ELR method breaks down especially when ultimate loss ratios are not stable and predictable. While the BF method provides a good tradeoff between the loss development approach (CL) and ELR, the approach generates claim development and ultimate reserves that are disconnected from the ever-to-date (ETD) development experience for some accident years that have more development experience. Further, BF is based on subjective a priori assumption. The fundamental shortcoming of these methods is their inability to model exogenous factors, like the economy, which impact various cohorts at the same chronological time but at staggered points along their life-time development. This paper proposes an alternative approach of parametrizing the loss development curve and using logistic regression to generate the ultimate loss estimate for each homogeneous group (accident year or delinquency period). The methodology was tested on an actual MI claim development dataset where various cohorts followed a sigmoidal trend, but levels varied substantially depending upon the economic and operational conditions during the development period spanning over many years. The proposed approach provides the ability to indirectly incorporate such exogenous factors and produce more stable loss forecasts for reserving purposes as compared to the traditional CL and BF methods.Keywords: actuarial loss reserving techniques, logistic regression, parametric function, volatility
Procedia PDF Downloads 13231710 Quantitative Structure-Activity Relationship Study of Some Quinoline Derivatives as Antimalarial Agents
Authors: M. Ouassaf, S. Belaid
Abstract:
A series of quinoline derivatives with antimalarial activity were subjected to two-dimensional quantitative structure-activity relationship (2D-QSAR) studies. Three models were implemented using multiple regression linear MLR, a regression partial least squares (PLS), nonlinear regression (MNLR), to see which descriptors are closely related to the activity biologic. We relied on a principal component analysis (PCA). Based on our results, a comparison of the quality of, MLR, PLS, and MNLR models shows that the MNLR (R = 0.914 and R² = 0.835, RCV= 0.853) models have substantially better predictive capability because the MNLR approach gives better results than MLR (R = 0.835 and R² = 0,752, RCV=0.601)), PLS (R = 0.742 and R² = 0.552, RCV=0.550) The model of MNLR gave statistically significant results and showed good stability to data variation in leave-one-out cross-validation. The obtained results suggested that our proposed model MNLR may be useful to predict the biological activity of derivatives of quinoline.Keywords: antimalarial, quinoline, QSAR, PCA, MLR , MNLR, MLR
Procedia PDF Downloads 15731709 Relationship and Associated Factors of Breastfeeding Self-efficacy among Postpartum Couples in Malawi: A Cross-sectional Study
Authors: Roselyn Chipojola, Shu-yu Kuo
Abstract:
Background: Breastfeeding self-efficacy in both mothers and fathers play a crucial role in improving exclusive breastfeeding rates. However, less is known on the relationship and predictors of paternal and maternal breastfeeding self-efficacy. This study aimed to examine the relationship and associated factors of breastfeeding self-efficacy (BSE) among mothers and fathers in Malawi. Methods: A cross-sectional study was conducted on 180 pairs of postpartum mothers and fathers at a tertiary maternity facility in central Malawi. BSE was measured using the Breastfeeding Self-Efficacy Scale Short-Form. Depressive symptoms were assessed by the Edinburgh Postnatal Depression Scale. A structured questionnaire was used to collect demographic and health variables. Data were analyzed using multivariable logistic regression and multinomial logistic regression. Results: A higher score of self-efficacy was found in mothers (mean=55.7, Standard Deviation (SD) =6.5) compared to fathers (mean=50.2, SD=11.9). A significant association between paternal and maternal breastfeeding self-efficacy was found (r= 0. 32). Age, employment status, mode of birth was significantly related to maternal and paternal BSE, respectively. Older age and caesarean section delivery were significant factors of combined BSE scores in couples. A higher BSE score in either the mother or her partner predicted higher exclusive breastfeeding rates. BSE scores were lower when couples’ depressive symptoms were high. Conclusion: BSE are highly correlated between Malawian mothers and fathers, with a relatively higher score in maternal BSE. Importantly, a high BSE in couples predicted higher odds of exclusive breastfeeding, which highlights the need to include both mothers and fathers in future breastfeeding promotion strategies.Keywords: paternal, maternal, exclusive breastfeeding, breastfeeding self‑efficacy, malawi
Procedia PDF Downloads 7031708 Association between Severe Acidemia before Endotracheal Intubation and the Lower First Attempt Intubation Success Rate
Authors: Keiko Naito, Y. Nakashima, S. Yamauchi, Y. Kunitani, Y. Ishigami, K. Numata, M. Mizobe, Y. Homma, J. Takahashi, T. Inoue, T. Shiga, H. Funakoshi
Abstract:
Background: A presence of severe acidemia, defined as pH < 7.2, is common during endotracheal intubation for critically ill patients in the emergency department (ED). Severe acidemia is widely recognized as a predisposing factor for intubation failure. However, it is unclear that acidemic condition itself actually makes endotracheal intubation more difficult. We aimed to evaluate if a presence of severe acidemia before intubation is associated with the lower first attempt intubation success rate in the ED. Methods: This is a retrospective observational cohort study in the ED of an urban hospital in Japan. The collected data included patient demographics, such as age, sex, and body mass index, presence of one or more factors of modified LEMON criteria for predicting difficult intubation, reasons for intubation, blood gas levels, airway equipment, intubation by emergency physician or not, and the use of the rapid sequence intubation technique. Those with any of the following were excluded from the analysis: (1) no blood gas drawn before intubation, (2) cardiopulmonary arrest, and (3) under 18 years of age. The primary outcome was the first attempt intubation success rates between a severe acidemic patients (SA) group and a non-severe acidemic patients (NA) group. Logistic regression analysis was used to test the first attempt success rates for intubations between those two groups. Results: Over 5 years, a total of 486 intubations were performed; 105 in the SA group and 381 in the NA group. The univariate analysis showed that the first attempt intubation success rate was lower in the SA group than in the NA group (71.4% vs 83.5%, p < 0.01). The multivariate logistic regression analysis identified that severe acidemia was significantly associated with the first attempt intubation failure (OR 1.9, 95% CI 1.03-3.68, p = 0.04). Conclusions: A presence of severe acidemia before endotracheal intubation lowers the first attempt intubation success rate in the ED.Keywords: acidemia, airway management, endotracheal intubation, first-attempt intubation success rate
Procedia PDF Downloads 24831707 Rural Livelihood under a Changing Climate Pattern in the Zio District of Togo, West Africa
Authors: Martial Amou
Abstract:
This study was carried out to assess the situation of households’ livelihood under a changing climate pattern in the Zio district of Togo, West Africa. The study examined three important aspects: (i) assessment of households’ livelihood situation under a changing climate pattern, (ii) farmers’ perception and understanding of local climate change, (iii) determinants of adaptation strategies undertaken in cropping pattern to climate change. To this end, secondary sources of data, and survey data collected from 235 farmers in four villages in the study area were used. Adapted conceptual framework from Sustainable Livelihood Framework of DFID, two steps Binary Logistic Regression Model and descriptive statistics were used in this study as methodological approaches. Based on Sustainable Livelihood Approach (SLA), various factors revolving around the livelihoods of the rural community were grouped into social, natural, physical, human, and financial capital. Thus, the study came up that households’ livelihood situation represented by the overall livelihood index in the study area (34%) is below the standard average households’ livelihood security index (50%). The natural capital was found as the poorest asset (13%) and this will severely affect the sustainability of livelihood in the long run. The result from descriptive statistics and the first step regression (selection model) indicated that most of the farmers in the study area have clear understanding of climate change even though they do not have any idea about greenhouse gases as the main cause behind the issue. From the second step regression (output model) result, education, farming experience, access to credit, access to extension services, cropland size, membership of a social group, distance to the nearest input market, were found to be the significant determinants of adaptation measures undertaken in cropping pattern by farmers in the study area. Based on the result of this study, recommendations are made to farmers, policy makers, institutions, and development service providers in order to better target interventions which build, promote or facilitate the adoption of adaptation measures with potential to build resilience to climate change and then improve rural livelihood.Keywords: climate change, rural livelihood, cropping pattern, adaptation, Zio District
Procedia PDF Downloads 32631706 Analysis of the Savings Behaviour of Rice Farmers in Tiaong, Quezon, Philippines
Authors: Angelika Kris D. Dalangin, Cesar B. Quicoy
Abstract:
Rice farming is a major source of livelihood and employment in the Philippines, but it requires a substantial amount of capital. Capital may come from income (farm, non-farm, and off-farm), savings and credit. However, rice farmers suffer from lack of capital due to high costs of inputs and low productivity. Capital insufficiency, coupled with low productivity, hindered them to meet their basic household and production needs. Hence, they resorted to borrowing money, mostly from informal lenders who charge very high interest rates. As another source of capital, savings can help rice farmers meet their basic needs for both the household and the farm. However, information is inadequate whether the farmers save or not, as well as, why they do not depend on savings to augment their lack of capital. Thus, it is worth analyzing how rice farmers saved. The study revealed, using the actual savings which is the difference between the household income and expenditure, that about three-fourths (72%) of the total number of farmers interviewed are savers. However, when they were asked whether they are savers or not, more than half of them considered themselves as non-savers. This gap shows that there are many farmers who think that they do not have savings at all; hence they continue to borrow money and do not depend on savings to augment their lack of capital. The study also identified the forms of savings, saving motives, and savings utilization among rice farmers. Results revealed that, for the past 12 months, most of the farmers saved cash at home for liquidity purposes while others deposited cash in banks and/or saved their money in the form of livestock. Among the most important reasons of farmers for saving are for daily household expenses, for building a house, for emergency purposes, for retirement, and for their next production. Furthermore, the study assessed the factors affecting the rice farmers’ savings behaviour using logistic regression. Results showed that the factors found to be significant were presence of non-farm income, per capita net farm income, and per capita household expense. The presence of non-farm income and per capita net farm income positively affects the farmers’ savings behaviour. On the other hand, per capita household expenses have negative effect. The effect, however, of per capita net farm income and household expenses is very negligible because of the very small chance that the farmer is a saver. Generally, income and expenditure were proved to be significant factors that affect the savings behaviour of the rice farmers. However, most farmers could not save regularly due to low farm income and high household and farm expenditures. Thus, it is highly recommended that government should develop programs or implement policies that will create more jobs for the farmers and their family members. In addition, programs and policies should be implemented to increase farm productivity and income.Keywords: agricultural economics, agricultural finance, binary logistic regression, logit, Philippines, Quezon, rice farmers, savings, savings behaviour
Procedia PDF Downloads 22831705 Analysis of Effect of Microfinance on the Profit Level of Small and Medium Scale Enterprises in Lagos State, Nigeria
Authors: Saheed Olakunle Sanusi, Israel Ajibade Adedeji
Abstract:
The study analysed the effect of microfinance on the profit level of small and medium scale enterprises in Lagos. The data for the study were obtained by simple random sampling, and total of one hundred and fifty (150) small and medium scale enterprises (SMEs) were sampled for the study. Seventy-five (75) each are microfinance users and non-users. Data were analysed using descriptive statistics, logit model, t-test and ordinary least square (OLS) regression. The mean profit of the enterprises using microfinance is ₦16.8m, while for the non-users of microfinance is ₦5.9m. The mean profit of microfinance users is statistically different from the non-users. The result of the logit model specified for the determinant of access to microfinance showed that three of specified variables- educational status of the enterprise head, credit utilisation and volume of business investment are significant at P < 0.01. Enterprises with many years of experience, highly educated enterprise heads and high volume of business investment have more potential access to microfinance. The OLS regression model indicated that three parameters namely number of school years, the volume of business investment and (dummy) participation in microfinance were found to be significant at P < 0.05. These variables are therefore significant determinants of impacts of microfinance on profit level in the study area. The study, therefore, concludes and recommends that to improve the status of small and medium scale enterprises for an increase in profit, the full benefit of access to microfinance can be enhanced through investment in social infrastructure and human capital development. Also, concerted efforts should be made to encouraged non-users of microfinance among SMEs to use it in order to boost their profit.Keywords: credit utilisation, logit model, microfinance, small and medium enterprises
Procedia PDF Downloads 20831704 Analysis of Operating Speed on Four-Lane Divided Highways under Mixed Traffic Conditions
Authors: Chaitanya Varma, Arpan Mehar
Abstract:
The present study demonstrates the procedure to analyse speed data collected on various four-lane divided sections in India. Field data for the study was collected at different straight and curved sections on rural highways with the help of radar speed gun and video camera. The data collected at the sections were analysed and parameters pertain to speed distributions were estimated. The different statistical distribution was analysed on vehicle type speed data and for mixed traffic speed data. It was found that vehicle type speed data was either follows the normal distribution or Log-normal distribution, whereas the mixed traffic speed data follows more than one type of statistical distribution. The most common fit observed on mixed traffic speed data were Beta distribution and Weibull distribution. The separate operating speed model based on traffic and roadway geometric parameters were proposed in the present study. The operating speed model with traffic parameters and curve geometry parameters were established. Two different operating speed models were proposed with variables 1/R and Ln(R) and were found to be realistic with a different range of curve radius. The models developed in the present study are simple and realistic and can be used for forecasting operating speed on four-lane highways.Keywords: highway, mixed traffic flow, modeling, operating speed
Procedia PDF Downloads 46031703 Automated Prediction of HIV-associated Cervical Cancer Patients Using Data Mining Techniques for Survival Analysis
Authors: O. J. Akinsola, Yinan Zheng, Rose Anorlu, F. T. Ogunsola, Lifang Hou, Robert Leo-Murphy
Abstract:
Cervical Cancer (CC) is the 2nd most common cancer among women living in low and middle-income countries, with no associated symptoms during formative periods. With the advancement and innovative medical research, there are numerous preventive measures being utilized, but the incidence of cervical cancer cannot be truncated with the application of only screening tests. The mortality associated with this invasive cervical cancer can be nipped in the bud through the important role of early-stage detection. This study research selected an array of different top features selection techniques which was aimed at developing a model that could validly diagnose the risk factors of cervical cancer. A retrospective clinic-based cohort study was conducted on 178 HIV-associated cervical cancer patients in Lagos University teaching Hospital, Nigeria (U54 data repository) in April 2022. The outcome measure was the automated prediction of the HIV-associated cervical cancer cases, while the predictor variables include: demographic information, reproductive history, birth control, sexual history, cervical cancer screening history for invasive cervical cancer. The proposed technique was assessed with R and Python programming software to produce the model by utilizing the classification algorithms for the detection and diagnosis of cervical cancer disease. Four machine learning classification algorithms used are: the machine learning model was split into training and testing dataset into ratio 80:20. The numerical features were also standardized while hyperparameter tuning was carried out on the machine learning to train and test the data. Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), and K-Nearest Neighbor (KNN). Some fitting features were selected for the detection and diagnosis of cervical cancer diseases from selected characteristics in the dataset using the contribution of various selection methods for the classification cervical cancer into healthy or diseased status. The mean age of patients was 49.7±12.1 years, mean age at pregnancy was 23.3±5.5 years, mean age at first sexual experience was 19.4±3.2 years, while the mean BMI was 27.1±5.6 kg/m2. A larger percentage of the patients are Married (62.9%), while most of them have at least two sexual partners (72.5%). Age of patients (OR=1.065, p<0.001**), marital status (OR=0.375, p=0.011**), number of pregnancy live-births (OR=1.317, p=0.007**), and use of birth control pills (OR=0.291, p=0.015**) were found to be significantly associated with HIV-associated cervical cancer. On top ten 10 features (variables) considered in the analysis, RF claims the overall model performance, which include: accuracy of (72.0%), the precision of (84.6%), a recall of (84.6%) and F1-score of (74.0%) while LR has: an accuracy of (74.0%), precision of (70.0%), recall of (70.0%) and F1-score of (70.0%). The RF model identified 10 features predictive of developing cervical cancer. The age of patients was considered as the most important risk factor, followed by the number of pregnancy livebirths, marital status, and use of birth control pills, The study shows that data mining techniques could be used to identify women living with HIV at high risk of developing cervical cancer in Nigeria and other sub-Saharan African countries.Keywords: associated cervical cancer, data mining, random forest, logistic regression
Procedia PDF Downloads 8531702 Statistical Model of Water Quality in Estero El Macho, Machala-El Oro
Authors: Rafael Zhindon Almeida
Abstract:
Surface water quality is an important concern for the evaluation and prediction of water quality conditions. The objective of this study is to develop a statistical model that can accurately predict the water quality of the El Macho estuary in the city of Machala, El Oro province. The methodology employed in this study is of a basic type that involves a thorough search for theoretical foundations to improve the understanding of statistical modeling for water quality analysis. The research design is correlational, using a multivariate statistical model involving multiple linear regression and principal component analysis. The results indicate that water quality parameters such as fecal coliforms, biochemical oxygen demand, chemical oxygen demand, iron and dissolved oxygen exceed the allowable limits. The water of the El Macho estuary is determined to be below the required water quality criteria. The multiple linear regression model, based on chemical oxygen demand and total dissolved solids, explains 99.9% of the variance of the dependent variable. In addition, principal component analysis shows that the model has an explanatory power of 86.242%. The study successfully developed a statistical model to evaluate the water quality of the El Macho estuary. The estuary did not meet the water quality criteria, with several parameters exceeding the allowable limits. The multiple linear regression model and principal component analysis provide valuable information on the relationship between the various water quality parameters. The findings of the study emphasize the need for immediate action to improve the water quality of the El Macho estuary to ensure the preservation and protection of this valuable natural resource.Keywords: statistical modeling, water quality, multiple linear regression, principal components, statistical models
Procedia PDF Downloads 10031701 Support Vector Regression Combined with Different Optimization Algorithms to Predict Global Solar Radiation on Horizontal Surfaces in Algeria
Authors: Laidi Maamar, Achwak Madani, Abdellah El Ahdj Abdellah
Abstract:
The aim of this work is to use Support Vector regression (SVR) combined with dragonfly, firefly, Bee Colony and particle swarm Optimization algorithm to predict global solar radiation on horizontal surfaces in some cities in Algeria. Combining these optimization algorithms with SVR aims principally to enhance accuracy by fine-tuning the parameters, speeding up the convergence of the SVR model, and exploring a larger search space efficiently; these parameters are the regularization parameter (C), kernel parameters, and epsilon parameter. By doing so, the aim is to improve the generalization and predictive accuracy of the SVR model. Overall, the aim is to leverage the strengths of both SVR and optimization algorithms to create a more powerful and effective regression model for various cities and under different climate conditions. Results demonstrate close agreement between predicted and measured data in terms of different metrics. In summary, SVM has proven to be a valuable tool in modeling global solar radiation, offering accurate predictions and demonstrating versatility when combined with other algorithms or used in hybrid forecasting models.Keywords: support vector regression (SVR), optimization algorithms, global solar radiation prediction, hybrid forecasting models
Procedia PDF Downloads 3831700 Full Mini Nutritional Assessment Questionnaire and the Risk of Malnutrition and Mortality in Elderly, Hospitalized Patients: A Cross-Sectional Study
Authors: Christos E. Lampropoulos, Maria Konsta, Tamta Sirbilatze, Ifigenia Apostolou, Vicky Dradaki, Konstantina Panouria, Irini Dri, Christina Kordali, Vaggelis Lambas, Georgios Mavras
Abstract:
Objectives: Full Mini Nutritional Assessment (MNA) questionnaire is one of the most useful tools in diagnosis of malnutrition in hospitalized patients, which is related to increased morbidity and mortality. The purpose of our study was to assess the nutritional status of elderly, hospitalized patients and examine the hypothesis that MNA may predict mortality and extension of hospitalization. Methods: One hundred fifty patients (78 men, 72 women, mean age 80±8.2) were included in this cross-sectional study. The following data were taken into account in analysis: anthropometric and laboratory data, physical activity (International Physical Activity Questionnaires, IPAQ), smoking status, dietary habits, cause and duration of current admission, medical history (co-morbidities, previous admissions). Primary endpoints were mortality (from admission until 6 months afterwards) and duration of admission. The latter was compared to national guidelines for closed consolidated medical expenses. Logistic regression and linear regression analysis were performed in order to identify independent predictors for mortality and extended hospitalization respectively. Results: According to MNA, nutrition was normal in 54/150 (36%) of patients, 46/150 (30.7%) of them were at risk of malnutrition and the rest 50/150 (33.3%) were malnourished. After performing multivariate logistic regression analysis we found that the odds of death decreased 20% per each unit increase of full MNA score (OR=0.8, 95% CI 0.74-0.89, p < 0.0001). Patients who admitted due to cancer were 23 times more likely to die, compared to those with infection (OR=23, 95% CI 3.8-141.6, p=0.001). Similarly, patients who admitted due to stroke were 7 times more likely to die (OR=7, 95% CI 1.4-34.5, p=0.02), while these with all other causes of admission were less likely (OR=0.2, 95% CI 0.06-0.8, p=0.03), compared to patients with infection. According to multivariate linear regression analysis, each increase of unit of full MNA, decreased the admission duration on average 0.3 days (b:-0.3, 95% CI -0.45 - -0.15, p < 0.0001). Patients admitted due to cancer had on average 6.8 days higher extension of hospitalization, compared to those admitted for infection (b:6.8, 95% CI 3.2-10.3, p < 0.0001). Conclusion: Mortality and extension of hospitalization is significantly increased in elderly, malnourished patients. Full MNA score is a useful diagnostic tool of malnutrition.Keywords: duration of admission, malnutrition, mini nutritional assessment score, prognostic factors for mortality
Procedia PDF Downloads 31331699 Flexible Mixed Model Assembly Line Design: A Strategy to Respond for Demand Uncertainty at Automotive Part Manufacturer in Indonesia
Authors: T. Yuri, M. Zagloel, Inaki M. Hakim, Tegu Bintang Nugraha
Abstract:
In an era of customer centricity, automotive parts manufacturer in Indonesia must be able to keep up with the uncertainty and fluctuation of consumer demand. Flexible Manufacturing System (FMS) is a strategy to react to predicted and unpredicted changes of demand in automotive industry. This research is about flexible mixed model assembly line design through Value Stream Mapping (VSM) and Line Balancing in mixed model assembly line prior to simulation. It uses value stream mapping to identify and reduce waste while finding the best position to add or reduce manpower. Line balancing is conducted to minimize or maximize production rate while increasing assembly line productivity and efficiency. Results of this research is a recommendation of standard work combination for specifics demand scenario which can enhance assembly line efficiency and productivity.Keywords: automotive industry, demand uncertainty, flexible assembly system, line balancing, value stream mapping
Procedia PDF Downloads 33131698 Examining the Cognitive Abilities and Financial Literacy Among Street Entrepreneurs: Evidence From North-East, India
Authors: Aayushi Lyngwa, Bimal Kishore Sahoo
Abstract:
The study discusses the relationship between cognitive ability and the level of education attained by the tribal street entrepreneurs on their financial literacy. It is driven by the objective of examining the effect of cognitive ability on financial ability on the one hand and determining the effect of the same on financial literacy on the other. A field experiment was conducted on 203 tribal street vendors in the north-eastern Indian state of Mizoram. This experiment's calculations are conditioned by providing each question scores like math score (cognitive ability), financial score and debt score (financial ability). After that, categories for each of the variables, like math category (math score), financial category (financial score) and debt category (debt score), are generated to run the regression model. Since the dependent variable is ordinal, an ordered logit regression model was applied. The study shows that street vendors' cognitive and financial abilities are highly correlated. It, therefore, confirms that cognitive ability positively affects the financial literacy of street vendors through the increase in attainment of educational levels. It is also found that concerning the type of street vendors, regular street vendors are more likely to have better cognitive abilities than temporary street vendors. Additionally, street vendors with more cognitive and financial abilities gained better monthly profits and performed habits of bookkeeping. The study attempts to draw a particular focus on a set-up which is economically and socially marginalized in the Indian economy. Its finding contributes to understanding financial literacy in an understudied area and provides policy implications through inclusive financial systems solutions in an economy limited to tribal street vendors.Keywords: financial literacy, education, street entrepreneurs, tribals, cognitive ability, financial ability, ordered logit regression.
Procedia PDF Downloads 11031697 A Super-Efficiency Model for Evaluating Efficiency in the Presence of Time Lag Effect
Authors: Yanshuang Zhang, Byungho Jeong
Abstract:
In many cases, there is a time lag between the consumption of inputs and the production of outputs. This time lag effect should be considered in evaluating the performance of organizations. Recently, a couple of DEA models were developed for considering time lag effect in efficiency evaluation of research activities. Multi-periods input(MpI) and Multi-periods output(MpO) models are integrated models to calculate simple efficiency considering time lag effect. However, these models can’t discriminate efficient DMUs because of the nature of basic DEA model in which efficiency scores are limited to ‘1’. That is, efficient DMUs can’t be discriminated because their efficiency scores are same. Thus, this paper suggests a super-efficiency model for efficiency evaluation under the consideration of time lag effect based on the MpO model. A case example using a long-term research project is given to compare the suggested model with the MpO model.Keywords: DEA, super-efficiency, time lag, multi-periods input
Procedia PDF Downloads 47431696 Interference among Lambsquarters and Oil Rapeseed Cultivars
Authors: Reza Siyami, Bahram Mirshekari
Abstract:
Seed and oil yield of rapeseed is considerably affected by weeds interference including mustard (Sinapis arvensis L.), lambsquarters (Chenopodium album L.) and redroot pigweed (Amaranthus retroflexus L.) throughout the East Azerbaijan province in Iran. To formulate the relationship between four independent growth variables measured in our experiment with a dependent variable, multiple regression analysis was carried out for the weed leaves number per plant (X1), green cover percentage (X2), LAI (X3) and leaf area per plant (X4) as independent variables and rapeseed oil yield as a dependent variable. The multiple regression equation is shown as follows: Seed essential oil yield (kg/ha) = 0.156 + 0.0325 (X1) + 0.0489 (X2) + 0.0415 (X3) + 0.133 (X4). Furthermore, the stepwise regression analysis was also carried out for the data obtained to test the significance of the independent variables affecting the oil yield as a dependent variable. The resulted stepwise regression equation is shown as follows: Oil yield = 4.42 + 0.0841 (X2) + 0.0801 (X3); R2 = 81.5. The stepwise regression analysis verified that the green cover percentage and LAI of weed had a marked increasing effect on the oil yield of rapeseed.Keywords: green cover percentage, independent variable, interference, regression
Procedia PDF Downloads 42131695 Formalizing a Procedure for Generating Uncertain Resource Availability Assumptions Based on Real Time Logistic Data Capturing with Auto-ID Systems for Reactive Scheduling
Authors: Lars Laußat, Manfred Helmus, Kamil Szczesny, Markus König
Abstract:
As one result of the project “Reactive Construction Project Scheduling using Real Time Construction Logistic Data and Simulation”, a procedure for using data about uncertain resource availability assumptions in reactive scheduling processes has been developed. Prediction data about resource availability is generated in a formalized way using real-time monitoring data e.g. from auto-ID systems on the construction site and in the supply chains. The paper focuses on the formalization of the procedure for monitoring construction logistic processes, for the detection of disturbance and for generating of new and uncertain scheduling assumptions for the reactive resource constrained simulation procedure that is and will be further described in other papers.Keywords: auto-ID, construction logistic, fuzzy, monitoring, RFID, scheduling
Procedia PDF Downloads 51631694 Admission C-Reactive Protein Serum Levels and In-Hospital Mortality in the Elderly Admitted to the Acute Geriatrics Department
Authors: Anjelika Kremer, Irina Nachimov, Dan Justo
Abstract:
Background: C-reactive protein (CRP) serum levels are commonly measured in hospitalized patients. Elevated admission CRP serum levels and in-hospital mortality has been seldom studied in the general population of elderly patients admitted to the acute Geriatrics department. Methods: A retrospective cross-sectional study was conducted at a tertiary medical center. Included were all elderly patients (age 65 years or more) admitted to a single acute Geriatrics department from the emergency room between April 2014 and January 2015. CRP serum levels were measured routinely in all patients upon the first 24 hours of admission. A logistic regression analysis was used to study if admission CRP serum levels were associated with in-hospital mortality independent of age, gender, functional status, and co-morbidities. Results: Overall, 498 elderly patients were included in the analysis: 306 (61.4%) female patients and 192 (38.6%) male patients. The mean age was 84.8±7.0 years (median: 85 years; IQR: 80-90 years). The mean admission CRP serum levels was 43.2±67.1 mg/l (median: 13.1 mg/l; IQR: 2.8-51.7 mg/l). Overall, 33 (6.6%) elderly patients died during the hospitalization. A logistic regression analysis showed that in-hospital mortality was independently associated with history of stroke (p < 0.0001), heart failure (p < 0.0001), and admission CRP serum levels (p < 0.0001) – and to a lesser extent with age (p = 0.042), collagen vascular disease (p=0.011), and recent venous thromboembolism (p=0.037). Receiver operating characteristic (ROC) curve showed that admission CRP serum levels predict in-hospital mortality fairly with an area under the curve (AUC) of 0.694 (p < 0.0001). Cut-off value with maximal sensitivity and specificity was 19.7 mg/L. Conclusions: Admission CRP serum levels may be used to predict in-hospital mortality in the general population of elderly patients admitted to the acute Geriatrics department.Keywords: c-reactive protein, elderly, mortality, prediction
Procedia PDF Downloads 23931693 Research on the Spatio-Temporal Evolution Pattern of Traffic Dominance in Shaanxi Province
Authors: Leng Jian-Wei, Wang Lai-Jun, Li Ye
Abstract:
In order to measure and analyze the transportation situation within the counties of Shaanxi province over a certain period of time and to promote the province's future transportation planning and development, this paper proposes a reasonable layout plan and compares model rationality. The study uses entropy weight method to measure the transportation advantages of 107 counties in Shaanxi province from three dimensions: road network density, trunk line influence and location advantage in 2013 and 2021, and applies spatial autocorrelation analysis method to analyze the spatial layout and development trend of county-level transportation, and conducts ordinary least square (OLS)regression on transportation impact factors and other influencing factors. The paper also compares the regression fitting degree of the Geographically weighted regression(GWR) model and the OLS model. The results show that spatially, the transportation advantages of Shaanxi province generally show a decreasing trend from the Weihe Plain to the surrounding areas and mainly exhibit high-high clustering phenomenon. Temporally, transportation advantages show an overall upward trend, and the phenomenon of spatial imbalance gradually decreases. People's travel demands have changed to some extent, and the demand for rapid transportation has increased overall. The GWR model regression fitting degree of transportation advantages is 0.74, which is higher than the OLS regression model's fitting degree of 0.64. Based on the evolution of transportation advantages, it is predicted that this trend will continue for a period of time in the future. To improve the transportation advantages of Shaanxi province increasing the layout of rapid transportation can effectively enhance the transportation advantages of Shaanxi province. When analyzing spatial heterogeneity, geographic factors should be considered to establish a more reliable modelKeywords: traffic dominance, GWR model, spatial autocorrelation analysis, temporal and spatial evolution
Procedia PDF Downloads 8931692 Simulating the Dynamics of E-waste Production from Mobile Phone: Model Development and Case Study of Rwanda
Authors: Rutebuka Evariste, Zhang Lixiao
Abstract:
Mobile phone sales and stocks showed an exponential growth in the past years globally and the number of mobile phones produced each year was surpassing one billion in 2007, this soaring growth of related e-waste deserves sufficient attentions paid to it regionally and globally as long as 40% of its total weight is made from metallic which 12 elements are identified to be highly hazardous and 12 are less harmful. Different research and methods have been used to estimate the obsolete mobile phones but none has developed a dynamic model and handle the discrepancy resulting from improper approach and error in the input data. The study aim was to develop a comprehensive dynamic system model for simulating the dynamism of e-waste production from mobile phone regardless the country or region and prevail over the previous errors. The logistic model method combined with STELLA program has been used to carry out this study. Then the simulation for Rwanda has been conducted and compared with others countries’ results as model testing and validation. Rwanda is about 1.5 million obsoletes mobile phone with 125 tons of waste in 2014 with e-waste production peak in 2017. It is expected to be 4.17 million obsoletes with 351.97 tons by 2020 along with environmental impact intensity of 21times to 2005. Thus, it is concluded through the model testing and validation that the present dynamic model is competent and able deal with mobile phone e-waste production the fact that it has responded to the previous studies questions from Czech Republic, Iran, and China.Keywords: carrying capacity, dematerialization, logistic model, mobile phone, obsolescence, similarity, Stella, system dynamics
Procedia PDF Downloads 345