Search results for: load estimation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4385

Search results for: load estimation

4085 Development of Immersive Virtual Reality System for Planning of Cargo Loading Operations

Authors: Eugene Y. C. Wong, Daniel Y. W. Mo, Cosmo T. Y. Ng, Jessica K. Y. Chan, Leith K. Y. Chan, Henry Y. K. Lau

Abstract:

The real-time planning visualisation, precise allocation and loading optimisation in air cargo load planning operations are increasingly important as more considerations are needed on dangerous cargo loading, locations of lithium batteries, weight declaration and limited aircraft capacity. The planning of the unit load devices (ULD) can often be carried out only in a limited number of hours before flight departure. A dynamic air cargo load planning system is proposed with the optimisation of cargo load plan and visualisation of planning results in virtual reality systems. The system aims to optimise the cargo load planning and visualise the simulated loading planning decision on air cargo terminal operations. Adopting simulation tools, Cave Automatic Virtual Environment (CAVE) and virtual reality technologies, the results of planning with reference to weight and balance, Unit Load Device (ULD) dimensions, gateway, cargo nature and aircraft capacity are optimised and presented. The virtual reality system facilities planning, operations, education and training. Staff in terminals are usually trained in a traditional push-approach demonstration with enormous manual paperwork. With the support of newly customized immersive visualization environment, users can master the complex air cargo load planning techniques in a problem based training with the instant result being immersively visualised. The virtual reality system is developed with three-dimensional (3D) projectors, screens, workstations, truss system, 3D glasses, and demonstration platform and software. The content will be focused on the cargo planning and loading operations in an air cargo terminal. The system can assist decision-making process during cargo load planning in the complex operations of air cargo terminal operations. The processes of cargo loading, cargo build-up, security screening, and system monitoring can be further visualised. Scenarios are designed to support and demonstrate the daily operations of the air cargo terminal, including dangerous goods, pets and animals, and some special cargos.

Keywords: air cargo load planning, optimisation, virtual reality, weight and balance, unit load device

Procedia PDF Downloads 323
4084 Polynomially Adjusted Bivariate Density Estimates Based on the Saddlepoint Approximation

Authors: S. B. Provost, Susan Sheng

Abstract:

An alternative bivariate density estimation methodology is introduced in this presentation. The proposed approach involves estimating the density function associated with the marginal distribution of each of the two variables by means of the saddlepoint approximation technique and applying a bivariate polynomial adjustment to the product of these density estimates. Since the saddlepoint approximation is utilized in the context of density estimation, such estimates are determined from empirical cumulant-generating functions. In the univariate case, the saddlepoint density estimate is itself adjusted by a polynomial. Given a set of observations, the coefficients of the polynomial adjustments are obtained from the sample moments. Several illustrative applications of the proposed methodology shall be presented. Since this approach relies essentially on a determinate number of sample moments, it is particularly well suited for modeling massive data sets.

Keywords: density estimation, empirical cumulant-generating function, moments, saddlepoint approximation

Procedia PDF Downloads 257
4083 Motion Estimator Architecture with Optimized Number of Processing Elements for High Efficiency Video Coding

Authors: Seongsoo Lee

Abstract:

Motion estimation occupies the heaviest computation in HEVC (high efficiency video coding). Many fast algorithms such as TZS (test zone search) have been proposed to reduce the computation. Still the huge computation of the motion estimation is a critical issue in the implementation of HEVC video codec. In this paper, motion estimator architecture with optimized number of PEs (processing element) is presented by exploiting early termination. It also reduces hardware size by exploiting parallel processing. The presented motion estimator architecture has 8 PEs, and it can efficiently perform TZS with very high utilization of PEs.

Keywords: motion estimation, test zone search, high efficiency video coding, processing element, optimization

Procedia PDF Downloads 337
4082 Human Posture Estimation Based on Multiple Viewpoints

Authors: Jiahe Liu, HongyangYu, Feng Qian, Miao Luo

Abstract:

This study aimed to address the problem of improving the confidence of key points by fusing multi-view information, thereby estimating human posture more accurately. We first obtained multi-view image information and then used the MvP algorithm to fuse this multi-view information together to obtain a set of high-confidence human key points. We used these as the input for the Spatio-Temporal Graph Convolution (ST-GCN). ST-GCN is a deep learning model used for processing spatio-temporal data, which can effectively capture spatio-temporal relationships in video sequences. By using the MvP algorithm to fuse multi-view information and inputting it into the spatio-temporal graph convolution model, this study provides an effective method to improve the accuracy of human posture estimation and provides strong support for further research and application in related fields.

Keywords: multi-view, pose estimation, ST-GCN, joint fusion

Procedia PDF Downloads 45
4081 Low Complexity Carrier Frequency Offset Estimation for Cooperative Orthogonal Frequency Division Multiplexing Communication Systems without Cyclic Prefix

Authors: Tsui-Tsai Lin

Abstract:

Cooperative orthogonal frequency division multiplexing (OFDM) transmission, which possesses the advantages of better connectivity, expanded coverage, and resistance to frequency selective fading, has been a more powerful solution for the physical layer in wireless communications. However, such a hybrid scheme suffers from the carrier frequency offset (CFO) effects inherited from the OFDM-based systems, which lead to a significant degradation in performance. In addition, insertion of a cyclic prefix (CP) at each symbol block head for combating inter-symbol interference will lead to a reduction in spectral efficiency. The design on the CFO estimation for the cooperative OFDM system without CP is a suspended problem. This motivates us to develop a low complexity CFO estimator for the cooperative OFDM decode-and-forward (DF) communication system without CP over the multipath fading channel. Especially, using a block-type pilot, the CFO estimation is first derived in accordance with the least square criterion. A reliable performance can be obtained through an exhaustive two-dimensional (2D) search with a penalty of heavy computational complexity. As a remedy, an alternative solution realized with an iteration approach is proposed for the CFO estimation. In contrast to the 2D-search estimator, the iterative method enjoys the advantage of the substantially reduced implementation complexity without sacrificing the estimate performance. Computer simulations have been presented to demonstrate the efficacy of the proposed CFO estimation.

Keywords: cooperative transmission, orthogonal frequency division multiplexing (OFDM), carrier frequency offset, iteration

Procedia PDF Downloads 249
4080 Practical Guide To Design Dynamic Block-Type Shallow Foundation Supporting Vibrating Machine

Authors: Dodi Ikhsanshaleh

Abstract:

When subjected to dynamic load, foundation oscillates in the way that depends on the soil behaviour, the geometry and inertia of the foundation and the dynamic exctation. The practical guideline to analysis block-type foundation excitated by dynamic load from vibrating machine is presented. The analysis use Lumped Mass Parameter Method to express dynamic properties such as stiffness and damping of soil. The numerical examples are performed on design block-type foundation supporting gas turbine compressor which is important equipment package in gas processing plant

Keywords: block foundation, dynamic load, lumped mass parameter

Procedia PDF Downloads 468
4079 Parameter Estimation of False Dynamic EIV Model with Additive Uncertainty

Authors: Dalvinder Kaur Mangal

Abstract:

For the past decade, noise corrupted output measurements have been a fundamental research problem to be investigated. On the other hand, the estimation of the parameters for linear dynamic systems when also the input is affected by noise is recognized as more difficult problem which only recently has received increasing attention. Representations where errors or measurement noises/disturbances are present on both the inputs and outputs are usually called errors-in-variables (EIV) models. These disturbances may also have additive effects which are also considered in this paper. Parameter estimation of false EIV problem using equation error, output error and iterative prefiltering identification schemes with and without additive uncertainty, when only the output observation is corrupted by noise has been dealt in this paper. The comparative study of these three schemes has also been carried out.

Keywords: errors-in-variable (EIV), false EIV, equation error, output error, iterative prefiltering, Gaussian noise

Procedia PDF Downloads 464
4078 Experimental and Analytical Studies for the Effect of Thickness and Axial Load on Load-Bearing Capacity of Fire-Damaged Concrete Walls

Authors: Yeo Kyeong Lee, Ji Yeon Kang, Eun Mi Ryu, Hee Sun Kim, Yeong Soo Shin

Abstract:

The objective of this paper is an investigation of the effects of the thickness and axial loading during a fire test on the load-bearing capacity of a fire-damaged normal-strength concrete wall. Two factors are attributed to the temperature distributions in the concrete members and are mainly obtained through numerous experiments. Toward this goal, three wall specimens of different thicknesses are heated for 2 h according to the ISO-standard heating curve, and the temperature distributions through the thicknesses are measured using thermocouples. In addition, two wall specimens are heated for 2 h while simultaneously being subjected to a constant axial loading at their top sections. The test results show that the temperature distribution during the fire test depends on wall thickness and axial load during the fire test. After the fire tests, the specimens are cured for one month, followed by the loading testing. The heated specimens are compared with three unheated specimens to investigate the residual load-bearing capacities. The fire-damaged walls show a minor difference of the load-bearing capacity regarding the axial loading, whereas a significant difference became evident regarding the wall thickness. To validate the experiment results, finite element models are generated for which the material properties that are obtained for the experiment are subject to elevated temperatures, and the analytical results show sound agreements with the experiment results. The analytical method based on validated thought experimental results is applied to generate the fire-damaged walls with 2,800 mm high considering the buckling effect: typical story height of residual buildings in Korea. The models for structural analyses generated to deformation shape after thermal analysis. The load-bearing capacity of the fire-damaged walls with pin supports at both ends does not significantly depend on the wall thickness, the reason for it is restraint of pinned ends. The difference of the load-bearing capacity of fire-damaged walls as axial load during the fire is within approximately 5 %.

Keywords: normal-strength concrete wall, wall thickness, axial-load ratio, slenderness ratio, fire test, residual strength, finite element analysis

Procedia PDF Downloads 200
4077 A Study on the Method of Accelerated Life Test to Electric Rotating System

Authors: Youn-Hwan Kim, Jae-Won Moon, Hae-Joong Kim

Abstract:

This paper introduces the study on the method of accelerated life test to electrical rotating system. In recent years, as well as efficiency for motors and generators, there is a growing need for research on the life expectancy. It is considered impossible to calculate the acceleration coefficient by increasing the rotational load or temperature load as the acceleration stress in the motor system because the temperature of the copper exceeds the wire thermal class rating. In this paper, the accelerated life test methods of the electrical rotating system are classified according to the application. This paper describes the development of the test procedure for the highly accelerated life test (HALT) of the 100kW permanent magnet synchronous motor (PMSM) of electric vehicle. Finally, it explains how to select acceleration load for vibration, temperature, bearing load, etc. for accelerated life test.

Keywords: acceleration coefficient, electric vehicle motor, HALT, life expectancy, vibration

Procedia PDF Downloads 303
4076 Mixed Effects Models for Short-Term Load Forecasting for the Spanish Regions: Castilla-Leon, Castilla-La Mancha and Andalucia

Authors: C. Senabre, S. Valero, M. Lopez, E. Velasco, M. Sanchez

Abstract:

This paper focuses on an application of linear mixed models to short-term load forecasting. The challenge of this research is to improve a currently working model at the Spanish Transport System Operator, programmed by us, and based on linear autoregressive techniques and neural networks. The forecasting system currently forecasts each of the regions within the Spanish grid separately, even though the behavior of the load in each region is affected by the same factors in a similar way. A load forecasting system has been verified in this work by using the real data from a utility. In this research it has been used an integration of several regions into a linear mixed model as starting point to obtain the information from other regions. Firstly, the systems to learn general behaviors present in all regions, and secondly, it is identified individual deviation in each regions. The technique can be especially useful when modeling the effect of special days with scarce information from the past. The three most relevant regions of the system have been used to test the model, focusing on special day and improving the performance of both currently working models used as benchmark. A range of comparisons with different forecasting models has been conducted. The forecasting results demonstrate the superiority of the proposed methodology.

Keywords: short-term load forecasting, mixed effects models, neural networks, mixed effects models

Procedia PDF Downloads 166
4075 Optimal Load Control Strategy in the Presence of Stochastically Dependent Renewable Energy Sources

Authors: Mahmoud M. Othman, Almoataz Y. Abdelaziz, Yasser G. Hegazy

Abstract:

This paper presents a load control strategy based on modification of the Big Bang Big Crunch optimization method. The proposed strategy aims to determine the optimal load to be controlled and the corresponding time of control in order to minimize the energy purchased from substation. The presented strategy helps the distribution network operator to rely on the renewable energy sources in supplying the system demand. The renewable energy sources used in the presented study are modeled using the diagonal band Copula method and sequential Monte Carlo method in order to accurately consider the multivariate stochastic dependence between wind power, photovoltaic power and the system demand. The proposed algorithms are implemented in MATLAB environment and tested on the IEEE 37-node feeder. Several case studies are done and the subsequent discussions show the effectiveness of the proposed algorithm.

Keywords: big bang big crunch, distributed generation, load control, optimization, planning

Procedia PDF Downloads 324
4074 Particle Filter State Estimation Algorithm Based on Improved Artificial Bee Colony Algorithm

Authors: Guangyuan Zhao, Nan Huang, Xuesong Han, Xu Huang

Abstract:

In order to solve the problem of sample dilution in the traditional particle filter algorithm and achieve accurate state estimation in a nonlinear system, a particle filter method based on an improved artificial bee colony (ABC) algorithm was proposed. The algorithm simulated the process of bee foraging and optimization and made the high likelihood region of the backward probability of particles moving to improve the rationality of particle distribution. The opposition-based learning (OBL) strategy is introduced to optimize the initial population of the artificial bee colony algorithm. The convergence factor is introduced into the neighborhood search strategy to limit the search range and improve the convergence speed. Finally, the crossover and mutation operations of the genetic algorithm are introduced into the search mechanism of the following bee, which makes the algorithm jump out of the local extreme value quickly and continue to search the global extreme value to improve its optimization ability. The simulation results show that the improved method can improve the estimation accuracy of particle filters, ensure the diversity of particles, and improve the rationality of particle distribution.

Keywords: particle filter, impoverishment, state estimation, artificial bee colony algorithm

Procedia PDF Downloads 119
4073 Component Test of Martensitic/Ferritic Steels and Nickel-Based Alloys and Their Welded Joints under Creep and Thermo-Mechanical Fatigue Loading

Authors: Daniel Osorio, Andreas Klenk, Stefan Weihe, Andreas Kopp, Frank Rödiger

Abstract:

Future power plants currently face high design requirements due to worsening climate change and environmental restrictions, which demand high operational flexibility, superior thermal performance, minimal emissions, and higher cyclic capability. The aim of the paper is, therefore, to investigate the creep and thermo-mechanical material behavior of improved materials experimentally and welded joints at component scale under near-to-service operating conditions, which are promising for application in highly efficient and flexible future power plants. These materials promise an increase in flexibility and a reduction in manufacturing costs by providing enhanced creep strength and, therefore, the possibility for wall thickness reduction. At the temperature range between 550°C and 625°C, the investigation focuses on the in-phase thermo-mechanical fatigue behavior of dissimilar welded joints of conventional materials (ferritic and martensitic material T24 and T92) to nickel-based alloys (A617B and HR6W) by means of membrane test panels. The temperature and external load are varied in phase during the test, while the internal pressure remains constant. At the temperature range between 650°C and 750°C, it focuses on the creep behavior under multiaxial stress loading of similar and dissimilar welded joints of high temperature resistant nickel-based alloys (A740H, A617B, and HR6W) by means of a thick-walled-component test. In this case, the temperature, the external axial load, and the internal pressure remain constant during testing. Numerical simulations are used for the estimation of the axial component load in order to induce a meaningful damage evolution without causing a total component failure. Metallographic investigations after testing will provide support for understanding the damage mechanism and the influence of the thermo-mechanical load and multiaxiality on the microstructure change and on the creep and TMF- strength.

Keywords: creep, creep-fatigue, component behaviour, weld joints, high temperature material behaviour, nickel-alloys, high temperature resistant steels

Procedia PDF Downloads 99
4072 Assessing the Impacts of Riparian Land Use on Gully Development and Sediment Load: A Case Study of Nzhelele River Valley, Limpopo Province, South Africa

Authors: B. Mavhuru, N. S. Nethengwe

Abstract:

Human activities on land degradation have triggered several environmental problems especially in rural areas that are underdeveloped. The main aim of this study is to analyze the contribution of different land uses to gully development and sediment load on the Nzhelele River Valley in the Limpopo Province. Data was collected using different methods such as observation, field data techniques and experiments. Satellite digital images, topographic maps, aerial photographs and the sediment load static model also assisted in determining how land use affects gully development and sediment load. For data analysis, the researcher used the following methods: Analysis of Variance (ANOVA), descriptive statistics, Pearson correlation coefficient and statistical correlation methods. The results of the research illustrate that high land use activities create negative changes especially in areas that are highly fragile and vulnerable. Distinct impact on land use change was observed within settlement area (9.6 %) within a period of 5 years. High correlation between soil organic matter and soil moisture (R=0.96) was observed. Furthermore, a significant variation (p ≤ 0.6) between the soil organic matter and soil moisture was also observed. A very significant variation (p ≤ 0.003) was observed in bulk density and extreme significant variations (p ≤ 0.0001) were observed in organic matter and soil particle size. The sand mining and agricultural activities has contributed significantly to the amount of sediment load in the Nzhelele River. A high significant amount of total suspended sediment (55.3 %) and bed load (53.8 %) was observed within the agricultural area. The connection which associates the development of gullies to various land use activities determines the amount of sediment load. These results are consistent with other previous research and suggest that land use activities are likely to exacerbate the development of gullies and sediment load in the Nzhelele River Valley.

Keywords: drainage basin, geomorphological processes, gully development, land degradation, riparian land use and sediment load

Procedia PDF Downloads 280
4071 A Systematic Review on Development of a Cost Estimation Framework: A Case Study of Nigeria

Authors: Babatunde Dosumu, Obuks Ejohwomu, Akilu Yunusa-Kaltungo

Abstract:

Cost estimation in construction is often difficult, particularly when dealing with risks and uncertainties, which are inevitable and peculiar to developing countries like Nigeria. Direct consequences of these are major deviations in cost, duration, and quality. The fundamental aim of this study is to develop a framework for assessing the impacts of risk on cost estimation, which in turn causes variabilities between contract sum and final account. This is very important, as initial estimates given to clients should reflect the certain magnitude of consistency and accuracy, which the client builds other planning-related activities upon, and also enhance the capabilities of construction industry professionals by enabling better prediction of the final account from the contract sum. In achieving this, a systematic literature review was conducted with cost variability and construction projects as search string within three databases: Scopus, Web of science, and Ebsco (Business source premium), which are further analyzed and gap(s) in knowledge or research discovered. From the extensive review, it was found that factors causing deviation between final accounts and contract sum ranged between 1 and 45. Besides, it was discovered that a cost estimation framework similar to Building Cost Information Services (BCIS) is unavailable in Nigeria, which is a major reason why initial estimates are very often inconsistent, leading to project delay, abandonment, or determination at the expense of the huge sum of money invested. It was concluded that the development of a cost estimation framework that is adjudged an important tool in risk shedding rather than risk-sharing in project risk management would be a panacea to cost estimation problems, leading to cost variability in the Nigerian construction industry by the time this ongoing Ph.D. research is completed. It was recommended that practitioners in the construction industry should always take into account risk in order to facilitate the rapid development of the construction industry in Nigeria, which should give stakeholders a more in-depth understanding of the estimation effectiveness and efficiency to be adopted by stakeholders in both the private and public sectors.

Keywords: cost variability, construction projects, future studies, Nigeria

Procedia PDF Downloads 174
4070 Overview of Different Approaches Used in Optimal Operation Control of Hybrid Renewable Energy Systems

Authors: K. Kusakana

Abstract:

A hybrid energy system is a combination of renewable energy sources with back up, as well as a storage system used to respond to given load energy requirements. Given that the electrical output of each renewable source is fluctuating with changes in weather conditions, and since the load demand also varies with time; one of the main attributes of hybrid systems is to be able to respond to the load demand at any time by optimally controlling each energy source, storage and back-up system. The induced optimization problem is to compute the optimal operation control of the system with the aim of minimizing operation costs while efficiently and reliably responding to the load energy requirement. Current optimization research and development on hybrid systems are mainly focusing on the sizing aspect. Thus, the aim of this paper is to report on the state-of-the-art of optimal operation control of hybrid renewable energy systems. This paper also discusses different challenges encountered, as well as future developments that can help in improving the optimal operation control of hybrid renewable energy systems.

Keywords: renewable energies, hybrid systems, optimization, operation control

Procedia PDF Downloads 357
4069 Influence of Local Soil Conditions on Optimal Load Factors for Seismic Design of Buildings

Authors: Miguel A. Orellana, Sonia E. Ruiz, Juan Bojórquez

Abstract:

Optimal load factors (dead, live and seismic) used for the design of buildings may be different, depending of the seismic ground motion characteristics to which they are subjected, which are closely related to the type of soil conditions where the structures are located. The influence of the type of soil on those load factors, is analyzed in the present study. A methodology that is useful for establishing optimal load factors that minimize the cost over the life cycle of the structure is employed; and as a restriction, it is established that the probability of structural failure must be less than or equal to a prescribed value. The life-cycle cost model used here includes different types of costs. The optimization methodology is applied to two groups of reinforced concrete buildings. One set (consisting on 4-, 7-, and 10-story buildings) is located on firm ground (with a dominant period Ts=0.5 s) and the other (consisting on 6-, 12-, and 16-story buildings) on soft soil (Ts=1.5 s) of Mexico City. Each group of buildings is designed using different combinations of load factors. The statistics of the maximums inter-story drifts (associated with the structural capacity) are found by means of incremental dynamic analyses. The buildings located on firm zone are analyzed under the action of 10 strong seismic records, and those on soft zone, under 13 strong ground motions. All the motions correspond to seismic subduction events with magnitudes M=6.9. Then, the structural damage and the expected total costs, corresponding to each group of buildings, are estimated. It is concluded that the optimal load factors combination is different for the design of buildings located on firm ground than that for buildings located on soft soil.

Keywords: life-cycle cost, optimal load factors, reinforced concrete buildings, total costs, type of soil

Procedia PDF Downloads 287
4068 Determination of Parasitic Load in Different Tissues of Murine Toxoplasmosis after Immunization by Excretory-Secretory Antigens using Real Time QPCR

Authors: Ahmad Daryani, Yousef Dadimoghaddam, Mehdi Sharif, Ehsan Ahmadpour, Shahabeddin Sarvi, Baghar Hashemi

Abstract:

Background: Excretory-secretory antigens (ESAs) of Toxoplasma gondii are one of the candidates for immunization against toxoplasmosis. For evaluation of immunization, we determined the kinetics of the distribution of Toxoplasma and parasite load in different tissues of mice immunized by ESAs. Methods: In this experimental study, 36 mice in case (n= 18) and control (n= 18) groups were immunized with ESAs and PBS, respectively. After 2 weeks, mice were challenged intraperitoneally with Toxoplasma virulent RH strain. Blood and different tissues (brain, spleen, liver, heart, kidney, and muscle) were collected daily after challenge (1, 2, 3 and last day before death). Parasite load was calculated using Real time QPCR targeted at the B1 gene. Results: ESAs as vaccine in different tissues showed various effects. However, infected mice which received the vaccine in comparison with control group, displayed a drastically decreasing in parasite burden, in their blood and tissues (P= 0.000). Conclusion: These results indicated that ESAs with reduction of parasite load in different tissues of host could be evaluable candidate for the development of immunization strategies against toxoplasmosis.

Keywords: parasitic load, murine toxoplasmosis, immunization, excretory-secretory antigens, real time QPCR

Procedia PDF Downloads 421
4067 An Ergonomic Evaluation of Three Load Carriage Systems for Reducing Muscle Activity of Trunk and Lower Extremities during Giant Puppet Performing Tasks

Authors: Cathy SW. Chow, Kristina Shin, Faming Wang, B. C. L. So

Abstract:

During some dynamic giant puppet performances, an ergonomically designed load carrier system is necessary for the puppeteers to carry a giant puppet body’s heavy load with minimum muscle stress. A load carrier (i.e. prototype) was designed with two small wheels on the foot; and a hybrid spring device on the knee in order to assist the sliding and knee bending movements respectively. Thus, the purpose of this study was to evaluate the effect of three load carriers including two other commercially available load mounting systems, Tepex and SuitX, and the prototype. Ten male participants were recruited for the experiment. Surface electromyography (sEMG) was used to collect the participants’ muscle activities during forward moving and bouncing and with and without load of 11.1 kg that was 60 cm above the shoulder. Five bilateral muscles including the lumbar erector spinae (LES), rectus femoris (RF), bicep femoris (BF), tibialis anterior (TA), and gastrocnemius (GM) were selected for data collection. During forward moving task, the sEMG data showed smallest muscle activities by Tepex harness which exhibited consistently the lowest, compared with the prototype and SuitX which were significantly higher on left LES 68.99% and 64.99%, right LES 26.57% and 82.45%; left RF 87.71% and 47.61%, right RF 143.57% and 24.28%; left BF 80.21% and 22.23%, right BF 96.02% and 21.83%; right TA 6.32% and 4.47%; left GM 5.89% and 12.35% respectively. The result above reflected mobility was highly restricted by tested exoskeleton devices. On the other hand, the sEMG data from bouncing task showed the smallest muscle activities by prototype which exhibited consistently the lowest, compared with the Tepex harness and SuitX which were significantly lower on lLES 6.65% and 104.93, rLES 23.56% and 92.19%; lBF 33.21% and 93.26% and rBF 24.70% and 81.16%; lTA 46.51% and 191.02%; rTA 12.75% and 125.76%; IGM 31.54% and 68.36%; rGM 95.95% and 96.43% respectively.

Keywords: exoskeleton, giant puppet performers, load carriage system, surface electromyography

Procedia PDF Downloads 83
4066 Influential Parameters in Estimating Soil Properties from Cone Penetrating Test: An Artificial Neural Network Study

Authors: Ahmed G. Mahgoub, Dahlia H. Hafez, Mostafa A. Abu Kiefa

Abstract:

The Cone Penetration Test (CPT) is a common in-situ test which generally investigates a much greater volume of soil more quickly than possible from sampling and laboratory tests. Therefore, it has the potential to realize both cost savings and assessment of soil properties rapidly and continuously. The principle objective of this paper is to demonstrate the feasibility and efficiency of using artificial neural networks (ANNs) to predict the soil angle of internal friction (Φ) and the soil modulus of elasticity (E) from CPT results considering the uncertainties and non-linearities of the soil. In addition, ANNs are used to study the influence of different parameters and recommend which parameters should be included as input parameters to improve the prediction. Neural networks discover relationships in the input data sets through the iterative presentation of the data and intrinsic mapping characteristics of neural topologies. General Regression Neural Network (GRNN) is one of the powerful neural network architectures which is utilized in this study. A large amount of field and experimental data including CPT results, plate load tests, direct shear box, grain size distribution and calculated data of overburden pressure was obtained from a large project in the United Arab Emirates. This data was used for the training and the validation of the neural network. A comparison was made between the obtained results from the ANN's approach, and some common traditional correlations that predict Φ and E from CPT results with respect to the actual results of the collected data. The results show that the ANN is a very powerful tool. Very good agreement was obtained between estimated results from ANN and actual measured results with comparison to other correlations available in the literature. The study recommends some easily available parameters that should be included in the estimation of the soil properties to improve the prediction models. It is shown that the use of friction ration in the estimation of Φ and the use of fines content in the estimation of E considerable improve the prediction models.

Keywords: angle of internal friction, cone penetrating test, general regression neural network, soil modulus of elasticity

Procedia PDF Downloads 402
4065 Numerical Buckling of Composite Cylindrical Shells under Axial Compression Using Asymmetric Meshing Technique (AMT)

Authors: Zia R. Tahir, P. Mandal

Abstract:

This paper presents the details of a numerical study of buckling and post buckling behaviour of laminated carbon fiber reinforced plastic (CFRP) thin-walled cylindrical shell under axial compression using asymmetric meshing technique (AMT) by ABAQUS. AMT is considered to be a new perturbation method to introduce disturbance without changing geometry, boundary conditions or loading conditions. Asymmetric meshing affects both predicted buckling load and buckling mode shapes. Cylindrical shell having lay-up orientation [0°/+45°/-45°/0°] with radius to thickness ratio (R/t) equal to 265 and length to radius ratio (L/R) equal to 1.5 is analysed numerically. A series of numerical simulations (experiments) are carried out with symmetric and asymmetric meshing to study the effect of asymmetric meshing on predicted buckling behaviour. Asymmetric meshing technique is employed in both axial direction and circumferential direction separately using two different methods, first by changing the shell element size and varying the total number elements, and second by varying the shell element size and keeping total number of elements constant. The results of linear analysis (Eigenvalue analysis) and non-linear analysis (Riks analysis) using symmetric meshing agree well with analytical results. The results of numerical analysis are presented in form of non-dimensional load factor, which is the ratio of buckling load using asymmetric meshing technique to buckling load using symmetric meshing technique. Using AMT, load factor has about 2% variation for linear eigenvalue analysis and about 2% variation for non-linear Riks analysis. The behaviour of load end-shortening curve for pre-buckling is same for both symmetric and asymmetric meshing but for asymmetric meshing curve behaviour in post-buckling becomes extraordinarily complex. The major conclusions are: different methods of AMT have small influence on predicted buckling load and significant influence on load displacement curve behaviour in post buckling; AMT in axial direction and AMT in circumferential direction have different influence on buckling load and load displacement curve in post-buckling.

Keywords: CFRP composite cylindrical shell, asymmetric meshing technique, primary buckling, secondary buckling, linear eigenvalue analysis, non-linear riks analysis

Procedia PDF Downloads 333
4064 Allostatic Load as a Predictor of Adolescents’ Executive Function: A Longitudinal Network Analysis

Authors: Sipu Guo, Silin Huang

Abstract:

Background: Most studies investigate the link between executive function and allostatic load (AL) among adults aged 18 years and older. Studies differed regarding the specific biological indicators studied and executive functions accounted for. Specific executive functions may be differentially related to allostatic load. We investigated the comorbidities of executive functions and allostatic load via network analysis. Methods: We included 603 adolescents (49.84% girls; Mean age = 12.38, SD age = 1.79) from junior high school in rural China. Eight biological markers at T1 and four executive function tasks at T2 were used to evaluate networks. Network analysis was used to determine the network structure, core symptoms, and bridge symptoms in the AL-executive function network among rural adolescents. Results: The executive functions were related to 6 AL biological markers, not to cortisol and epinephrine. The most influential symptoms were inhibition control, cognitive flexibility, processing speed, and systolic blood pressure (SBP). SBP, dehydroepiandrosterone, and processing speed were the bridges through which AL was related to executive functions. dehydroepiandrosterone strongly predicted processing speed. The SBP was the biggest influencer in the entire network. Conclusions: We found evidence for differential relations between markers and executive functions. SBP was a driver in the network; dehydroepiandrosterone showed strong relations with executive function.

Keywords: allostatic load, executive function, network analysis, rural adolescent

Procedia PDF Downloads 32
4063 A Quantification Method of Attractiveness of Stations and an Estimation Method of Number of Passengers Taking into Consideration the Attractiveness of the Station

Authors: Naoya Ozaki, Takuya Watanabe, Ryosuke Matsumoto, Noriko Fukasawa

Abstract:

In the metropolitan areas in Japan, in many stations, shopping areas are set up, and escalators and elevators are installed to make the stations be barrier-free. Further, many areas around the stations are being redeveloped. Railway business operators want to know how much effect these circumstances have on attractiveness of the station or number of passengers using the station. So, we performed a questionnaire survey of the station users in the metropolitan areas for finding factors to affect the attractiveness of stations. Then, based on the analysis of the survey, we developed a method to quantitatively evaluate attractiveness of the stations. We also developed an estimation method for number of passengers based on combination of attractiveness of the station quantitatively evaluated and the residential and labor population around the station. Then, we derived precise linear regression models estimating the attractiveness of the station and number of passengers of the station.

Keywords: attractiveness of the station, estimation method, number of passengers of the station, redevelopment around the station, renovation of the station

Procedia PDF Downloads 269
4062 Comparison of Methods of Estimation for Use in Goodness of Fit Tests for Binary Multilevel Models

Authors: I. V. Pinto, M. R. Sooriyarachchi

Abstract:

It can be frequently observed that the data arising in our environment have a hierarchical or a nested structure attached with the data. Multilevel modelling is a modern approach to handle this kind of data. When multilevel modelling is combined with a binary response, the estimation methods get complex in nature and the usual techniques are derived from quasi-likelihood method. The estimation methods which are compared in this study are, marginal quasi-likelihood (order 1 & order 2) (MQL1, MQL2) and penalized quasi-likelihood (order 1 & order 2) (PQL1, PQL2). A statistical model is of no use if it does not reflect the given dataset. Therefore, checking the adequacy of the fitted model through a goodness-of-fit (GOF) test is an essential stage in any modelling procedure. However, prior to usage, it is also equally important to confirm that the GOF test performs well and is suitable for the given model. This study assesses the suitability of the GOF test developed for binary response multilevel models with respect to the method used in model estimation. An extensive set of simulations was conducted using MLwiN (v 2.19) with varying number of clusters, cluster sizes and intra cluster correlations. The test maintained the desirable Type-I error for models estimated using PQL2 and it failed for almost all the combinations of MQL. Power of the test was adequate for most of the combinations in all estimation methods except MQL1. Moreover, models were fitted using the four methods to a real-life dataset and performance of the test was compared for each model.

Keywords: goodness-of-fit test, marginal quasi-likelihood, multilevel modelling, penalized quasi-likelihood, power, quasi-likelihood, type-I error

Procedia PDF Downloads 123
4061 Design and Performance Analysis of Resource Management Algorithms in Response to Emergency and Disaster Situations

Authors: Volkan Uygun, H. Birkan Yilmaz, Tuna Tugcu

Abstract:

This study focuses on the development and use of algorithms that address the issue of resource management in response to emergency and disaster situations. The presented system, named Disaster Management Platform (DMP), takes the data from the data sources of service providers and distributes the incoming requests accordingly both to manage load balancing and minimize service time, which results in improved user satisfaction. Three different resource management algorithms, which give different levels of importance to load balancing and service time, are proposed for the study. The first one is the Minimum Distance algorithm, which assigns the request to the closest resource. The second one is the Minimum Load algorithm, which assigns the request to the resource with the minimum load. Finally, the last one is the Hybrid algorithm, which combines the previous two approaches. The performance of the proposed algorithms is evaluated with respect to waiting time, success ratio, and maximum load ratio. The metrics are monitored from simulations, to find the optimal scheme for different loads. Two different simulations are performed in the study, one is time-based and the other is lambda-based. The results indicate that, the Minimum Load algorithm is generally the best in all metrics whereas the Minimum Distance algorithm is the worst in all cases and in all metrics. The leading position in performance is switched between the Minimum Distance and the Hybrid algorithms, as lambda values change.

Keywords: emergency and disaster response, resource management algorithm, disaster situations, disaster management platform

Procedia PDF Downloads 322
4060 Hybrid Bee Ant Colony Algorithm for Effective Load Balancing and Job Scheduling in Cloud Computing

Authors: Thomas Yeboah

Abstract:

Cloud Computing is newly paradigm in computing that promises a delivery of computing as a service rather than a product, whereby shared resources, software, and information are provided to computers and other devices as a utility (like the electricity grid) over a network (typically the Internet). As Cloud Computing is a newly style of computing on the internet. It has many merits along with some crucial issues that need to be resolved in order to improve reliability of cloud environment. These issues are related with the load balancing, fault tolerance and different security issues in cloud environment.In this paper the main concern is to develop an effective load balancing algorithm that gives satisfactory performance to both, cloud users and providers. This proposed algorithm (hybrid Bee Ant Colony algorithm) is a combination of two dynamic algorithms: Ant Colony Optimization and Bees Life algorithm. Ant Colony algorithm is used in this hybrid Bee Ant Colony algorithm to solve load balancing issues whiles the Bees Life algorithm is used for optimization of job scheduling in cloud environment. The results of the proposed algorithm shows that the hybrid Bee Ant Colony algorithm outperforms the performances of both Ant Colony algorithm and Bees Life algorithm when evaluated the proposed algorithm performances in terms of Waiting time and Response time on a simulator called CloudSim.

Keywords: ant colony optimization algorithm, bees life algorithm, scheduling algorithm, performance, cloud computing, load balancing

Procedia PDF Downloads 602
4059 Home Legacy Device Output Estimation Using Temperature and Humidity Information by Adaptive Neural Fuzzy Inference System

Authors: Sung Hyun Yoo, In Hwan Choi, Jun Ho Jung, Choon Ki Ahn, Myo Taeg Lim

Abstract:

Home energy management system (HEMS) has been issued to reduce the power consumption. The HEMS performs electric power control for the indoor electric device. However, HEMS commonly treats the smart devices. In this paper, we suggest the output estimation of home legacy device using the artificial neural fuzzy inference system (ANFIS). This paper discusses the overview and the architecture of the system. In addition, accurate performance of the output estimation using the ANFIS inference system is shown via a numerical example.

Keywords: artificial neural fuzzy inference system (ANFIS), home energy management system (HEMS), smart device, legacy device

Procedia PDF Downloads 523
4058 A Bayesian Multivariate Microeconometric Model for Estimation of Price Elasticity of Demand

Authors: Jefferson Hernandez, Juan Padilla

Abstract:

Estimation of price elasticity of demand is a valuable tool for the task of price settling. Given its relevance, it is an active field for microeconomic and statistical research. Price elasticity in the industry of oil and gas, in particular for fuels sold in gas stations, has shown to be a challenging topic given the market and state restrictions, and underlying correlations structures between the types of fuels sold by the same gas station. This paper explores the Lotka-Volterra model for the problem for price elasticity estimation in the context of fuels; in addition, it is introduced multivariate random effects with the purpose of dealing with errors, e.g., measurement or missing data errors. In order to model the underlying correlation structures, the Inverse-Wishart, Hierarchical Half-t and LKJ distributions are studied. Here, the Bayesian paradigm through Markov Chain Monte Carlo (MCMC) algorithms for model estimation is considered. Simulation studies covering a wide range of situations were performed in order to evaluate parameter recovery for the proposed models and algorithms. Results revealed that the proposed algorithms recovered quite well all model parameters. Also, a real data set analysis was performed in order to illustrate the proposed approach.

Keywords: price elasticity, volume, correlation structures, Bayesian models

Procedia PDF Downloads 136
4057 Development of a Shape Based Estimation Technology Using Terrestrial Laser Scanning

Authors: Gichun Cha, Byoungjoon Yu, Jihwan Park, Minsoo Park, Junghyun Im, Sehwan Park, Sujung Sin, Seunghee Park

Abstract:

The goal of this research is to estimate a structural shape change using terrestrial laser scanning. This study proceeds with development of data reduction and shape change estimation algorithm for large-capacity scan data. The point cloud of scan data was converted to voxel and sampled. Technique of shape estimation is studied to detect changes in structure patterns, such as skyscrapers, bridges, and tunnels based on large point cloud data. The point cloud analysis applies the octree data structure to speed up the post-processing process for change detection. The point cloud data is the relative representative value of shape information, and it used as a model for detecting point cloud changes in a data structure. Shape estimation model is to develop a technology that can detect not only normal but also immediate structural changes in the event of disasters such as earthquakes, typhoons, and fires, thereby preventing major accidents caused by aging and disasters. The study will be expected to improve the efficiency of structural health monitoring and maintenance.

Keywords: terrestrial laser scanning, point cloud, shape information model, displacement measurement

Procedia PDF Downloads 211
4056 Performance Analysis of Domotics System as Real-Time Non-Intrusive Load Monitoring

Authors: Dauda A. Oladosu, Kamorudeen A Olaiya, Abdurahman Bello

Abstract:

The deployment of smart meters by utility providers to gather fine grained spatiotemporal consumption data has grossly influenced the consumers’ emotion and behavior towards energy utilization. The quest for reduction in power consumption is now a subject of concern and one the methods adopted by the consumers to achieve this is Non-intrusive Load (appliance) Monitoring. Hence, this work presents performance Analysis of Domotics System as a tool for load monitoring when integrated with Consumer Control Unit of residential building. The system was developed with basic elements which enhance remote sensing, DTMF (Dual Tone Multi-frequency) recognition and cryptic messaging when specific task was performed. To demonstrate its applicability and suitability, this prototype was used consistently for six months at different load demands and the utilities consumed were documented. The results obtained shows good response when phone dialed, and the packet delivery of feedback SMS was quite satisfactory, making the implemented system to be of good quality with affordable cost and performs the desired functions. Besides, comparative analysis showed notable reduction in energy consumption and invariably lessened electrical bill of the consumer.

Keywords: automation, domotics, energy, load, remote, schedule

Procedia PDF Downloads 297