Search results for: line recognition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4259

Search results for: line recognition

3959 Using Optical Character Recognition to Manage the Unstructured Disaster Data into Smart Disaster Management System

Authors: Dong Seop Lee, Byung Sik Kim

Abstract:

In the 4th Industrial Revolution, various intelligent technologies have been developed in many fields. These artificial intelligence technologies are applied in various services, including disaster management. Disaster information management does not just support disaster work, but it is also the foundation of smart disaster management. Furthermore, it gets historical disaster information using artificial intelligence technology. Disaster information is one of important elements of entire disaster cycle. Disaster information management refers to the act of managing and processing electronic data about disaster cycle from its’ occurrence to progress, response, and plan. However, information about status control, response, recovery from natural and social disaster events, etc. is mainly managed in the structured and unstructured form of reports. Those exist as handouts or hard-copies of reports. Such unstructured form of data is often lost or destroyed due to inefficient management. It is necessary to manage unstructured data for disaster information. In this paper, the Optical Character Recognition approach is used to convert handout, hard-copies, images or reports, which is printed or generated by scanners, etc. into electronic documents. Following that, the converted disaster data is organized into the disaster code system as disaster information. Those data are stored in the disaster database system. Gathering and creating disaster information based on Optical Character Recognition for unstructured data is important element as realm of the smart disaster management. In this paper, Korean characters were improved to over 90% character recognition rate by using upgraded OCR. In the case of character recognition, the recognition rate depends on the fonts, size, and special symbols of character. We improved it through the machine learning algorithm. These converted structured data is managed in a standardized disaster information form connected with the disaster code system. The disaster code system is covered that the structured information is stored and retrieve on entire disaster cycle such as historical disaster progress, damages, response, and recovery. The expected effect of this research will be able to apply it to smart disaster management and decision making by combining artificial intelligence technologies and historical big data.

Keywords: disaster information management, unstructured data, optical character recognition, machine learning

Procedia PDF Downloads 129
3958 Gene Names Identity Recognition Using Siamese Network for Biomedical Publications

Authors: Micheal Olaolu Arowolo, Muhammad Azam, Fei He, Mihail Popescu, Dong Xu

Abstract:

As the quantity of biological articles rises, so does the number of biological route figures. Each route figure shows gene names and relationships. Annotating pathway diagrams manually is time-consuming. Advanced image understanding models could speed up curation, but they must be more precise. There is rich information in biological pathway figures. The first step to performing image understanding of these figures is to recognize gene names automatically. Classical optical character recognition methods have been employed for gene name recognition, but they are not optimized for literature mining data. This study devised a method to recognize an image bounding box of gene name as a photo using deep Siamese neural network models to outperform the existing methods using ResNet, DenseNet and Inception architectures, the results obtained about 84% accuracy.

Keywords: biological pathway, gene identification, object detection, Siamese network

Procedia PDF Downloads 292
3957 All Solution-Processed Organic Light Emitting Diode with Low Melting Point Alloy Encapsulation

Authors: Geon Bae, Cheol Hee Moon

Abstract:

Organic Light Emitting Diodes (OLEDs) are being developed rapidly as next-generation displays due to their self-luminous and flexible characteristics. OLEDs are highly susceptible to moisture and oxygen due to their structural properties. Thus, requiring a high level of encapsulation technology. Recently, encapsulation technology such as Thin Film Encapsulation (TFE) has been developed for OLED, but it is not perfect to prevent moisture permeation on the side. In this study, we propose OLED encapsulation method using Low melting Point Alloy (LMPA). The LMPA line was designed in square box shape on the outer edge of the device and was formed by screen printing method. To determine if LMPA has an effect on OLED, we fabricated solution processed OLEDs with a square-shaped LMPA line and evaluate the I-V-L characteristics of the OLEDs. Also, the resistance characteristic of the LMPA line was observed by repeatedly bending the LMPA line. It is expected that LMPA encapsulation will have a great advantage in shortening the process time and cost reduction.

Keywords: OLED, encapsulation, LMPA, solution process

Procedia PDF Downloads 246
3956 Features Dimensionality Reduction and Multi-Dimensional Voice-Processing Program to Parkinson Disease Discrimination

Authors: Djamila Meghraoui, Bachir Boudraa, Thouraya Meksen, M.Boudraa

Abstract:

Parkinson's disease is a pathology that involves characteristic perturbations in patients’ voices. This paper describes a proposed method that aims to diagnose persons with Parkinson (PWP) by analyzing on line their voices signals. First, Thresholds signals alterations are determined by the Multi-Dimensional Voice Program (MDVP). Principal Analysis (PCA) is exploited to select the main voice principal componentsthat are significantly affected in a patient. The decision phase is realized by a Mul-tinomial Bayes (MNB) Classifier that categorizes an analyzed voice in one of the two resulting classes: healthy or PWP. The prediction accuracy achieved reaching 98.8% is very promising.

Keywords: Parkinson’s disease recognition, PCA, MDVP, multinomial Naive Bayes

Procedia PDF Downloads 278
3955 Requirement Engineering and Software Product Line Scoping Paradigm

Authors: Ahmed Mateen, Zhu Qingsheng, Faisal Shahzad

Abstract:

Requirement Engineering (RE) is a part being created for programming structure during the software development lifecycle. Software product line development is a new topic area within the domain of software engineering. It also plays important role in decision making and it is ultimately helpful in rising business environment for productive programming headway. Decisions are central to engineering processes and they hold them together. It is argued that better decisions will lead to better engineering. To achieve better decisions requires that they are understood in detail. In order to address the issues, companies are moving towards Software Product Line Engineering (SPLE) which helps in providing large varieties of products with minimum development effort and cost. This paper proposed a new framework for software product line and compared with other models. The results can help to understand the needs in SPL testing, by identifying points that still require additional investigation. In our future scenario, we will combine this model in a controlled environment with industrial SPL projects which will be the new horizon for SPL process management testing strategies.

Keywords: requirements engineering, software product lines, scoping, process structure, domain specific language

Procedia PDF Downloads 225
3954 The Influence of Job Recognition and Job Motivation on Organizational Commitment in Public Sector: The Mediation Role of Employee Engagement

Authors: Muhammad Tayyab, Saba Saira

Abstract:

It is an established fact that organizations across the globe consider employees as their assets and try to advance their well-being. However, the local firms of developing countries are mostly profit oriented and do not have much concern about their employees’ engagement or commitment. Like other developing countries, the local organizations of Pakistan are also less concerned about the well-being of their employees. Especially public sector organizations lack concern regarding engagement, satisfaction or commitment of the employees. Therefore, this study aimed at investigating the impact of job recognition and job motivation on organizational commitment in the mediation role of employee engagement. The data were collected from land record officers of board of revenue, Punjab, Pakistan. Structured questionnaire was used to collect data through physically visiting land record officers and also through the internet. A total of 318 land record officers’ responses were finalized to perform data analysis. The data were analyzed through confirmatory factor analysis and structural equation modeling technique. The findings revealed that job recognition and job motivation have direct as well as indirect positive and significant impact on organizational commitment. The limitations, practical implications and future research indications are also explained.

Keywords: job motivation, job recognition, employee engagement, employee commitment, public sector, land record officers

Procedia PDF Downloads 132
3953 Adaptation of Projection Profile Algorithm for Skewed Handwritten Text Line Detection

Authors: Kayode A. Olaniyi, Tola. M. Osifeko, Adeola A. Ogunleye

Abstract:

Text line segmentation is an important step in document image processing. It represents a labeling process that assigns the same label using distance metric probability to spatially aligned units. Text line detection techniques have successfully been implemented mainly in printed documents. However, processing of the handwritten texts especially unconstrained documents has remained a key problem. This is because the unconstrained hand-written text lines are often not uniformly skewed. The spaces between text lines may not be obvious, complicated by the nature of handwriting and, overlapping ascenders and/or descenders of some characters. Hence, text lines detection and segmentation represents a leading challenge in handwritten document image processing. Text line detection methods that rely on the traditional global projection profile of the text document cannot efficiently confront with the problem of variable skew angles between different text lines. Hence, the formulation of a horizontal line as a separator is often not efficient. This paper presents a technique to segment a handwritten document into distinct lines of text. The proposed algorithm starts, by partitioning the initial text image into columns, across its width into chunks of about 5% each. At each vertical strip of 5%, the histogram of horizontal runs is projected. We have worked with the assumption that text appearing in a single strip is almost parallel to each other. The algorithm developed provides a sliding window through the first vertical strip on the left side of the page. It runs through to identify the new minimum corresponding to a valley in the projection profile. Each valley would represent the starting point of the orientation line and the ending point is the minimum point on the projection profile of the next vertical strip. The derived text-lines traverse around any obstructing handwritten vertical strips of connected component by associating it to either the line above or below. A decision of associating such connected component is made by the probability obtained from a distance metric decision. The technique outperforms the global projection profile for text line segmentation and it is robust to handle skewed documents and those with lines running into each other.

Keywords: connected-component, projection-profile, segmentation, text-line

Procedia PDF Downloads 124
3952 Examining the Change of Power Transmission Line in Urban Regeneration with Geographical Information System

Authors: C. Yagci, F. Iscan

Abstract:

In this study, spatial differences of Power Transmission Line (PTL) and effects of the situation before and after the urban regeneration are studied by using Geographical Information System (GIS). In addition, a questionable and analyzable structure is acquired by developed system. In the study area many parcels on the PTL were analyzed. The amount of the parcels, which are affected by the negativity of PTL is clearly seen with the aid of generated maps. Some kind of changes are exhibited in the system, which are created by GIS, for instance before urban regeneration PTL was very close to people’s private properties and huge parts of PTL were among the buildings, however; after urban regeneration electricity lines were changed their locations to the underground. According to the results, GIS can be used as a device in planning and managing of PTL in urban regeneration projects and can be used for analyses. By the help of GIS technology, necessary investigations should be carried out in urban regeneration applications for creating sustainable cities.

Keywords: GIS, power transmission line, technology, urban regeneration

Procedia PDF Downloads 766
3951 An Automatic Speech Recognition of Conversational Telephone Speech in Malay Language

Authors: M. Draman, S. Z. Muhamad Yassin, M. S. Alias, Z. Lambak, M. I. Zulkifli, S. N. Padhi, K. N. Baharim, F. Maskuriy, A. I. A. Rahim

Abstract:

The performance of Malay automatic speech recognition (ASR) system for the call centre environment is presented. The system utilizes Kaldi toolkit as the platform to the entire library and algorithm used in performing the ASR task. The acoustic model implemented in this system uses a deep neural network (DNN) method to model the acoustic signal and the standard (n-gram) model for language modelling. With 80 hours of training data from the call centre recordings, the ASR system can achieve 72% of accuracy that corresponds to 28% of word error rate (WER). The testing was done using 20 hours of audio data. Despite the implementation of DNN, the system shows a low accuracy owing to the varieties of noises, accent and dialect that typically occurs in Malaysian call centre environment. This significant variation of speakers is reflected by the large standard deviation of the average word error rate (WERav) (i.e., ~ 10%). It is observed that the lowest WER (13.8%) was obtained from recording sample with a standard Malay dialect (central Malaysia) of native speaker as compared to 49% of the sample with the highest WER that contains conversation of the speaker that uses non-standard Malay dialect.

Keywords: conversational speech recognition, deep neural network, Malay language, speech recognition

Procedia PDF Downloads 322
3950 Power Grid Line Ampacity Forecasting Based on a Long-Short-Term Memory Neural Network

Authors: Xiang-Yao Zheng, Jen-Cheng Wang, Joe-Air Jiang

Abstract:

Improving the line ampacity while using existing power grids is an important issue that electricity dispatchers are now facing. Using the information provided by the dynamic thermal rating (DTR) of transmission lines, an overhead power grid can operate safely. However, dispatchers usually lack real-time DTR information. Thus, this study proposes a long-short-term memory (LSTM)-based method, which is one of the neural network models. The LSTM-based method predicts the DTR of lines using the weather data provided by Central Weather Bureau (CWB) of Taiwan. The possible thermal bottlenecks at different locations along the line and the margin of line ampacity can be real-time determined by the proposed LSTM-based prediction method. A case study that targets the 345 kV power grid of TaiPower in Taiwan is utilized to examine the performance of the proposed method. The simulation results show that the proposed method is useful to provide the information for the smart grid application in the future.

Keywords: electricity dispatch, line ampacity prediction, dynamic thermal rating, long-short-term memory neural network, smart grid

Procedia PDF Downloads 283
3949 Local Image Features Emerging from Brain Inspired Multi-Layer Neural Network

Authors: Hui Wei, Zheng Dong

Abstract:

Object recognition has long been a challenging task in computer vision. Yet the human brain, with the ability to rapidly and accurately recognize visual stimuli, manages this task effortlessly. In the past decades, advances in neuroscience have revealed some neural mechanisms underlying visual processing. In this paper, we present a novel model inspired by the visual pathway in primate brains. This multi-layer neural network model imitates the hierarchical convergent processing mechanism in the visual pathway. We show that local image features generated by this model exhibit robust discrimination and even better generalization ability compared with some existing image descriptors. We also demonstrate the application of this model in an object recognition task on image data sets. The result provides strong support for the potential of this model.

Keywords: biological model, feature extraction, multi-layer neural network, object recognition

Procedia PDF Downloads 542
3948 A Review of Transformer Modeling for Power Line Communication Applications

Authors: Balarabe Nkom, Adam P. R. Taylor, Craig Baguley

Abstract:

Power Line Communications (PLC) is being employed in existing power systems, despite the infrastructure not being designed with PLC considerations in mind. Given that power transformers can last for decades, the distribution transformer in particular exists as a relic of un-optimized technology. To determine issues that may need to be addressed in subsequent designs of such transformers, it is essential to have a highly accurate transformer model for simulations and subsequent optimization for the PLC environment, with a view to increase data speed, throughput, and efficiency, while improving overall system stability and reliability. This paper reviews various methods currently available for creating transformer models and provides insights into the requirements of each for obtaining high accuracy. The review indicates that a combination of traditional analytical methods using a hybrid approach gives good accuracy at reasonable costs.

Keywords: distribution transformer, modelling, optimization, power line communications

Procedia PDF Downloads 508
3947 Development of a Sequential Multimodal Biometric System for Web-Based Physical Access Control into a Security Safe

Authors: Babatunde Olumide Olawale, Oyebode Olumide Oyediran

Abstract:

The security safe is a place or building where classified document and precious items are kept. To prevent unauthorised persons from gaining access to this safe a lot of technologies had been used. But frequent reports of an unauthorised person gaining access into security safes with the aim of removing document and items from the safes are pointers to the fact that there is still security gap in the recent technologies used as access control for the security safe. In this paper we try to solve this problem by developing a multimodal biometric system for physical access control into a security safe using face and voice recognition. The safe is accessed by the combination of face and speech pattern recognition and also in that sequential order. User authentication is achieved through the use of camera/sensor unit and a microphone unit both attached to the door of the safe. The user face was captured by the camera/sensor while the speech was captured by the use of the microphone unit. The Scale Invariance Feature Transform (SIFT) algorithm was used to train images to form templates for the face recognition system while the Mel-Frequency Cepitral Coefficients (MFCC) algorithm was used to train the speech recognition system to recognise authorise user’s speech. Both algorithms were hosted in two separate web based servers and for automatic analysis of our work; our developed system was simulated in a MATLAB environment. The results obtained shows that the developed system was able to give access to authorise users while declining unauthorised person access to the security safe.

Keywords: access control, multimodal biometrics, pattern recognition, security safe

Procedia PDF Downloads 335
3946 Clinical Efficacy of Indigenous Software for Automatic Detection of Stages of Retinopathy of Prematurity (ROP)

Authors: Joshi Manisha, Shivaram, Anand Vinekar, Tanya Susan Mathews, Yeshaswini Nagaraj

Abstract:

Retinopathy of prematurity (ROP) is abnormal blood vessel development in the retina of the eye in a premature infant. The principal object of the invention is to provide a technique for detecting demarcation line and ridge detection for a given ROP image that facilitates early detection of ROP in stage 1 and stage 2. The demarcation line is an indicator of Stage 1 of the ROP and the ridge is the hallmark of typically Stage 2 ROP. Thirty Retcam images of Asian Indian infants obtained during routine ROP screening have been used for the analysis. A graphical user interface has been developed to detect demarcation line/ridge and to extract ground truth. This novel algorithm uses multilevel vessel enhancement to enhance tubular structures in the digital ROP images. It has been observed that the orientation of the demarcation line/ridge is normal to the direction of the blood vessels, which is used for the identification of the ridge/ demarcation line. Quantitative analysis has been presented based on gold standard images marked by expert ophthalmologist. Image based analysis has been based on the length and the position of the detected ridge. In image based evaluation, average sensitivity and positive predictive value was found to be 92.30% and 85.71% respectively. In pixel based evaluation, average sensitivity, specificity, positive predictive value and negative predictive value achieved were 60.38%, 99.66%, 52.77% and 99.75% respectively.

Keywords: ROP, ridge, multilevel vessel enhancement, biomedical

Procedia PDF Downloads 411
3945 Chemical Composition of Essential Oil and in vitro Antibacterial and Anticancer Activity of the Hydroalcolic Extract from Coronilla varia

Authors: A. A. Dehpour, B. Eslami, S. Rezaie, S. F. Hashemian, F. Shafie, M. Kiaie

Abstract:

The aims of study were investigation on chemical composition essential oil and the effect of extract of Coronilla varia on antimicrobial and cytotoxicity activity. The essential oils of Coronilla varia is obtained by hydrodistillation and analyzed by (GC/MS) for determining their chemical composition and identification of their components. Antibacterial activity of plant extract was determined by disc diffusion method. The effect of hydroalcolic extracts from Cornilla varia investigated on MCF7 cancer cell line by MTT assay. The major components were Caryophyllene Oxide (60.19%), Alphacadinol (4.13%) and Homoadantaneca Robexylic Acid (3.31%). The extracts from Coronilla varia had interesting activity against Proteus mirabilis in the concentration of 700 µg/disc and did not show any activity against Staphylococus aureus, Bacillus subtillis, Klebsiella pneumonia and Entrobacter cloacae. The positive control, Ampicillin, Chloramphenicol and Cenphalothin had shown zone of inhibition resistant all bacteria. Corohilla varia ethanol extract could inhibit the proliferation of MCF7 cell line in RPMI 1640 medium. IC50 5(mg/ml) was the optimum concentration of extract from Coronilla varia inhibition of cell line growth. The MCF7 cancer cell line and Proteus mirabilis were more sensitive to Coronilla varia ethanol extract.

Keywords: Coronilla varia, essential oil, antibacterial, anticancer, hela cell line

Procedia PDF Downloads 390
3944 The Combination of the Mel Frequency Cepstral Coefficients (MFCC), Perceptual Linear Prediction (PLP), JITTER and SHIMMER Coefficients for the Improvement of Automatic Recognition System for Dysarthric Speech

Authors: Brahim-Fares Zaidi, Malika Boudraa, Sid-Ahmed Selouani

Abstract:

Our work aims to improve our Automatic Recognition System for Dysarthria Speech (ARSDS) based on the Hidden Models of Markov (HMM) and the Hidden Markov Model Toolkit (HTK) to help people who are sick. With pronunciation problems, we applied two techniques of speech parameterization based on Mel Frequency Cepstral Coefficients (MFCC's) and Perceptual Linear Prediction (PLP's) and concatenated them with JITTER and SHIMMER coefficients in order to increase the recognition rate of a dysarthria speech. For our tests, we used the NEMOURS database that represents speakers with dysarthria and normal speakers.

Keywords: hidden Markov model toolkit (HTK), hidden models of Markov (HMM), Mel-frequency cepstral coefficients (MFCC), perceptual linear prediction (PLP’s)

Procedia PDF Downloads 161
3943 A Two-Stage Adaptation towards Automatic Speech Recognition System for Malay-Speaking Children

Authors: Mumtaz Begum Mustafa, Siti Salwah Salim, Feizal Dani Rahman

Abstract:

Recently, Automatic Speech Recognition (ASR) systems were used to assist children in language acquisition as it has the ability to detect human speech signal. Despite the benefits offered by the ASR system, there is a lack of ASR systems for Malay-speaking children. One of the contributing factors for this is the lack of continuous speech database for the target users. Though cross-lingual adaptation is a common solution for developing ASR systems for under-resourced language, it is not viable for children as there are very limited speech databases as a source model. In this research, we propose a two-stage adaptation for the development of ASR system for Malay-speaking children using a very limited database. The two stage adaptation comprises the cross-lingual adaptation (first stage) and cross-age adaptation. For the first stage, a well-known speech database that is phonetically rich and balanced, is adapted to the medium-sized Malay adults using supervised MLLR. The second stage adaptation uses the speech acoustic model generated from the first adaptation, and the target database is a small-sized database of the target users. We have measured the performance of the proposed technique using word error rate, and then compare them with the conventional benchmark adaptation. The two stage adaptation proposed in this research has better recognition accuracy as compared to the benchmark adaptation in recognizing children’s speech.

Keywords: Automatic Speech Recognition System, children speech, adaptation, Malay

Procedia PDF Downloads 397
3942 Screening of the Sunflower Genotypes for Drought Stress at Seedling Stage by Polyethylene Glycol under Laboratory Conditions

Authors: Uzma Ayaz, Sanam Bashir, Shahid Iqbal Awan, Muhammad Ilyas, Muhammad Fareed Khan

Abstract:

Drought stress directly affects growth along with the productivity of plants by altering plant water status. Sunflower (Helianthus annuus L.), an oilseed crop, is adversely affected by abiotic stresses. The present study was carried out to characterize the genetic variability for seedling and morpho-physiological parameters in different sunflower genotypes under water-stressed conditions. A total of twenty-seven genotypes, including two hybrids, eight advanced lines and seventeen accessions of sunflower (Helianthus annuus L.) were tested against drought stress at Seedling stages by Polyethylene glycol (PEG). Significant means were calculated among traits using analysis of variance (ANOVA) whereas, correlation and principal component analysis also confirmed that germination percentage, root length, shoot length, chlorophyll content, stomatal frequency are positively linked with each other hence, these traits were responsible for most of the variation among genotypes. The cluster analysis results showed that genotypes Ausun, line-3, line-2, and 17578, line-1, line-7, line-6 and 17562 as more diverse among all the genotypes. These most divergent genotypes could be utilized in the development of drought-tolerant inbreed lines which could be subsequently used in future heterosis breeding programs.

Keywords: sunflower, drought, stress, polyethylene- glycol, screening

Procedia PDF Downloads 126
3941 Examining the Modular End of Line Control Unit Design Criteria for Vehicle Sliding Door System Slide Profile

Authors: Orhan Kurtuluş, Cüneyt Yavuz

Abstract:

The end of the line controls of the finished products in the automotive industry is important. The control that has been conducted with the manual methods for the sliding doors tracks is not sufficient and faulty products cannot be identified. As a result, the customer has the faulty products. In the scope of this study, the design criteria of the PLC integrated modular end of line control unit has been examined, designed and manufactured to make the control of the 10 different track profile to 2 different vehicles with an objective to minimize the salvage costs by obtaining more sensitive, certain and accurate measurement results. In the study that started with literature and patent review, the design inputs have been specified, the technical concept has been developed, computer supported mechanic design, control system and automation design, design review and design improvement have been made. Laser analog sensors at high sensitivity, probes and modular blocks have been used in the unit. The measurement has been conducted in the system and it is observed that measurement results are more sensitive than the previous methods.

Keywords: control unit design, end of line, modular design, sliding door system

Procedia PDF Downloads 445
3940 The Value of Dynamic Magnetic Resonance Defecography in Assessing the Severity of Defecation Disorders

Authors: Ge Sun, Monika Trzpis, Robbert J. de Haas, Paul M. A. Broens

Abstract:

Introduction: Dynamic magnetic resonance defecography is frequently used to assess defecation disorders. We aimed to investigate the usefulness of dynamic magnetic resonance defecography for assessing the severity of defecation disorder. Methods: We included patients retrospectively from our tertiary referral hospital who had undergone dynamic magnetic resonance defecography, anorectal manometry, and anal electrical sensitivity tests to assess defecation disorders between 2014 and 2020. The primary outcome was the association between the dynamic magnetic resonance defecography variables and the severity of defecation disorders. We assessed the severity of fecal incontinence and constipation with the Wexner incontinence and Agachan constipation scores. Results: Out of the 32 patients included, 24 completed the defecation questionnaire. During defecation, the M line length at magnetic resonance correlated with the Agachan score (r = 0.45, p = 0.03) and was associated with anal sphincter pressure (r=0.39, p=0.03) just before defecation. During rest and squeezing, the H line length at imaging correlated with the Wexner incontinence score (r=0.49, p=0.01 and r=0.69, p< 0.001, respectively). H line length also correlated positively with the anal electrical sensation threshold during squeezing (r=0.50, p=0.004) and during rest (r= 0.42, p=0.02). Conclusions: The M and H line lengths at dynamic magnetic resonance defecography can be used to assess the severity of constipation and fecal incontinence respectively and reflect anatomic changes of the pelvic floor. However, as these anatomic changes are generally late-stage and irreversible, anal manometry seems a better diagnostic approach to assess early and potentially reversible changes in patients with defecation disorders.

Keywords: defecation disorders, dynamic magnetic resonance defecography, anorectal manometry, anal electrical sensitivity tests, H line, M line

Procedia PDF Downloads 106
3939 Facial Expression Phoenix (FePh): An Annotated Sequenced Dataset for Facial and Emotion-Specified Expressions in Sign Language

Authors: Marie Alaghband, Niloofar Yousefi, Ivan Garibay

Abstract:

Facial expressions are important parts of both gesture and sign language recognition systems. Despite the recent advances in both fields, annotated facial expression datasets in the context of sign language are still scarce resources. In this manuscript, we introduce an annotated sequenced facial expression dataset in the context of sign language, comprising over 3000 facial images extracted from the daily news and weather forecast of the public tv-station PHOENIX. Unlike the majority of currently existing facial expression datasets, FePh provides sequenced semi-blurry facial images with different head poses, orientations, and movements. In addition, in the majority of images, identities are mouthing the words, which makes the data more challenging. To annotate this dataset we consider primary, secondary, and tertiary dyads of seven basic emotions of "sad", "surprise", "fear", "angry", "neutral", "disgust", and "happy". We also considered the "None" class if the image’s facial expression could not be described by any of the aforementioned emotions. Although we provide FePh as a facial expression dataset of signers in sign language, it has a wider application in gesture recognition and Human Computer Interaction (HCI) systems.

Keywords: annotated facial expression dataset, gesture recognition, sequenced facial expression dataset, sign language recognition

Procedia PDF Downloads 159
3938 3D Human Face Reconstruction in Unstable Conditions

Authors: Xiaoyuan Suo

Abstract:

3D object reconstruction is a broad research area within the computer vision field involving many stages and still open problems. One of the existing challenges in this field lies with micromotion, such as the facial expressions on the appearance of the human or animal face. Similar literatures in this field focuses on 3D reconstruction in stable conditions such as an existing image or photos taken in a rather static environment, while the purpose of this work is to discuss a flexible scan system using multiple cameras that can correctly reconstruct 3D stable and moving objects -- human face with expression in particular. Further, a mathematical model is proposed at the end of this literature to automate the 3D object reconstruction process. The reconstruction process takes several stages. Firstly, a set of simple 2D lines would be projected onto the object and hence a set of uneven curvy lines can be obtained, which represents the 3D numerical data of the surface. The lines and their shapes will help to identify object’s 3D construction in pixels. With the two-recorded angles and their distance from the camera, a simple mathematical calculation would give the resulting coordinate of each projected line in an absolute 3D space. This proposed research will benefit many practical areas, including but not limited to biometric identification, authentications, cybersecurity, preservation of cultural heritage, drama acting especially those with rapid and complex facial gestures, and many others. Specifically, this will (I) provide a brief survey of comparable techniques existing in this field. (II) discuss a set of specialized methodologies or algorithms for effective reconstruction of 3D objects. (III)implement, and testing the developed methodologies. (IV) verify findings with data collected from experiments. (V) conclude with lessons learned and final thoughts.

Keywords: 3D photogrammetry, 3D object reconstruction, facial expression recognition, facial recognition

Procedia PDF Downloads 150
3937 Lip Localization Technique for Myanmar Consonants Recognition Based on Lip Movements

Authors: Thein Thein, Kalyar Myo San

Abstract:

Lip reading system is one of the different supportive technologies for hearing impaired, or elderly people or non-native speakers. For normal hearing persons in noisy environments or in conditions where the audio signal is not available, lip reading techniques can be used to increase their understanding of spoken language. Hearing impaired persons have used lip reading techniques as important tools to find out what was said by other people without hearing voice. Thus, visual speech information is important and become active research area. Using visual information from lip movements can improve the accuracy and robustness of a speech recognition system and the need for lip reading system is ever increasing for every language. However, the recognition of lip movement is a difficult task because of the region of interest (ROI) is nonlinear and noisy. Therefore, this paper proposes method to detect the accurate lips shape and to localize lip movement towards automatic lip tracking by using the combination of Otsu global thresholding technique and Moore Neighborhood Tracing Algorithm. Proposed method shows how accurate lip localization and tracking which is useful for speech recognition. In this work of study and experiments will be carried out the automatic lip localizing the lip shape for Myanmar consonants using the only visual information from lip movements which is useful for visual speech of Myanmar languages.

Keywords: lip reading, lip localization, lip tracking, Moore neighborhood tracing algorithm

Procedia PDF Downloads 352
3936 Fusion of Finger Inner Knuckle Print and Hand Geometry Features to Enhance the Performance of Biometric Verification System

Authors: M. L. Anitha, K. A. Radhakrishna Rao

Abstract:

With the advent of modern computing technology, there is an increased demand for developing recognition systems that have the capability of verifying the identity of individuals. Recognition systems are required by several civilian and commercial applications for providing access to secured resources. Traditional recognition systems which are based on physical identities are not sufficiently reliable to satisfy the security requirements due to the use of several advances of forgery and identity impersonation methods. Recognizing individuals based on his/her unique physiological characteristics known as biometric traits is a reliable technique, since these traits are not transferable and they cannot be stolen or lost. Since the performance of biometric based recognition system depends on the particular trait that is utilized, the present work proposes a fusion approach which combines Inner knuckle print (IKP) trait of the middle, ring and index fingers with the geometrical features of hand. The hand image captured from a digital camera is preprocessed to find finger IKP as region of interest (ROI) and hand geometry features. Geometrical features are represented as the distances between different key points and IKP features are extracted by applying local binary pattern descriptor on the IKP ROI. The decision level AND fusion was adopted, which has shown improvement in performance of the combined scheme. The proposed approach is tested on the database collected at our institute. Proposed approach is of significance since both hand geometry and IKP features can be extracted from the palm region of the hand. The fusion of these features yields a false acceptance rate of 0.75%, false rejection rate of 0.86% for verification tests conducted, which is less when compared to the results obtained using individual traits. The results obtained confirm the usefulness of proposed approach and suitability of the selected features for developing biometric based recognition system based on features from palmar region of hand.

Keywords: biometrics, hand geometry features, inner knuckle print, recognition

Procedia PDF Downloads 220
3935 Humanitarian Emergency of the Refugee Condition for Central American Immigrants in Irregular Situation

Authors: María de los Ángeles Cerda González, Itzel Arriaga Hurtado, Pascacio José Martínez Pichardo

Abstract:

In México, the recognition of refugee condition is a fundamental right which, as host State, has the obligation of respect, protect, and fulfill to the foreigners – where we can find the figure of immigrants in irregular situation-, that cannot return to their country of origin for humanitarian reasons. The recognition of the refugee condition as a fundamental right in the Mexican law system proceeds under these situations: 1. The immigrant applies for the refugee condition, even without the necessary proving elements to accredit the humanitarian character of his departure from his country of origin. 2. The immigrant does not apply for the recognition of refugee because he does not know he has the right to, even if he has the profile to apply for. 3. The immigrant who applies fulfills the requirements of the administrative procedure and has access to the refugee recognition. Of the three situations above, only the last one is contemplated for the national indexes of the status refugee; and the first two prove the inefficiency of the governmental system viewed from its lack of sensibility consequence of the no education in human rights matter and which results in the legal vulnerability of the immigrants in irregular situation because they do not have access to the procuration and administration of justice. In the aim of determining the causes and consequences of the no recognition of the refugee status, this investigation was structured from a systemic analysis which objective is to show the advances in Central American humanitarian emergency investigation, the Mexican States actions to protect, respect and fulfil the fundamental right of refugee of immigrants in irregular situation and the social and legal vulnerabilities suffered by Central Americans in Mexico. Therefore, to achieve the deduction of the legal nature of the humanitarian emergency from the Human Rights as a branch of the International Public Law, a conceptual framework is structured using the inductive deductive method. The problem statement is made from a legal framework to approach a theoretical scheme under the theory of social systems, from the analysis of the lack of communication of the governmental and normative subsystems of the Mexican legal system relative to the process undertaken by the Central American immigrants to achieve the recognition of the refugee status as a human right. Accordingly, is determined that fulfilling the obligations of the State referent to grant the right of the recognition of the refugee condition, would mean a guideline for a new stage in Mexican Law, because it would enlarge the constitutional benefits to everyone whose right to the recognition of refugee has been denied an as consequence, a great advance in human rights matter would be achieved.

Keywords: central American immigrants in irregular situation, humanitarian emergency, human rights, refugee

Procedia PDF Downloads 289
3934 Hand Symbol Recognition Using Canny Edge Algorithm and Convolutional Neural Network

Authors: Harshit Mittal, Neeraj Garg

Abstract:

Hand symbol recognition is a pivotal component in the domain of computer vision, with far-reaching applications spanning sign language interpretation, human-computer interaction, and accessibility. This research paper discusses the approach with the integration of the Canny Edge algorithm and convolutional neural network. The significance of this study lies in its potential to enhance communication and accessibility for individuals with hearing impairments or those engaged in gesture-based interactions with technology. In the experiment mentioned, the data is manually collected by the authors from the webcam using Python codes, to increase the dataset augmentation, is applied to original images, which makes the model more compatible and advanced. Further, the dataset of about 6000 coloured images distributed equally in 5 classes (i.e., 1, 2, 3, 4, 5) are pre-processed first to gray images and then by the Canny Edge algorithm with threshold 1 and 2 as 150 each. After successful data building, this data is trained on the Convolutional Neural Network model, giving accuracy: 0.97834, precision: 0.97841, recall: 0.9783, and F1 score: 0.97832. For user purposes, a block of codes is built in Python to enable a window for hand symbol recognition. This research, at its core, seeks to advance the field of computer vision by providing an advanced perspective on hand sign recognition. By leveraging the capabilities of the Canny Edge algorithm and convolutional neural network, this study contributes to the ongoing efforts to create more accurate, efficient, and accessible solutions for individuals with diverse communication needs.

Keywords: hand symbol recognition, computer vision, Canny edge algorithm, convolutional neural network

Procedia PDF Downloads 65
3933 Shiite and Secular Approaches to Gender Minorities: A Comparative Study of Iran, Turkey, and Germany

Authors: Morteza Azimi

Abstract:

The demand for recognition among LGBTQIA+ groups has grown significantly in modern times, particularly since the second half of the twentieth century, when human rights discourse became increasingly prominent, especially in the West. In contrast, the classic readings of the Quran and Hadith, whose roots lie in pre-modern times, and the Shiite Figh (Islamic jurisprudence) seem not to be updated and responsive to the need for recognition by gender minority identities. Moreover, the recognition of such minority identities within Shiite Islam and its intersection with secular frameworks remains an underexplored topic. This paper explores what Islamic texts, such as the Quran, Hadith, and Shiite Fiqh, address regarding the recognition and rights of gender minorities. It further examines the Islamic Republic of Iran as an example of a dominant Shiite political system, comparing it with Turkey and Germany as secular models. While Turkey, a secular state, is deeply influenced by its predominantly Muslim population and culture, Germany represents a Western model characterized by the widespread recognition of LGBTQIA+ rights. The rationale for this comparative approach lies in understanding how different political systems influence the recognition of gender minorities. Moreover, the study investigates whether Shiite Islamic frameworks can provide solutions to these demands or whether secular systems, as exemplified by Turkey and Germany, are more effective in addressing issues of gender minorities. Hence, this study offers a novel perspective by juxtaposing Shiite Islamic textual interpretations with secular legal frameworks to explore the evolving recognition of gender minorities, demonstrating how varying political and cultural contexts shape the lived experiences of LGBTQIA+ individuals in Iran, Turkey, and Germany. This research relies on secondary literature as the primary data source, especially regarding the issue of gender in Shiite Islamic texts. The author employs a comparative textual analysis of Shiite Islamic texts (e.g., Quran, Hadith, and Fiqh) and secular legal frameworks in Turkey and Germany to explore how different systems address the recognition of gender minorities. Findings reveal that classical interpretations of Islamic texts and Shiite Fiqh employed by the Islamic Republic of Iran fail to provide laws and frameworks that recognize LGBTQIA+ identities. This gap contributes to the marginalization of gender minority identities, fostering environments of suppression, violence, and exclusion. The findings of this study could inform policymaking and advocacy efforts by shedding light on the necessity of a change toward inclusive legal and cultural frameworks for gender minorities in Muslim countries like Iran.

Keywords: gender minorities, LGBTQIA+ recognition, shiite islam, comparative analysis

Procedia PDF Downloads 0
3932 A Cephalometric Superimposition of a Skeletal Class III Orthognathic Patient on Nasion-Sella Line

Authors: Albert Suryaprawira

Abstract:

The Nasion-Sella Line (NSL) has been used for several years as a reference line in longitudinal growth study. Therefore this line is considered to be stable not only to evaluate treatment outcome and to predict relapse possibility but also to manage prognosis. This is a radiographic superimposition of an adult male aged 19 years who complained of difficulty in aesthetic, talking and chewing. Patient has a midface hypoplasia profile (concave). He was diagnosed to have a severe Skeletal Class III with Class III malocclusion, increased lower vertical height, and an anterior open bite. A pre-treatment cephalometric radiograph was taken to analyse the skeletal problem and to measure the amount of bone movement and the prediction soft tissue response. A panoramic radiograph was also taken to analyse bone quality, bone abnormality, third molar impaction, etc. Before the surgery, a pre-surgical cephalometric radiograph was taken to re-evaluate the plan and to settle the final amount of bone cut. After the surgery, a post-surgical cephalometric radiograph was taken to confirm the result with the plan. The superimposition using NSL as a reference line between those radiographs was performed to analyse the outcome. It is important to describe the amount of hard and soft tissue movement and to predict the possibility of relapse after the surgery. The patient also needs to understand all the surgical plan, outcome and relapse prevention. The surgical management included maxillary impaction and advancement of Le Fort I osteotomy. The evaluation using NSL as a reference was a very useful method in determining the outcome and prognosis.

Keywords: Nasion-Sella Line, midface hypoplasia, Le Fort 1, maxillary advancement

Procedia PDF Downloads 142
3931 Multimodal Database of Emotional Speech, Video and Gestures

Authors: Tomasz Sapiński, Dorota Kamińska, Adam Pelikant, Egils Avots, Cagri Ozcinar, Gholamreza Anbarjafari

Abstract:

People express emotions through different modalities. Integration of verbal and non-verbal communication channels creates a system in which the message is easier to understand. Expanding the focus to several expression forms can facilitate research on emotion recognition as well as human-machine interaction. In this article, the authors present a Polish emotional database composed of three modalities: facial expressions, body movement and gestures, and speech. The corpora contains recordings registered in studio conditions, acted out by 16 professional actors (8 male and 8 female). The data is labeled with six basic emotions categories, according to Ekman’s emotion categories. To check the quality of performance, all recordings are evaluated by experts and volunteers. The database is available to academic community and might be useful in the study on audio-visual emotion recognition.

Keywords: body movement, emotion recognition, emotional corpus, facial expressions, gestures, multimodal database, speech

Procedia PDF Downloads 349
3930 Yield Performance of Two Locally Adapted and Two Introductions of Common Cowpea in Response to Amended In-Row-Spaces and Planting Dates

Authors: Ayman M. A. Rashwan, Mohamed F. Mohamed, Mohamed M. A. Abdalla

Abstract:

A field experiment was conducted in the Agricultural Research Station, at El-Ghoraieb, Assiut to study dry seed yield performance of two locally adapted cultivars (‘Azmerly’ and ‘Cream 7’) and two line introductions (IT81D-1032 and IT82D-812) of common cowpea (Vigna unguiculata (L.) Walp) grown at three different within-row spaces (20, 30 and 40 cm) and two planting dates in the summer (April 15th and 30th) and in the fall season (Aug. 12th and 27th) of two successive seasons. The data showed that total dry-seed yield produced by plants grown at 20 cm was greater than at 30 cm in all cvs/lines in both years. Increases in 1000-seed weight were detected in cv ‘Azmerly’ and line IT82D-812 when they were grown at 30 cm as compared with 20 cm in the summer season. However, in the fall season such increases were found in all cvs/lines. Planting at 40 cm produced seeds of greater weight than planting at 30 cm for all cvs/lines in the fall season and also in cv. Cream 7 and line IT82D-812 in the summer season. Planting on April 15th in the summer and also planting on Aug. 12th in the fall had plants which showed increases in 1000-seed weight and total dry-seed yield. The greatest 1000-seed weight was found in the line IT81D-1032 in the summer season and in the line IT82D-812 in the fall season. The sum up results revealed that ‘Azmerly’ produced greater dry-seed yield than ‘Cream 7’ and both of them were superior to the line IT82D-812 and IT81D-1032 in the summer season. In the fall, however, the line IT82D-812 produced greater dry-seed yield than the other cultivars/lines.

Keywords: Cowpea, Assiut, fall, planting dates, El-Ghoraieb, dry-seed yield

Procedia PDF Downloads 634