Search results for: learning algorithms
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8212

Search results for: learning algorithms

7912 Unveiling Comorbidities in Irritable Bowel Syndrome: A UK BioBank Study utilizing Supervised Machine Learning

Authors: Uswah Ahmad Khan, Muhammad Moazam Fraz, Humayoon Shafique Satti, Qasim Aziz

Abstract:

Approximately 10-14% of the global population experiences a functional disorder known as irritable bowel syndrome (IBS). The disorder is defined by persistent abdominal pain and an irregular bowel pattern. IBS significantly impairs work productivity and disrupts patients' daily lives and activities. Although IBS is widespread, there is still an incomplete understanding of its underlying pathophysiology. This study aims to help characterize the phenotype of IBS patients by differentiating the comorbidities found in IBS patients from those in non-IBS patients using machine learning algorithms. In this study, we extracted samples coding for IBS from the UK BioBank cohort and randomly selected patients without a code for IBS to create a total sample size of 18,000. We selected the codes for comorbidities of these cases from 2 years before and after their IBS diagnosis and compared them to the comorbidities in the non-IBS cohort. Machine learning models, including Decision Trees, Gradient Boosting, Support Vector Machine (SVM), AdaBoost, Logistic Regression, and XGBoost, were employed to assess their accuracy in predicting IBS. The most accurate model was then chosen to identify the features associated with IBS. In our case, we used XGBoost feature importance as a feature selection method. We applied different models to the top 10% of features, which numbered 50. Gradient Boosting, Logistic Regression and XGBoost algorithms yielded a diagnosis of IBS with an optimal accuracy of 71.08%, 71.427%, and 71.53%, respectively. Among the comorbidities most closely associated with IBS included gut diseases (Haemorrhoids, diverticular diseases), atopic conditions(asthma), and psychiatric comorbidities (depressive episodes or disorder, anxiety). This finding emphasizes the need for a comprehensive approach when evaluating the phenotype of IBS, suggesting the possibility of identifying new subsets of IBS rather than relying solely on the conventional classification based on stool type. Additionally, our study demonstrates the potential of machine learning algorithms in predicting the development of IBS based on comorbidities, which may enhance diagnosis and facilitate better management of modifiable risk factors for IBS. Further research is necessary to confirm our findings and establish cause and effect. Alternative feature selection methods and even larger and more diverse datasets may lead to more accurate classification models. Despite these limitations, our findings highlight the effectiveness of Logistic Regression and XGBoost in predicting IBS diagnosis.

Keywords: comorbidities, disease association, irritable bowel syndrome (IBS), predictive analytics

Procedia PDF Downloads 92
7911 Microgrid Design Under Optimal Control With Batch Reinforcement Learning

Authors: Valentin Père, Mathieu Milhé, Fabien Baillon, Jean-Louis Dirion

Abstract:

Microgrids offer potential solutions to meet the need for local grid stability and increase isolated networks autonomy with the integration of intermittent renewable energy production and storage facilities. In such a context, sizing production and storage for a given network is a complex task, highly depending on input data such as power load profile and renewable resource availability. This work aims at developing an operating cost computation methodology for different microgrid designs based on the use of deep reinforcement learning (RL) algorithms to tackle the optimal operation problem in stochastic environments. RL is a data-based sequential decision control method based on Markov decision processes that enable the consideration of random variables for control at a chosen time scale. Agents trained via RL constitute a promising class of Energy Management Systems (EMS) for the operation of microgrids with energy storage. Microgrid sizing (or design) is generally performed by minimizing investment costs and operational costs arising from the EMS behavior. The latter might include economic aspects (power purchase, facilities aging), social aspects (load curtailment), and ecological aspects (carbon emissions). Sizing variables are related to major constraints on the optimal operation of the network by the EMS. In this work, an islanded mode microgrid is considered. Renewable generation is done with photovoltaic panels; an electrochemical battery ensures short-term electricity storage. The controllable unit is a hydrogen tank that is used as a long-term storage unit. The proposed approach focus on the transfer of agent learning for the near-optimal operating cost approximation with deep RL for each microgrid size. Like most data-based algorithms, the training step in RL leads to important computer time. The objective of this work is thus to study the potential of Batch-Constrained Q-learning (BCQ) for the optimal sizing of microgrids and especially to reduce the computation time of operating cost estimation in several microgrid configurations. BCQ is an off-line RL algorithm that is known to be data efficient and can learn better policies than on-line RL algorithms on the same buffer. The general idea is to use the learned policy of agents trained in similar environments to constitute a buffer. The latter is used to train BCQ, and thus the agent learning can be performed without update during interaction sampling. A comparison between online RL and the presented method is performed based on the score by environment and on the computation time.

Keywords: batch-constrained reinforcement learning, control, design, optimal

Procedia PDF Downloads 101
7910 Machine Learning Analysis of Student Success in Introductory Calculus Based Physics I Course

Authors: Chandra Prayaga, Aaron Wade, Lakshmi Prayaga, Gopi Shankar Mallu

Abstract:

This paper presents the use of machine learning algorithms to predict the success of students in an introductory physics course. Data having 140 rows pertaining to the performance of two batches of students was used. The lack of sufficient data to train robust machine learning models was compensated for by generating synthetic data similar to the real data. CTGAN and CTGAN with Gaussian Copula (Gaussian) were used to generate synthetic data, with the real data as input. To check the similarity between the real data and each synthetic dataset, pair plots were made. The synthetic data was used to train machine learning models using the PyCaret package. For the CTGAN data, the Ada Boost Classifier (ADA) was found to be the ML model with the best fit, whereas the CTGAN with Gaussian Copula yielded Logistic Regression (LR) as the best model. Both models were then tested for accuracy with the real data. ROC-AUC analysis was performed for all the ten classes of the target variable (Grades A, A-, B+, B, B-, C+, C, C-, D, F). The ADA model with CTGAN data showed a mean AUC score of 0.4377, but the LR model with the Gaussian data showed a mean AUC score of 0.6149. ROC-AUC plots were obtained for each Grade value separately. The LR model with Gaussian data showed consistently better AUC scores compared to the ADA model with CTGAN data, except in two cases of the Grade value, C- and A-.

Keywords: machine learning, student success, physics course, grades, synthetic data, CTGAN, gaussian copula CTGAN

Procedia PDF Downloads 25
7909 Downscaling Daily Temperature with Neuroevolutionary Algorithm

Authors: Min Shi

Abstract:

State of the art research with Artificial Neural Networks for the downscaling of General Circulation Models (GCMs) mainly uses back-propagation algorithm as a training approach. This paper introduces another training approach of ANNs, Evolutionary Algorithm. The combined algorithm names neuroevolutionary (NE) algorithm. We investigate and evaluate the use of the NE algorithms in statistical downscaling by generating temperature estimates at interior points given information from a lattice of surrounding locations. The results of our experiments indicate that NE algorithms can be efficient alternative downscaling methods for daily temperatures.

Keywords: temperature, downscaling, artificial neural networks, evolutionary algorithms

Procedia PDF Downloads 330
7908 Global Convergence of a Modified Three-Term Conjugate Gradient Algorithms

Authors: Belloufi Mohammed, Sellami Badreddine

Abstract:

This paper deals with a new nonlinear modified three-term conjugate gradient algorithm for solving large-scale unstrained optimization problems. The search direction of the algorithms from this class has three terms and is computed as modifications of the classical conjugate gradient algorithms to satisfy both the descent and the conjugacy conditions. An example of three-term conjugate gradient algorithm from this class, as modifications of the classical and well known Hestenes and Stiefel or of the CG_DESCENT by Hager and Zhang conjugate gradient algorithms, satisfying both the descent and the conjugacy conditions is presented. Under mild conditions, we prove that the modified three-term conjugate gradient algorithm with Wolfe type line search is globally convergent. Preliminary numerical results show the proposed method is very promising.

Keywords: unconstrained optimization, three-term conjugate gradient, sufficient descent property, line search

Procedia PDF Downloads 346
7907 Attitude Towards E-Learning: A Case of University Teachers and Students

Authors: Muhamamd Shahid Farooq, Maazan Zafar, Rizawana Akhtar

Abstract:

E-learning technologies are the blessings of advancements in science and technology. These facilitate the learners to get information at any place and any time by improving their self-confidence, self-efficacy and effectiveness in teaching learning process. E-learning provides an individualized learning experience for learners and remove barriers faced by students during new and creative ways of gaining information. It provides a wide range of facilities to enable the teachers and students for effective and purposeful learning. This study was conducted to explore the attitudes of university students and teachers towards e-learning working in a metropolitan university of Pakistan. The personal, institutional and technological characteristics of the teachers and students of higher education institution effect the adoption of e-learning. For this descriptive study 449 students and 35 university teachers were surveyed by using a Likert scale type questionnaire consisting of 52 statements relating to six factors "perceived usefulness, intention to adopt e-learning, ease of e-learning use, availability resources, e-learning stressors, and pressure to use e-learning". Data were analyzed by making comparisons on the basis of different demographic factors. The findings of the study show that both type of respondents have positive attitude towards e-learning. However, the male and female respondents differ in their opinion for e-learning implementation.

Keywords: e-learning, ICT, e-sources of learning, questionnaire

Procedia PDF Downloads 511
7906 An Automatic Method for Building Learners’ Groups in Virtual Environment

Authors: O. Bourkoukou, Essaid El Bachari

Abstract:

The group composing is one of the key issue in collaborative learning to achieve a positive educational experience. The goal of this work is to propose for teachers and tutors a method to create effective collaborative learning groups in e-learning environment based on the learner profile. For this purpose, a new function was defined to rate implicitly learning objects used by the learner during his learning experience. This paper describes the proposed algorithm to build an adequate collaborative learning group. In order to verify the performance of the proposed algorithm, several experiments were conducted in real data set in virtual environment. Results show the effectiveness of the method for which it appears that the proposed approach may be promising to produce better outcomes.

Keywords: building groups, collaborative learning, e-learning, learning objects

Procedia PDF Downloads 280
7905 Study of Adaptive Filtering Algorithms and the Equalization of Radio Mobile Channel

Authors: Said Elkassimi, Said Safi, B. Manaut

Abstract:

This paper presented a study of three algorithms, the equalization algorithm to equalize the transmission channel with ZF and MMSE criteria, application of channel Bran A, and adaptive filtering algorithms LMS and RLS to estimate the parameters of the equalizer filter, i.e. move to the channel estimation and therefore reflect the temporal variations of the channel, and reduce the error in the transmitted signal. So far the performance of the algorithm equalizer with ZF and MMSE criteria both in the case without noise, a comparison of performance of the LMS and RLS algorithm.

Keywords: adaptive filtering second equalizer, LMS, RLS Bran A, Proakis (B) MMSE, ZF

Procedia PDF Downloads 298
7904 Finite-Sum Optimization: Adaptivity to Smoothness and Loopless Variance Reduction

Authors: Bastien Batardière, Joon Kwon

Abstract:

For finite-sum optimization, variance-reduced gradient methods (VR) compute at each iteration the gradient of a single function (or of a mini-batch), and yet achieve faster convergence than SGD thanks to a carefully crafted lower-variance stochastic gradient estimator that reuses past gradients. Another important line of research of the past decade in continuous optimization is the adaptive algorithms such as AdaGrad, that dynamically adjust the (possibly coordinate-wise) learning rate to past gradients and thereby adapt to the geometry of the objective function. Variants such as RMSprop and Adam demonstrate outstanding practical performance that have contributed to the success of deep learning. In this work, we present AdaLVR, which combines the AdaGrad algorithm with loopless variance-reduced gradient estimators such as SAGA or L-SVRG that benefits from a straightforward construction and a streamlined analysis. We assess that AdaLVR inherits both good convergence properties from VR methods and the adaptive nature of AdaGrad: in the case of L-smooth convex functions we establish a gradient complexity of O(n + (L + √ nL)/ε) without prior knowledge of L. Numerical experiments demonstrate the superiority of AdaLVR over state-of-the-art methods. Moreover, we empirically show that the RMSprop and Adam algorithm combined with variance-reduced gradients estimators achieve even faster convergence.

Keywords: convex optimization, variance reduction, adaptive algorithms, loopless

Procedia PDF Downloads 42
7903 Automatic Identification and Classification of Contaminated Biodegradable Plastics using Machine Learning Algorithms and Hyperspectral Imaging Technology

Authors: Nutcha Taneepanichskul, Helen C. Hailes, Mark Miodownik

Abstract:

Plastic waste has emerged as a critical global environmental challenge, primarily driven by the prevalent use of conventional plastics derived from petrochemical refining and manufacturing processes in modern packaging. While these plastics serve vital functions, their persistence in the environment post-disposal poses significant threats to ecosystems. Addressing this issue necessitates approaches, one of which involves the development of biodegradable plastics designed to degrade under controlled conditions, such as industrial composting facilities. It is imperative to note that compostable plastics are engineered for degradation within specific environments and are not suited for uncontrolled settings, including natural landscapes and aquatic ecosystems. The full benefits of compostable packaging are realized when subjected to industrial composting, preventing environmental contamination and waste stream pollution. Therefore, effective sorting technologies are essential to enhance composting rates for these materials and diminish the risk of contaminating recycling streams. In this study, it leverage hyperspectral imaging technology (HSI) coupled with advanced machine learning algorithms to accurately identify various types of plastics, encompassing conventional variants like Polyethylene terephthalate (PET), Polypropylene (PP), Low density polyethylene (LDPE), High density polyethylene (HDPE) and biodegradable alternatives such as Polybutylene adipate terephthalate (PBAT), Polylactic acid (PLA), and Polyhydroxyalkanoates (PHA). The dataset is partitioned into three subsets: a training dataset comprising uncontaminated conventional and biodegradable plastics, a validation dataset encompassing contaminated plastics of both types, and a testing dataset featuring real-world packaging items in both pristine and contaminated states. Five distinct machine learning algorithms, namely Partial Least Squares Discriminant Analysis (PLS-DA), Support Vector Machine (SVM), Convolutional Neural Network (CNN), Logistic Regression, and Decision Tree Algorithm, were developed and evaluated for their classification performance. Remarkably, the Logistic Regression and CNN model exhibited the most promising outcomes, achieving a perfect accuracy rate of 100% for the training and validation datasets. Notably, the testing dataset yielded an accuracy exceeding 80%. The successful implementation of this sorting technology within recycling and composting facilities holds the potential to significantly elevate recycling and composting rates. As a result, the envisioned circular economy for plastics can be established, thereby offering a viable solution to mitigate plastic pollution.

Keywords: biodegradable plastics, sorting technology, hyperspectral imaging technology, machine learning algorithms

Procedia PDF Downloads 51
7902 Arabic Text Representation and Classification Methods: Current State of the Art

Authors: Rami Ayadi, Mohsen Maraoui, Mounir Zrigui

Abstract:

In this paper, we have presented a brief current state of the art for Arabic text representation and classification methods. We decomposed Arabic Task Classification into four categories. First we describe some algorithms applied to classification on Arabic text. Secondly, we cite all major works when comparing classification algorithms applied on Arabic text, after this, we mention some authors who proposing new classification methods and finally we investigate the impact of preprocessing on Arabic TC.

Keywords: text classification, Arabic, impact of preprocessing, classification algorithms

Procedia PDF Downloads 442
7901 Students’ Perception of Their M-Learning Readiness

Authors: Sulaiman Almutairy, Trevor Davies, Yota Dimitriadi

Abstract:

This paper presents study investigating how to understand better the psychological readiness for mobile learning (m-learning) among Saudi students, while also evaluating m-learning in Saudi Arabia-a topic that has not yet received adequate attention from researchers. Data was acquired through a questionnaire administered to 131 Saudi students at UK universities, in July 2013. The study confirmed that students are confident using mobile devices in their daily lives and that they would welcome more opportunities for mobile learning. The findings indicated that Saudi higher education students are highly familiar with, and are psychologically ready for, m-learning.

Keywords: m-learning, mobile technologies, psychological readiness, higher education

Procedia PDF Downloads 493
7900 E-Learning in Life-Long Learning: Best Practices from the University of the Aegean

Authors: Chryssi Vitsilaki, Apostolos Kostas, Ilias Efthymiou

Abstract:

This paper presents selected best practices on online learning and teaching derived from a novel and innovating Lifelong Learning program through e-Learning, which has during the last five years been set up at the University of the Aegean in Greece. The university, capitalizing on an award-winning, decade-long experience in e-learning and blended learning in undergraduate and postgraduate studies, recently expanded into continuous education and vocational training programs in various cutting-edge fields. So, in this article we present: (a) the academic structure/infrastructure which has been developed for the administrative, organizational and educational support of the e-Learning process, including training the trainers, (b) the mode of design and implementation based on a sound pedagogical framework of open and distance education, and (c) the key results of the assessment of the e-learning process by the participants, as they are used to feedback on continuous organizational and teaching improvement and quality control.

Keywords: distance education, e-learning, life-long programs, synchronous/asynchronous learning

Procedia PDF Downloads 312
7899 UAV Based Visual Object Tracking

Authors: Vaibhav Dalmia, Manoj Phirke, Renith G

Abstract:

With the wide adoption of UAVs (unmanned aerial vehicles) in various industries by the government as well as private corporations for solving computer vision tasks it’s necessary that their potential is analyzed completely. Recent advances in Deep Learning have also left us with a plethora of algorithms to solve different computer vision tasks. This study provides a comprehensive survey on solving the Visual Object Tracking problem and explains the tradeoffs involved in building a real-time yet reasonably accurate object tracking system for UAVs by looking at existing methods and evaluating them on the aerial datasets. Finally, the best trackers suitable for UAV-based applications are provided.

Keywords: deep learning, drones, single object tracking, visual object tracking, UAVs

Procedia PDF Downloads 131
7898 A High-Level Co-Evolutionary Hybrid Algorithm for the Multi-Objective Job Shop Scheduling Problem

Authors: Aydin Teymourifar, Gurkan Ozturk

Abstract:

In this paper, a hybrid distributed algorithm has been suggested for the multi-objective job shop scheduling problem. Many new approaches are used at design steps of the distributed algorithm. Co-evolutionary structure of the algorithm and competition between different communicated hybrid algorithms, which are executed simultaneously, causes to efficient search. Using several machines for distributing the algorithms, at the iteration and solution levels, increases computational speed. The proposed algorithm is able to find the Pareto solutions of the big problems in shorter time than other algorithm in the literature. Apache Spark and Hadoop platforms have been used for the distribution of the algorithm. The suggested algorithm and implementations have been compared with results of the successful algorithms in the literature. Results prove the efficiency and high speed of the algorithm.

Keywords: distributed algorithms, Apache Spark, Hadoop, job shop scheduling, multi-objective optimization

Procedia PDF Downloads 339
7897 Validating Condition-Based Maintenance Algorithms through Simulation

Authors: Marcel Chevalier, Léo Dupont, Sylvain Marié, Frédérique Roffet, Elena Stolyarova, William Templier, Costin Vasile

Abstract:

Industrial end-users are currently facing an increasing need to reduce the risk of unexpected failures and optimize their maintenance. This calls for both short-term analysis and long-term ageing anticipation. At Schneider Electric, we tackle those two issues using both machine learning and first principles models. Machine learning models are incrementally trained from normal data to predict expected values and detect statistically significant short-term deviations. Ageing models are constructed by breaking down physical systems into sub-assemblies, then determining relevant degradation modes and associating each one to the right kinetic law. Validating such anomaly detection and maintenance models is challenging, both because actual incident and ageing data are rare and distorted by human interventions, and incremental learning depends on human feedback. To overcome these difficulties, we propose to simulate physics, systems, and humans -including asset maintenance operations- in order to validate the overall approaches in accelerated time and possibly choose between algorithmic alternatives.

Keywords: degradation models, ageing, anomaly detection, soft sensor, incremental learning

Procedia PDF Downloads 103
7896 ‘Daily Speaking’: Designing an App for Construction of Language Learning Model Supporting ‘Seamless Flipped’ Environment

Authors: Zhou Hong, Gu Xiao-Qing, Lıu Hong-Jiao, Leng Jing

Abstract:

Seamless learning is becoming a research hotspot in recent years, and the emerging of micro-lectures, flipped classroom has strengthened the development of seamless learning. Based on the characteristics of the seamless learning across time and space and the course structure of the flipped classroom, and the theories of language learning, we put forward the language learning model which can support ‘seamless flipped’ environment (abbreviated as ‘S-F’). Meanwhile, the characteristics of the ‘S-F’ learning environment, the corresponding framework construction and the activity design of diversified corpora were introduced. Moreover, a language learning app named ‘Daily Speaking’ was developed to facilitate the practice of the language learning model in ‘S-F’ environment. In virtue of the learning case of Shanghai language, the rationality and feasibility of this framework were examined, expecting to provide a reference for the design of ‘S-F’ learning in different situations.

Keywords: seamless learning, flipped classroom, seamless-flipped environment, language learning model

Procedia PDF Downloads 164
7895 Review and Comparison of Associative Classification Data Mining Approaches

Authors: Suzan Wedyan

Abstract:

Data mining is one of the main phases in the Knowledge Discovery Database (KDD) which is responsible of finding hidden and useful knowledge from databases. There are many different tasks for data mining including regression, pattern recognition, clustering, classification, and association rule. In recent years a promising data mining approach called associative classification (AC) has been proposed, AC integrates classification and association rule discovery to build classification models (classifiers). This paper surveys and critically compares several AC algorithms with reference of the different procedures are used in each algorithm, such as rule learning, rule sorting, rule pruning, classifier building, and class allocation for test cases.

Keywords: associative classification, classification, data mining, learning, rule ranking, rule pruning, prediction

Procedia PDF Downloads 515
7894 Time Series Forecasting (TSF) Using Various Deep Learning Models

Authors: Jimeng Shi, Mahek Jain, Giri Narasimhan

Abstract:

Time Series Forecasting (TSF) is used to predict the target variables at a future time point based on the learning from previous time points. To keep the problem tractable, learning methods use data from a fixed-length window in the past as an explicit input. In this paper, we study how the performance of predictive models changes as a function of different look-back window sizes and different amounts of time to predict the future. We also consider the performance of the recent attention-based Transformer models, which have had good success in the image processing and natural language processing domains. In all, we compare four different deep learning methods (RNN, LSTM, GRU, and Transformer) along with a baseline method. The dataset (hourly) we used is the Beijing Air Quality Dataset from the UCI website, which includes a multivariate time series of many factors measured on an hourly basis for a period of 5 years (2010-14). For each model, we also report on the relationship between the performance and the look-back window sizes and the number of predicted time points into the future. Our experiments suggest that Transformer models have the best performance with the lowest Mean Average Errors (MAE = 14.599, 23.273) and Root Mean Square Errors (RSME = 23.573, 38.131) for most of our single-step and multi-steps predictions. The best size for the look-back window to predict 1 hour into the future appears to be one day, while 2 or 4 days perform the best to predict 3 hours into the future.

Keywords: air quality prediction, deep learning algorithms, time series forecasting, look-back window

Procedia PDF Downloads 138
7893 Automated Detection of Women Dehumanization in English Text

Authors: Maha Wiss, Wael Khreich

Abstract:

Animals, objects, foods, plants, and other non-human terms are commonly used as a source of metaphors to describe females in formal and slang language. Comparing women to non-human items not only reflects cultural views that might conceptualize women as subordinates or in a lower position than humans, yet it conveys this degradation to the listeners. Moreover, the dehumanizing representation of females in the language normalizes the derogation and even encourages sexism and aggressiveness against women. Although dehumanization has been a popular research topic for decades, according to our knowledge, no studies have linked women's dehumanizing language to the machine learning field. Therefore, we introduce our research work as one of the first attempts to create a tool for the automated detection of the dehumanizing depiction of females in English texts. We also present the first labeled dataset on the charted topic, which is used for training supervised machine learning algorithms to build an accurate classification model. The importance of this work is that it accomplishes the first step toward mitigating dehumanizing language against females.

Keywords: gender bias, machine learning, NLP, women dehumanization

Procedia PDF Downloads 60
7892 Social Learning and the Flipped Classroom

Authors: Albin Wallace

Abstract:

This paper examines the use of social learning platforms in conjunction with the emergent pedagogy of the ‘flipped classroom’. In particular the attributes of the social learning platform “Edmodo” is considered alongside the changes in the way in which online learning environments are being implemented, especially within British education. Some observations are made regarding the use and usefulness of these platforms along with a consideration of the increasingly decentralized nature of education in the United Kingdom.

Keywords: education, Edmodo, Internet, learning platforms

Procedia PDF Downloads 525
7891 Mobile Learning in Teacher Education: A Review in Context of Developing Countries

Authors: Mehwish Raza

Abstract:

Mobile learning (m-learning) offers unique affordances to learners, setting them free of limitations posed by time and geographic space; thus becoming an affordable device for convenient distant learning. There is a plethora of research available on mobile learning projects planned, implemented and evaluated across disciplines in the context of developed countries, however, the potential of m-learning at different educational levels remain unexplored with little evidence of research carried out in developing countries. Despite the favorable technical infrastructure offered by cellular networks and boom in mobile subscriptions in the developing world, there is limited focus on utilizing m-learning for education and development purposes. The objective of this review is to unify findings from m-learning projects that have been implemented in developing countries such as Pakistan, Bangladesh, Philippines, India, and Tanzania for teachers’ in-service training. The purpose is to draw upon key characteristics of mobile learning that would be useful for future researchers to inform conceptualizations of mobile learning for developing countries.

Keywords: design model, developing countries, key characteristics, mobile learning

Procedia PDF Downloads 422
7890 An Investigation on Engineering Students’ Perceptions towards E-Learning in the UK

Authors: Razzaghifard P., Arya F., Chen S. Chien-I, Abdi B., Razzaghifard V., Arya A. H., Nazary A., Hosseinpour H., Ghabelnezam K.

Abstract:

E-learning, also known as online learning, has indicated increased growth in recent years. One of the critical factors in the successful application of e-learning in higher education is students’ perceptions towards it. The main purpose of this paper is to investigate the perceptions of engineering students about e-learning in the UK. For the purpose of the present study, 145 second-year engineering students were randomly selected from the total population of 1280 participants. The participants were asked to complete a questionnaire containing 16 items. The data collected from the questionnaire were analyzed through the Statistical Package for Social Science (SPSS) software. The findings of the study revealed that the majority of participants have negative perceptions of e-learning. Most of the students had trouble interacting effectively during online classes. Furthermore, the majority of participants had negative experiences with the learning platform they used during e-learning. Suggestions were made on what could be done to improve the students’ perceptions of e-learning.

Keywords: e-learning, higher, education, engineering education, online learning

Procedia PDF Downloads 97
7889 Item Response Calibration/Estimation: An Approach to Adaptive E-Learning System Development

Authors: Adeniran Adetunji, Babalola M. Florence, Akande Ademola

Abstract:

In this paper, we made an overview on the concept of adaptive e-Learning system, enumerates the elements of adaptive learning concepts e.g. A pedagogical framework, multiple learning strategies and pathways, continuous monitoring and feedback on student performance, statistical inference to reach final learning strategy that works for an individual learner by “mass-customization”. Briefly highlights the motivation of this new system proposed for effective learning teaching. E-Review literature on the concept of adaptive e-learning system and emphasises on the Item Response Calibration, which is an important approach to developing an adaptive e-Learning system. This paper write-up is concluded on the justification of item response calibration/estimation towards designing a successful and effective adaptive e-Learning system.

Keywords: adaptive e-learning system, pedagogical framework, item response, computer applications

Procedia PDF Downloads 572
7888 Investigation of Clustering Algorithms Used in Wireless Sensor Networks

Authors: Naim Karasekreter, Ugur Fidan, Fatih Basciftci

Abstract:

Wireless sensor networks are networks in which more than one sensor node is organized among themselves. The working principle is based on the transfer of the sensed data over the other nodes in the network to the central station. Wireless sensor networks concentrate on routing algorithms, energy efficiency and clustering algorithms. In the clustering method, the nodes in the network are divided into clusters using different parameters and the most suitable cluster head is selected from among them. The data to be sent to the center is sent per cluster, and the cluster head is transmitted to the center. With this method, the network traffic is reduced and the energy efficiency of the nodes is increased. In this study, clustering algorithms were examined in terms of clustering performances and cluster head selection characteristics to try to identify weak and strong sides. This work is supported by the Project 17.Kariyer.123 of Afyon Kocatepe University BAP Commission.

Keywords: wireless sensor networks (WSN), clustering algorithm, cluster head, clustering

Procedia PDF Downloads 482
7887 Semantic Platform for Adaptive and Collaborative e-Learning

Authors: Massra M. Sabeima, Myriam lamolle, Mohamedade Farouk Nanne

Abstract:

Adapting the learning resources of an e-learning system to the characteristics of the learners is an important aspect to consider when designing an adaptive e-learning system. However, this adaptation is not a simple process; it requires the extraction, analysis, and modeling of user information. This implies a good representation of the user's profile, which is the backbone of the adaptation process. Moreover, during the e-learning process, collaboration with similar users (same geographic province or knowledge context) is important. Productive collaboration motivates users to continue or not abandon the course and increases the assimilation of learning objects. The contribution of this work is the following: we propose an adaptive e-learning semantic platform to recommend learning resources to learners, using ontology to model the user profile and the course content, furthermore an implementation of a multi-agent system able to progressively generate the learning graph (taking into account the user's progress, and the changes that occur) for each user during the learning process, and to synchronize the users who collaborate on a learning object.

Keywords: adaptative learning, collaboration, multi-agent, ontology

Procedia PDF Downloads 152
7886 A Theoretical Framework for Design Theories in Mobile Learning: A Higher Education Perspective

Authors: Paduri Veerabhadram, Antoinette Lombard

Abstract:

In this paper a framework for hypothesizing about mobile learning to complement theories of formal and informal learning is presented. As such, activity theory will form the main theoretical lens through which the elements involved in formal and informal learning for mobile learning will be explored, specifically related to context-aware mobile learning application. The author believes that the complexity of the relationships involved can best be analysed using activity theory. Activity theory, as a social, cultural and activity theory can be used as a mobile learning framework in an academic environment, but to develop an optimal artifact, through investigation of inherent system's contradictions. As such, it serves as a powerful modelling tool to explore and understand the design of a mobile learning environment in the study’s environment. The Academic Tool Kit Framework (ATKF) as also employed for designing of a constructivism learning environment, effective in assisting universities to facilitate lecturers to effectively implement learning through utilizing mobile devices. Results indicate a positive perspective of students in the use of mobile devices for formal and informal learning, based on the context-aware learning environment developed through the use of activity theory and ATKF.

Keywords: collaborative learning, cooperative learning, context-aware learning environment, mobile learning, pedagogy

Procedia PDF Downloads 534
7885 A Comprehensive Review of Artificial Intelligence Applications in Sustainable Building

Authors: Yazan Al-Kofahi, Jamal Alqawasmi.

Abstract:

In this study, a comprehensive literature review (SLR) was conducted, with the main goal of assessing the existing literature about how artificial intelligence (AI), machine learning (ML), deep learning (DL) models are used in sustainable architecture applications and issues including thermal comfort satisfaction, energy efficiency, cost prediction and many others issues. For this reason, the search strategy was initiated by using different databases, including Scopus, Springer and Google Scholar. The inclusion criteria were used by two research strings related to DL, ML and sustainable architecture. Moreover, the timeframe for the inclusion of the papers was open, even though most of the papers were conducted in the previous four years. As a paper filtration strategy, conferences and books were excluded from database search results. Using these inclusion and exclusion criteria, the search was conducted, and a sample of 59 papers was selected as the final included papers in the analysis. The data extraction phase was basically to extract the needed data from these papers, which were analyzed and correlated. The results of this SLR showed that there are many applications of ML and DL in Sustainable buildings, and that this topic is currently trendy. It was found that most of the papers focused their discussions on addressing Environmental Sustainability issues and factors using machine learning predictive models, with a particular emphasis on the use of Decision Tree algorithms. Moreover, it was found that the Random Forest repressor demonstrates strong performance across all feature selection groups in terms of cost prediction of the building as a machine-learning predictive model.

Keywords: machine learning, deep learning, artificial intelligence, sustainable building

Procedia PDF Downloads 45
7884 Technology in English Language Teaching and Its Benefits in Improving Language Skills

Authors: Yasir Naseem

Abstract:

In this fast-growing and evolving world, usage and adoption of technology have displayed an essential component of the learning process, both in and out of the class, which converges and incorporates every domain of the learning aspects. It aids in learning distinct entities irrespective of their levels of challenge. It also incorporates both viewpoints of learning, i.e., competence as well as the performances of the learner. In today's learning scenario, nearly every language class ordinarily uses some form of technology. It integrates with various teaching methodologies and transforms in a way that now it grew as an integral part of the language learning courses. It has been employed to facilitate, promote, and enhances language learning. It facilitates educators in numerous ways and enhances their methodologies by equipping them to modify classroom activities, which covers every aspect of language learning.

Keywords: communication, methodology, technology, skills

Procedia PDF Downloads 154
7883 Research on the Online Learning Activities Design and Students’ Experience Based on APT Model

Authors: Wang Yanli, Cheng Yun, Yang Jiarui

Abstract:

Due to the separation of teachers and students, online teaching during the COVID-19 epidemic was faced with many problems, such as low enthusiasm of students, distraction, low learning atmosphere, and insufficient interaction between teachers and students. The essay designed the elaborate online learning activities of the course 'Research Methods of Educational Science' based on the APT model from three aspects of multiple assessment methods, a variety of teaching methods, and online learning environment and technology. Student's online learning experience was examined from the perception of online course, the perception of the online learning environment, and satisfaction after the course’s implementation. The research results showed that students have a positive overall evaluation of online courses, a high degree of engagement in learning, positive acceptance of online learning, and high satisfaction with it, but students hold a relatively neutral attitude toward online learning. And some dimensions in online learning experience were found to have positive influence on students' satisfaction with online learning. We suggest making the good design of online courses, selecting proper learning platforms, and conducting blended learning to improve students’ learning experience. This study has both theoretical and practical significance for the design, implementation, effect feedback, and sustainable development of online teaching in the post-epidemic era.

Keywords: APT model, online learning, online learning activities, learning experience

Procedia PDF Downloads 109