Search results for: galvanized copper nanowires
595 Effect of Different Contaminants on Mineral Insulating Oil Characteristics
Authors: H. M. Wilhelm, P. O. Fernandes, L. P. Dill, C. Steffens, K. G. Moscon, S. M. Peres, V. Bender, T. Marchesan, J. B. Ferreira Neto
Abstract:
Deterioration of insulating oil is a natural process that occurs during transformers operation. However, this process can be accelerated by some factors, such as oxygen, high temperatures, metals and, moisture, which rapidly reduce oil insulating capacity and favor transformer faults. Parts of building materials of a transformer can be degraded and yield soluble compounds and insoluble particles that shorten the equipment life. Physicochemical tests, dissolved gas analysis (including propane, propylene and, butane), volatile and furanic compounds determination, besides quantitative and morphological analyses of particulate are proposed in this study in order to correlate transformers building materials degradation with insulating oil characteristics. The present investigation involves tests of medium temperature overheating simulation by means of an electric resistance wrapped with the following materials immersed in mineral insulating oil: test I) copper, tin, lead and, paper (heated at 350-400 °C for 8 h); test II) only copper (at 250 °C for 11 h); and test III) only paper (at 250 °C for 8 h and at 350 °C for 8 h). A different experiment is the simulation of electric arc involving copper, using an electric welding machine at two distinct energy sets (low and high). Analysis results showed that dielectric loss was higher in the sample of test I, higher neutralization index and higher values of hydrogen and hydrocarbons, including propane and butane, were also observed. Test III oil presented higher particle count, in addition, ferrographic analysis revealed contamination with fibers and carbonized paper. However, these particles had little influence on the oil physicochemical parameters (dielectric loss and neutralization index) and on the gas production, which was very low. Test II oil showed high levels of methane, ethane, and propylene, indicating the effect of metal on oil degradation. CO2 and CO gases were formed in the highest concentration in test III, as expected. Regarding volatile compounds, in test I acetone, benzene and toluene were detected, which are oil oxidation products. Regarding test III, methanol was identified due to cellulose degradation, as expected. Electric arc simulation test showed the highest oil oxidation in presence of copper and at high temperature, since these samples had huge concentration of hydrogen, ethylene, and acetylene. Particle count was also very high, showing the highest release of copper in such conditions. When comparing high and low energy, the first presented more hydrogen, ethylene, and acetylene. This sample had more similar results to test I, pointing out that the generation of different particles can be the cause for faults such as electric arc. Ferrography showed more evident copper and exfoliation particles than in other samples. Therefore, in this study, by using different combined analytical techniques, it was possible to correlate insulating oil characteristics with possible contaminants, which can lead to transformers failure.Keywords: Ferrography, gas analysis, insulating mineral oil, particle contamination, transformer failures
Procedia PDF Downloads 226594 Wear Map for Cu-Based Friction Materials with Different Contents of Fe Reinforcement
Authors: Haibin Zhou, Pingping Yao, Kunyang Fan
Abstract:
Copper-based sintered friction materials are widely used in the brake system of different applications such as engineering machinery or high-speed train, due to the excellent mechanical, thermal and tribological performance. Considering the diversity of the working conditions of brake system, it is necessary to identify well and understand the tribological performance and wear mechanisms of friction materials for different conditions. Fe has been a preferred reinforcement for copper-based friction materials, due to its ability to improve the wear resistance and mechanical properties of material. Wear map is well accepted as a useful research method for evaluation of wear performances and wear mechanisms over a wider range of working conditions. Therefore, it is significantly important to construct a wear map which can give out the effects of work condition and Fe reinforcement on tribological performance of Cu-based friction materials. In this study, the copper-based sintered friction materials with the different addition of Fe reinforcement (0-20 vol. %) were studied. The tribological tests were performed against stainless steel in a ring-on-ring braking tester with varying braking energy density (0-5000 J/cm2). The linear wear and friction coefficient were measured. The worn surface, cross section and debris were analyzed to determine the dominant wear mechanisms for different testing conditions. On the basis of experimental results, the wear map and wear mechanism map were established, in terms of braking energy density and the addition of Fe. It was found that with low contents of Fe and low braking energy density, adhesive wear was the dominant wear mechanism of friction materials. Oxidative wear and abrasive wear mainly occurred under moderate braking energy density. In the condition of high braking energy density, with both high and low addition of Fe, delamination appeared as the main wear mechanism.Keywords: Cu-based friction materials, Fe reinforcement, wear map, wear mechanism
Procedia PDF Downloads 281593 Structure-Activity Relationship of Gold Catalysts on Alumina Supported Cu-Ce Oxides for CO and Volatile Organic Compound Oxidation
Authors: Tatyana T. Tabakova, Elitsa N. Kolentsova, Dimitar Y. Dimitrov, Krasimir I. Ivanov, Yordanka G. Karakirova, Petya Cv. Petrova, Georgi V. Avdeev
Abstract:
The catalytic oxidation of CO and volatile organic compounds (VOCs) is considered as one of the most efficient ways to reduce harmful emissions from various chemical industries. The effectiveness of gold-based catalysts for many reactions of environmental significance was proven during the past three decades. The aim of this work was to combine the favorable features of Au and Cu-Ce mixed oxides in the design of new catalytic materials of improved efficiency and economic viability for removal of air pollutants in waste gases from formaldehyde production. Supported oxides of copper and cerium with Cu: Ce molar ratio 2:1 and 1:5 were prepared by wet impregnation of g-alumina. Gold (2 wt.%) catalysts were synthesized by a deposition-precipitation method. Catalysts characterization was carried out by texture measurements, powder X-ray diffraction, temperature programmed reduction and electron paramagnetic resonance spectroscopy. The catalytic activity in the oxidation of CO, CH3OH and (CH3)2O was measured using continuous flow equipment with fixed bed reactor. Both Cu-Ce/alumina samples demonstrated similar catalytic behavior. The addition of gold caused significant enhancement of CO and methanol oxidation activity (100 % degree of CO and CH3OH conversion at about 60 and 140 oC, respectively). The composition of Cu-Ce mixed oxides affected the performance of gold-based samples considerably. Gold catalyst on Cu-Ce/γ-Al2O3 1:5 exhibited higher activity for CO and CH3OH oxidation in comparison with Au on Cu-Ce/γ-Al2O3 2:1. The better performance of Au/Cu-Ce 1:5 was related to the availability of highly dispersed gold particles and copper oxide clusters in close contact with ceria.Keywords: CO and VOCs oxidation, copper oxide, Ceria, gold catalysts
Procedia PDF Downloads 319592 An Artistic Study of Three Rare Tennded Copper Dishes from the Mamluk Circassian Period (784- 923 AH/ 1382- 1517 CE)
Authors: Tamer Mokhtar Mohamed Ahmed
Abstract:
The metalwork industry during the Mamluk period received the attention and care of the sultans and princes, thus helping in the prosperity of this industry during this period. We are fortunate that a huge number of metal artifacts from the industry of Egypt and Syria of this period have come down to us, many of which are preserved in Egyptian and international museums as well as private collections. Characterized by great diversity in its forms, sizes and functions, including the decorative designs executed on them, the artifacts reflected the extent of artistic creativity that characterized the arts in the two Mamluk period. This research paper aims to study three copper dishes from the Mamluk Circassian period and the rare documentary texts on them that have not been previously studied. These dishes date back to different decades from the 9th AH/15 AD century. One of them bears the name of Sultan Al-Muayyad Shaikh, and the second is the name of one of the great Mamluk princes in the Mamluk Circassian period, Prince Yashbak min Mahdi. The third dish is attributed to Prince Jan Balat Al-Ashrafie.Keywords: metalwork, dishes, decorative, calligraphy, Mamluk Arts
Procedia PDF Downloads 81591 Mordenite as Catalyst Support for Complete Volatile Organic Compounds Oxidation
Authors: Yuri A. Kalvachev, Totka D. Todorova
Abstract:
Zeolite mordenite has been investigated as a transition metal support for the preparation of efficient catalysts in the oxidation of volatile organic compounds (VOCs). The highly crystalline mordenite samples were treated with hydrofluoric acid and ammonium fluoride to get hierarchical material with secondary porosity. The obtained supports by this method have a high active surface area, good diffusion properties and prevent the extraction of metal components during catalytic reactions. The active metal phases platinum and copper were loaded by impregnation on both mordenite materials (parent and acid treated counterparts). Monometalic Pt and Cu, and bimetallic Pt/Cu catalysts were obtained. The metal phases were fine dispersed as nanoparticles on the functional porous materials. The catalysts synthesized in this way were investigated in the reaction of complete oxidation of propane and benzene. Platinum, copper and platinum/copper were loaded and there catalytic activity was investigated and compared. All samples are characterized by X-ray diffraction analysis, nitrogen adsorption, scanning electron microscopy (SEM), X-ray photoelectron measurements (XPS) and temperature programed reduction (TPR). The catalytic activity of the samples obtained is investigated in the reaction of complete oxidation of propane and benzene by using of Gas Chromatography (GC). The oxidation of three organic molecules was investigated—methane, propane and benzene. The activity of metal loaded mordenite catalysts for methane oxidation is almost the same for parent and treated mordenite as a support. For bigger molecules as propane and benzene, the activity of catalysts based on treated mordenite is higher than those based on parent zeolite.Keywords: metal loaded catalysts, mordenite, VOCs oxidation, zeolites
Procedia PDF Downloads 133590 EDTA Enhanced Plant Growth, Antioxidant Defense System, and Phytoextraction of Copper by Brassica napus L.
Authors: Ume Habiba, Shafaqat Ali, Mujahid Farid, Muhammad Bilal Shakoor
Abstract:
Copper (Cu) is an essential micronutrient for normal plant growth and development, but in excess, it is also toxic to plants. The present study investigated the influence of ethylenediaminetetraacetic acid (EDTA) in enhancing Cu uptake and tolerance as well as the morphological and physiological responses of Brassica napus L. seedlings under Cu stress. Four-week-old seedlings were transferred to hydroponics containing Hoagland’s nutrient solution. After 2 weeks of transplanting, three levels (0, 50, and 100 μM) of Cu were applied with or without application of 2.5 mM EDTA and plants were further grown for 8 weeks in culture media. Results showed that Cu alone significantly decreased plant growth, biomass, photosynthetic pigments, and gas exchange characteristics. Cu stress also reduced the activities of antioxidants, such as superoxide dismutase (SOD), peroxidase (POD), ascorbate peroxidase (APX), and catalase (CAT) along with protein contents. Cu toxicity increased the concentration of reactive oxygen species (ROS) as indicated by the increased production of malondialdehyde (MDA) and hydrogen peroxide (H2O2) in both leaves and roots. The application of EDTA significantly alleviated Cu-induced toxic effects in B. napus, showing remarkable improvement in all these parameters. EDTA amendment increased the activity of antioxidant enzymes by decreasing the concentrations of MDA and H2O2 both in leaves and roots of B. napus. Although, EDTA amendment with Cu significantly increased Cu uptake in roots, stems, and leaves in decreasing order of concentration but increased the growth, photosynthetic parameters, and antioxidant enzymes. These results showed that the application of EDTA can be a useful strategy for phytoextraction of Cu by B. napus from contaminated soils.Keywords: antioxidants, biomass, copper, EDTA, phytoextraction, tolerance
Procedia PDF Downloads 412589 Effects of Copper Oxide Nanoparticles on the Growth Performance, Antioxidant Enzymes Activity and Gut Morphology of Broiler Chickens
Authors: Mohammad Nassiri, Farhad Ahmadi
Abstract:
This research was carried out to investigate the effects of copper oxide nanoparticles (nano-CuO) on performance and gut morphology of broiler chickens. A total of 240 one-day-old male chickens (Ross-308) were randomly divided in a completely randomized design, the inclusion of 4 groups of 60 birds with 4 replicates and 15 birds in each. Experimental diets were as follow: T1 control (basal diets, without nano-CuO but contain 9.1 mg Cu/kg from CuO), T2, T3, and T4 basal diet supplementation with 30, 60, and 90 mg nano-CuO/kg, respectively. Feed intake (FI) and gain weight as weekly recorded and on d 21 feed conversion ratio (FCR) were calculated. Furthermore, at the end of the trial (21 d), four birds per treatment (one bird/replicate) randomly selected and after removed blood samples, they slaughtered and then to the analysis of gut morphological. A segment (10 cm) from the middle part of duodenum and jejunum was removed and put in the formalin 10% (pH = 7). The results revealed that nano-CuO had significantly increased body weight (P = 0.029, but feed intake (P = 0.017), and feed conversion ratio (P = 0.031) decreased in the birds that fed 90 mg nano-CuO when compared to control and the other groups. Total antioxidant capacity (P = 0.041), superoxide dismutase (P = 0.036), and glutathione peroxidase (P = 0.048) were more in the birds fed diet inclusion of 60 and 90 mg nano-CuO (T4) than other treatments. The lowest malonaldehyde (MDA) level was observed in T3 (P = 0.23) and T4 (P = 0.028) decreased (P = 0.17). The villi height and villi height to crypt depth (VH/CD ratio) numerically increased (P = 0.09) in the bird fed 90 mg nano-CuO in comparison with other treatments. According to present results, it could be concluded that dietary nano-CuO improved performance parameters and antioxidant status of broiler chickens during starter period. As well, the optimum improvement observed in the birds fed diet inclusion of 90 mg nano-CuO/kg.Keywords: antioxidant, broilers, copper, performance, nanoparticles
Procedia PDF Downloads 575588 Magnetic Lines of Force and Diamagnetism
Authors: Angel Pérez Sánchez
Abstract:
Magnet attraction or repulsion is not a product of a strange force from afar but comes from anchored lines of force inside the magnet as if it were reinforced concrete since you can move a small block by taking the steel rods that protrude from its interior. This approach serves as a basis for studying the behavior of diamagnetic materials. The significance of this study is to unify all diamagnetic phenomena: Movement of grapes, cooper approaching a magnet, Magnet levitation, etc., with a single explanation for all these phenomena. The method followed has consisted of observation of hundreds of diamagnetism experiments (in copper, aluminum, grapes, tomatoes, and bismuth), including the creation of own and new experiments and application of logical deduction product of these observations. Approaching a magnet to a hanging grape, Diamagnetism seems to consist not only of a slight repulsion but also of a slight attraction at a small distance. Replacing the grapes with a copper sphere, it behaves like the grape, pushing and pulling a nearby magnet. Diamagnetism could be redefined in the following way: There are materials that don't magnetize their internal structure when approaching a magnet, as ferromagnetic materials do. But they do allow magnetic lines of force to run through its interior, enhancing them without creating their own lines of force. Magnet levitates on superconducting ceramics because magnet gives lines near poles a force superior to what a superconductor can enhance these lines. Little further from the magnet, enhancing of lines by the superconductor is greater than the strength provided by the magnet due to the distance from the magnet's pole. It is this point that defines the magnet's levitation band. The anchoring effect of lines is what ultimately keeps the magnet and superconductor at a certain distance. The magnet seeks to levitate the area in which magnetic lines are stronger near de magnet's poles. Pouring ferrofluid into a magnet, lines of force are observed coming out of the poles. On other occasions, diamagnetic materials simply enhance the lines they receive without moving their position since their own weight is greater than the strength of the enhanced lines. (This is the case with grapes and copper). Magnet and diamagnetic materials look for a place where the lines of force are most enhanced, and this is at a small distance. Once the ideal distance is established, they tend to keep it by pushing or pulling on each other. At a certain distance from the magnet: the power exerted by diamagnetic materials is greater than the force of lines in the vicinity of the magnet's poles. All Diamagnetism phenomena: copper, aluminum, grapes, tomatoes, bismuth levitation, and magnet levitation on superconducting ceramics can now be explained with the support of magnetic lines of force.Keywords: diamagnetism, magnetic levitation, magnetic lines of force, enhancing magnetic lines
Procedia PDF Downloads 92587 Buck Boost Inverter to Improve the Efficiency and Performance of E-Motor by Reducing the Influence of Voltage Sag of Battery on the Performance of E-Motor
Authors: Shefeen Maliyakkal, Pranav Satheesh, Steve Simon, Sharath Kuruppath
Abstract:
This paper researches the impact of battery voltage sag on the performance and efficiency of E-motor in electric cars. Terminal voltage of battery reduces with the S.o.C. This results in the downward shift of torque-speed curve of E-motor and increased copper losses in E-motor. By introducing a buck-boost inverter between the battery and E-motor, an additional degree of freedom was achieved. By boosting the AC voltage, the dependency of voltage sag on the performance of E-motor was eliminated. A strategy was also proposed for the operation of the buck-boost inverter to minimize copper and iron losses in E-motor to maximize efficiency. MATLAB-SIMULINK model of E-drive was used to obtain simulation results. The temperature rise in the E-motor was reduced by 14% for a 10% increase in AC voltage. From the results, it was observed that a 20% increase in AC voltage can result in improvement of running torque and maximum torque of E-motor by 44%. Hence it was concluded that using a buck-boost inverter for E-drive significantly improves both performance and efficiency of E-motor.Keywords: buck-boost, E-motor, battery, voltage sag
Procedia PDF Downloads 399586 Strip Size Optimization for Spiral Type Actuator Coil Used in Electromagnetic Flat Sheet Forming Experiment
Authors: M. A. Aleem, M. S. Awan
Abstract:
Flat spiral coil for electromagnetic forming system has been modelled in FEMM 4.2 software. Copper strip was chosen as the material for designing the actuator coil. Relationship between height to width ratio (S-factor) of the copper strip and coil’s performance has been studied. Magnetic field intensities, eddy currents, and Lorentz force were calculated for the coils that were designed using six different 'S-factor' values (0.65, 0.75, 1.05, 1.25, 1.54 and 1.75), keeping the cross-sectional area of strip the same. Results obtained through simulation suggest that actuator coil with S-factor ~ 1 shows optimum forming performance as it exerts maximum Lorentz force (84 kN) on work piece. The same coils were fabricated and used for electromagnetic sheet forming experiments. Aluminum 6061 sheets of thickness 1.5 mm have been formed using different voltage levels of capacitor bank. Smooth forming profiles were obtained with dome heights 28, 35 and 40 mm in work piece at 800, 1150 and 1250 V respectively.Keywords: FEM modelling, electromagnetic forming, spiral coil, Lorentz force
Procedia PDF Downloads 286585 Iridium-Based Bimetallic Catalysts for Hydrogen Production through Glycerol Aqueous-Phase Reforming
Authors: Francisco Espinosa, Juan Chavarría
Abstract:
Glycerol is a byproduct of biodiesel production that can be used for aqueous-phase reforming to obtain hydrogen. Iridium is a material that has high activity and hydrogen selectivity for steam phase reforming. Nevertheless, a drawback for the use of iridium in aqueous-phase reforming is the low activity in water-gas shift reaction. Therefore, in this work, it is proposed the use of nickel and copper as a second metal in the catalyst to reach a synergetic effect. Iridium, iridium-nickel and iridium-copper catalysts were prepared by incipient wetness impregnation and evaluated in the aqueous-phase reforming of glycerol using CeO₂ or La₂O₃ as support. The catalysts were characterized by XRD, XPS, and EDX. The reactions were carried out in a fixed bed reactor feeding a solution of glycerol 10 wt% in water at 270°C, and reaction products were analyzed by gas chromatography. It was found that IrNi/CeO₂ reached highest glycerol conversion and hydrogen production, slightly above 70% and 43 vol% respectively. In terms of conversion, iridium is a promising metal, and its activity for hydrogen production can be enhanced when adding a second metal.Keywords: aqueous-phase reforming, glycerol, hydrogen production, iridium
Procedia PDF Downloads 327584 Prediction of Unsteady Heat Transfer over Square Cylinder in the Presence of Nanofluid by Using ANN
Authors: Ajoy Kumar Das, Prasenjit Dey
Abstract:
Heat transfer due to forced convection of copper water based nanofluid has been predicted by Artificial Neural network (ANN). The present nanofluid is formed by mixing copper nano particles in water and the volume fractions are considered here are 0% to 15% and the Reynolds number are kept constant at 100. The back propagation algorithm is used to train the network. The present ANN is trained by the input and output data which has been obtained from the numerical simulation, performed in finite volume based Computational Fluid Dynamics (CFD) commercial software Ansys Fluent. The numerical simulation based results are compared with the back propagation based ANN results. It is found that the forced convection heat transfer of water based nanofluid can be predicted correctly by ANN. It is also observed that the back propagation ANN can predict the heat transfer characteristics of nanofluid very quickly compared to standard CFD method.Keywords: forced convection, square cylinder, nanofluid, neural network
Procedia PDF Downloads 321583 Curved Rectangular Patch Array Antenna Using Flexible Copper Sheet for Small Missile Application
Authors: Jessada Monthasuwan, Charinsak Saetiaw, Chanchai Thongsopa
Abstract:
This paper presents the development and design of the curved rectangular patch arrays antenna for small missile application. This design uses a 0.1mm flexible copper sheet on the front layer and back layer, and a 1.8mm PVC substrate on a middle layer. The study used a small missile model with 122mm diameter size with speed 1.1 Mach and frequency range on ISM 2.4 GHz. The design of curved antenna can be installation on a cylindrical object like a missile. So, our proposed antenna design will have a small size, lightweight, low cost, and simple structure. The antenna was design and analysis by a simulation result from CST microwave studio and confirmed with a measurement result from a prototype antenna. The proposed antenna has a bandwidth covering the frequency range 2.35-2.48 GHz, the return loss below -10 dB and antenna gain 6.5 dB. The proposed antenna can be applied with a small guided missile effectively.Keywords: rectangular patch arrays, small missile antenna, antenna design and simulation, cylinder PVC tube
Procedia PDF Downloads 315582 Different Stages for the Creation of Electric Arc Plasma through Slow Rate Current Injection to Single Exploding Wire, by Simulation and Experiment
Authors: Ali Kadivar, Kaveh Niayesh
Abstract:
This work simulates the voltage drop and resistance of the explosion of copper wires of diameters 25, 40, and 100 µm surrounded by 1 bar nitrogen exposed to a 150 A current and before plasma formation. The absorption of electrical energy in an exploding wire is greatly diminished when the plasma is formed. This study shows the importance of considering radiation and heat conductivity in the accuracy of the circuit simulations. The radiation of the dense plasma formed on the wire surface is modeled with the Net Emission Coefficient (NEC) and is mixed with heat conductivity through PLASIMO® software. A time-transient code for analyzing wire explosions driven by a slow current rise rate is developed. It solves a circuit equation coupled with one-dimensional (1D) equations for the copper electrical conductivity as a function of its physical state and Net Emission Coefficient (NEC) radiation. At first, an initial voltage drop over the copper wire, current, and temperature distribution at the time of expansion is derived. The experiments have demonstrated that wires remain rather uniform lengthwise during the explosion and can be simulated utilizing 1D simulations. Data from the first stage are then used as the initial conditions of the second stage, in which a simplified 1D model for high-Mach-number flows is adopted to describe the expansion of the core. The current was carried by the vaporized wire material before it was dispersed in nitrogen by the shock wave. In the third stage, using a three-dimensional model of the test bench, the streamer threshold is estimated. Electrical breakdown voltage is calculated without solving a full-blown plasma model by integrating Townsend growth coefficients (TdGC) along electric field lines. BOLSIG⁺ and LAPLACE databases are used to calculate the TdGC at different mixture ratios of nitrogen/copper vapor. The simulations show both radiation and heat conductivity should be considered for an adequate description of wire resistance, and gaseous discharges start at lower voltages than expected due to ultraviolet radiation and the exploding shocks, which may have ionized the nitrogen.Keywords: exploding wire, Townsend breakdown mechanism, streamer, metal vapor, shock waves
Procedia PDF Downloads 89581 Degradation of the Cu-DOM Complex by Bacteria: A Way to Increase Phytoextraction of Copper in a Vineyard Soil
Authors: Justine Garraud, Hervé Capiaux, Cécile Le Guern, Pierre Gaudin, Clémentine Lapie, Samuel Chaffron, Erwan Delage, Thierry Lebeau
Abstract:
The repeated use of Bordeaux mixture (copper sulphate) and other chemical forms of copper (Cu) has led to its accumulation in wine-growing soils for more than a century, to the point of modifying the ecosystem of these soils. Phytoextraction of copper could progressively reduce the Cu load in these soils, and even to recycle copper (e.g. as a micronutrient in animal nutrition) by cultivating the extracting plants in the inter-row of the vineyards. Soil cleaning up usually requires several years because the chemical speciation of Cu in solution is mainly based on forms complexed with dissolved organic matter (DOM) that are not phytoavailable, unlike the "free" forms (Cu2+). Indeed, more than 98% of Cu in the solution is bound to DOM. The selection and inoculation of invineyardsoils in vineyard soils ofbacteria(bioaugmentation) able to degrade Cu-DOM complexes could increase the phytoavailable pool of Cu2+ in the soil solution (in addition to bacteria which first mobilize Cu in solution from the soil bearing phases) in order to increase phytoextraction performance. In this study, sevenCu-accumulating plants potentially usable in inter-row were tested for their Cu phytoextraction capacity in hydroponics (ray-grass, brown mustard, buckwheat, hemp, sunflower, oats, and chicory). Also, a bacterial consortium was tested: Pseudomonas sp. previously studied for its ability to mobilize Cu through the pyoverdine siderophore (complexing agent) and potentially to degrade Cu-DOM complexes, and a second bacterium (to be selected) able to promote the survival of Pseudomonas sp. following its inoculation in soil. Interaction network method was used based on the notions of co-occurrence and, therefore, of bacterial abundance found in the same soils. Bacteria from the EcoVitiSol project (Alsace, France) were targeted. The final step consisted of incoupling the bacterial consortium with the chosen plant in soil pots. The degradation of Cu-DOMcomplexes is measured on the basis of the absorption index at 254nm, which gives insight on the aromaticity of the DOM. The“free” Cu in solution (from the mobilization of Cu and/or the degradation of Cu-MOD complexes) is assessed by measuring pCu. Eventually, Cu accumulation in plants is measured by ICP-AES. The selection of the plant is currently being finalized. The interaction network method targeted the best positive interactions ofFlavobacterium sp. with Pseudomonassp. These bacteria are both PGPR (plant growth promoting rhizobacteria) with the ability to improve the plant growth and to mobilize Cu from the soil bearing phases (siderophores). Also, these bacteria are known to degrade phenolic groups, which are highly present in DOM. They could therefore contribute to the degradation of DOM-Cu. The results of the upcoming bacteria-plant coupling tests in pots will be also presented.Keywords: complexes Cu-DOM, bioaugmentation, phytoavailability, phytoextraction
Procedia PDF Downloads 83580 A Study of Surface of Titanium Targets for Neutron Generators
Authors: Alexey Yu. Postnikov, Nikolay T. Kazakovskiy, Valery V. Mokrushin, Irina A. Tsareva, Andrey A. Potekhin, Valentina N. Golubeva, Yuliya V. Potekhina, Maxim V. Tsarev
Abstract:
The development of tritium and deuterium targets for neutron tubes and generators is a part of the activities in All-Russia Research Institute of Experimental Physics (RFNC-VNIIEF). These items contain a metal substrate (for example, copper) with a titanium film with a few microns thickness deposited on it. Then these metal films are saturated with tritium, deuterium or their mixtures. The significant problem in neutron tubes and neutron generators is the characterization of substrate surface before a deposition of titanium film on it, and analysis of the deposited titanium film’s surface before hydrogenation and after a saturation of the film with hydrogen isotopes. The performance effectiveness of neutron tube and generator also depends on upon the quality parameters of the surface of the initial substrate, deposited metal film and hydrogenated target. The objective of our work is to study the target prototype samples, that have differ by various approaches to the preliminary chemical processing of a copper substrate, and to analyze the integrity of titanium film after its saturation with deuterium. The research results of copper substrate and the surface of deposited titanium film with the use of electron microscopy, X-ray spectral microanalysis and laser-spark methods of analyses are presented. The causes of surface defects appearance have been identified. The distribution of deuterium and some impurities (oxygen and nitrogen) along the surface and across the height of the hydrogenated film in the target has been established. This allows us to evaluate the composition homogeneity of the samples and consequently to estimate the quality of hydrogenated samples. As the result of this work the propositions on the advancement of production technology and characterization of target’s surface have been presented.Keywords: tritium and deuterium targets, titanium film, laser-spark methods, electron microscopy
Procedia PDF Downloads 443579 A Cheap Mesoporous Silica from Fly Ash as an Adsorbent for Sulfate in Water
Authors: Ximena Castillo, Jaime Pizarro
Abstract:
This research describes the development of a very cheap mesoporous silica material similar to hexagonal mesoporous silica (HMS) and using a silicate extract as precursor. This precursor is obtained from cheap fly ash by an easy calcination process at 850 °C and a green extraction with water. The obtained mesoporous fly ash material had a surface area of 282 m2 g-1 and a pore size of 5.7 nm. It was functionalized with ethylene diamino moieties via the well-known SAMMS method, followed by a DRIFT analysis that clearly showed the successful functionalization. An excellent adsorbent was obtained for the adsorption of sulfate anions by the solid’s modification with copper forming a copper-ethylenediamine complex. The adsorption of sulfates was studied in a batch system ( experimental conditions: pH=8.0; 5 min). The kinetics data were adjusted according to a pseudo-second order model with a high coefficient of linear regression at different initial concentrations. The adsorption isotherm that best fitted the experimental data was the Freundlich model. The maximum sulfate adsorption capacity of this very cheap fly ash based adsorbent was 146.1 mg g-1, 3 times greater than the values reported in literature and commercial adsorbent materials.Keywords: fly ash, mesoporous materials, SAMMS, sulfate
Procedia PDF Downloads 178578 Novel Self-Healing Eco-Friendly Coatings with Antifouling and Anticorrosion Properties for Maritime Applications
Authors: K. N. Kipreou, E. Efthmiadou, G. Kordas
Abstract:
Biofouling represents one of the most crucial problems in the present maritime industries when its control still challenges the researchers all over the world. The present work is referred to the synthesis and characterization CeMo and Cu2O nanocontainers by using a wide range of techniques including scanning electron microscopy (SEM), X-ray diffraction (XRD) and thermogravimetric analysis (TGA) for marine applications. The above nanosystems will be loaded with active monomers and corrosion rendering healing ability to marine paints. The objective of this project is their ability for self-healing, self-polishing and finally for anti-corrosion activity. One of the driving forces for the exploration of CeMo, is the unique anticorrosive behavior, which will be confirmed by the electrochemistry methodology. It has be highlighted that the nanocontainers of Cu2O with the appropriate antibacterial inhibitor will improve the hydrophobicity and the morphology of the coating surfaces reducing the water friction. In summary, both novel nanoc will increase the lifetime of the paints releasing the antifouling agent in a control manner.Keywords: marinepaints, nanocontainer, antifouling, anticorrosion, copper, electrochemistry, coating, biofouling, inhibitors, copper oxide, coating, SEM
Procedia PDF Downloads 339577 Detection of Abnormal Process Behavior in Copper Solvent Extraction by Principal Component Analysis
Authors: Kirill Filianin, Satu-Pia Reinikainen, Tuomo Sainio
Abstract:
Frequent measurements of product steam quality create a data overload that becomes more and more difficult to handle. In the current study, plant history data with multiple variables was successfully treated by principal component analysis to detect abnormal process behavior, particularly, in copper solvent extraction. The multivariate model is based on the concentration levels of main process metals recorded by the industrial on-stream x-ray fluorescence analyzer. After mean-centering and normalization of concentration data set, two-dimensional multivariate model under principal component analysis algorithm was constructed. Normal operating conditions were defined through control limits that were assigned to squared score values on x-axis and to residual values on y-axis. 80 percent of the data set were taken as the training set and the multivariate model was tested with the remaining 20 percent of data. Model testing showed successful application of control limits to detect abnormal behavior of copper solvent extraction process as early warnings. Compared to the conventional techniques of analyzing one variable at a time, the proposed model allows to detect on-line a process failure using information from all process variables simultaneously. Complex industrial equipment combined with advanced mathematical tools may be used for on-line monitoring both of process streams’ composition and final product quality. Defining normal operating conditions of the process supports reliable decision making in a process control room. Thus, industrial x-ray fluorescence analyzers equipped with integrated data processing toolbox allows more flexibility in copper plant operation. The additional multivariate process control and monitoring procedures are recommended to apply separately for the major components and for the impurities. Principal component analysis may be utilized not only in control of major elements’ content in process streams, but also for continuous monitoring of plant feed. The proposed approach has a potential in on-line instrumentation providing fast, robust and cheap application with automation abilities.Keywords: abnormal process behavior, failure detection, principal component analysis, solvent extraction
Procedia PDF Downloads 310576 Mixed Convection Heat Transfer of Copper Oxide-Heat Transfer Oil Nanofluid in Vertical Tube
Authors: Farhad Hekmatipour, M. A. Akhavan-Behabadi, Farzad Hekmatipour
Abstract:
In this paper, experiments were conducted to investigate the heat transfer of Copper Oxide-Heat Transfer Oil (CuO-HTO) nanofluid laminar flow in vertical smooth and microfin tubes as the surface temperature is constant. The effect of adding the nanoparticle to base fluid and Richardson number on the heat transfer enhancement is investigated as Richardson number increases from 0.1 to 0.7. The experimental results demonstrate that the combined forced-natural convection heat transfer rate may be improved significantly with an increment of mass nanoparticle concentration from 0% to 1.5%. In this experiment, a correlation is also proposed to predict the mixed convection heat transfer rate of CuO-HTO nanofluid flow. The maximum deviation of both correlations is less than 14%. Moreover, a correlation is presented to estimate the Nusselt number inside vertical smooth and microfin tubes as Rayleigh number is between 2´105 and 6.8´106 with the maximum deviation of 12%.Keywords: mixed convection, heat transfer, nanofluid, vertical tube, microfin tube
Procedia PDF Downloads 380575 Thin Films of Copper Oxide Deposited by Sol-Gel Spin Coating Method: Effect of Annealing Temperature on Structural and Optical Properties
Authors: Touka Nassim, Tabli Dalila
Abstract:
In this study, CuO thin films synthesized via simple sol-gel method, have been deposited on glass substrates by the spin coating technique and annealed at various temperatures. Samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), Fourier-transform infrared (FT-IR) and Raman spectroscopy, and UV-visible spectroscopy. The structural characterization by XRD reveals that the as prepared films were tenorite phase and have a high level of purity and crystallinity. The crystallite size of the CuO films was affected by the annealing temperature and was estimated in the range 20-31.5 nm. SEM images show a homogeneous distribution of spherical nanoparticles over the surface of the annealed films at 350 and 450 °C. Vibrational Spectroscopy revealed vibration modes specific to CuO with monolithic structure on the Raman spectra at 289 cm−1 and on FT-IR spectra around 430-580 cm−1. Electronic investigation performed by UV–Visible spectroscopy showed that the films have high absorbance in the visible region and their optical band gap increases from 2.40 to 2.66 eV (blue shift) with increasing annealing temperature from 350 to 550 °C.Keywords: Sol-gel, Spin coating method, Copper oxide, Thin films
Procedia PDF Downloads 161574 The Study of Sintered Wick Structure of Heat Pipes with Excellent Heat Transfer Capabilities
Authors: Im-Nam Jang, Yong-Sik Ahn
Abstract:
In this study sintered wick was formed in a heat pipe through the process of sintering a mixture of copper powder with particle sizes of 100μm and 200μm, mixed with a pore-forming agent. The heat pipe's thermal resistance, which affects its heat transfer efficiency, is determined during manufacturing according to powder type, thickness of the sintered wick, and filling rate of the working fluid. Heat transfer efficiency was then tested at various inclination angles (0°, 45°, 90°) to evaluate the performance of heat pipes. Regardless of the filling amount and test angle, the 200μm copper powder type exhibited superior heat transfer efficiency compared to the 100μm type. After analyzing heat transfer performance at various filling rates between 20% and 50%, it was determined that the heat pipe's optimal heat transfer capability occurred at a working fluid filling rate of 30%. The width of the wick was directly related to the heat transfer performance.Keywords: heat pipe, heat transfer performance, effective pore size, capillary force, sintered wick
Procedia PDF Downloads 64573 Repurposing of Crystalline Solar PV For Sodium Silicate Production
Authors: Lawal Alkasim, Clement M. Gonah, Zainab S. Aliyu
Abstract:
This work is focus on recovering silicon form photovoltaic cells and repurposing it toward the use in glass, ceramics or glass ceramics as it is made up of silicon material. Silicon is the main back-bone and responsible for the thermodynamic properties of glass, ceramics and glass ceramics materials. Antireflection silicon is soluble in hot alkali. Successfully the recovered material composed of silicon and silicon nitride of the A.R, with a small amount of silver, Aluminuim, lead & copper in the sunshine of crystalline/non-crystalline silicon solar cell. Aquaregia is used to remove the silver, Aluminium, lead & copper. The recovered material treated with hot alkali highly concentrated to produce sodium silicate, which is an alkali silicate glass (water glass). This type of glass is produced through chemical process, unlike other glasses that are produced through physical process of melting and non-crystalline solidification. It has showed a property of being alkali silicate glass from its solubility in water and insoluble in alcohol. The XRF analysis shows the presence of sodium silicate.Keywords: unrecyclable solar PV, crystalline silicon, hot conc. alkali, sodium silicate
Procedia PDF Downloads 101572 Accumulation and Distribution of Soil Organic Carbon in Oxisols, Tshivhase Estate, Limpopo Province
Authors: M. Rose Ntsewa, P. E. Dlamini, V. E. Mbanjwa, R. Chauke
Abstract:
Land-use change from undisturbed forest to tea plantation may lead to accumulation or loss of soil organic carbon (SOC). So far, the factors controlling the vertical distribution of SOC under the long-term establishment of tea plantation remain poorly understood, especially in oxisols. In this study, we quantified the vertical distribution of SOC under tea plantation compared to adjacent undisturbed forest Oxisols sited at different topographic positions and also determined controlling edaphic factors. SOC was greater in the 30-year-old tea plantation compared to undisturbed forest oxisols and declined with depth across all topographic positions. Most of the SOC was found in the downslope position due to erosion and deposition. In the topsoil, SOC was positively correlated with heavy metals; manganese (r=0.62-0.83; P<0.05) and copper (r=0.45-0.69), effective cation exchange capacity (ECEC) (r=0.72) and mean weight diameter (MWD) (r=0.72-0.73), while in the subsoil SOC was positively correlated with copper (r=0.89-0.92) and zinc (r=0.86), ECEC (r=0.56-0.69) and MWD (r=0.48). These relationships suggest that SOC in the tea plantation, oxisols is chemically stabilized via complexation with heavy metals, and physically stabilized by soil aggregates.Keywords: oxisols, tea plantation, topography, undisturbed forest
Procedia PDF Downloads 150571 Potential Ecological Risk Assessment of Selected Heavy Metals in Sediments of Tidal Flat Marsh, the Case Study: Shuangtai Estuary, China
Authors: Chang-Fa Liu, Yi-Ting Wang, Yuan Liu, Hai-Feng Wei, Lei Fang, Jin Li
Abstract:
Heavy metals in sediments can cause adverse ecological effects while it exceeds a given criteria. The present study investigated sediment environmental quality, pollutant enrichment, ecological risk, and source identification for copper, cadmium, lead, zinc, mercury, and arsenic in the sediments collected from tidal flat marsh of Shuangtai estuary, China. The arithmetic mean integrated pollution index, geometric mean integrated pollution index, fuzzy integrated pollution index, and principal component score were used to characterize sediment environmental quality; fuzzy similarity and geo-accumulation Index were used to evaluate pollutant enrichment; correlation matrix, principal component analysis, and cluster analysis were used to identify source of pollution; environmental risk index and potential ecological risk index were used to assess ecological risk. The environmental qualities of sediment are classified to very low degree of contamination or low contamination. The similar order to element background of soil in the Liaohe plain is region of Sanjiaozhou, Honghaitan, Sandaogou, Xiaohe by pollutant enrichment analysis. The source identification indicates that correlations are significantly among metals except between copper and cadmium. Cadmium, lead, zinc, mercury, and arsenic will be clustered in the same clustering as the first principal component. Copper will be clustered as second principal component. The environmental risk assessment level will be scaled to no risk in the studied area. The order of potential ecological risk is As > Cd > Hg > Cu > Pb > Zn.Keywords: ecological risk assessment, heavy metals, sediment, marsh, Shuangtai estuary
Procedia PDF Downloads 350570 Magnetohydrodynamic (MHD) Flow of Cu-Water Nanofluid Due to a Rotating Disk with Partial Slip
Authors: Tasawar Hayat, Madiha Rashid, Maria Imtiaz, Ahmed Alsaedi
Abstract:
This problem is about the study of flow of viscous fluid due to rotating disk in nanofluid. Effects of magnetic field, slip boundary conditions and thermal radiations are encountered. An incompressible fluid soaked the porous medium. In this model, nanoparticles of Cu is considered with water as the base fluid. For Copper-water nanofluid, graphical results are presented to describe the influences of nanoparticles volume fraction (φ) on velocity and temperature fields for the slip boundary conditions. The governing differential equations are transformed to a system of nonlinear ordinary differential equations by suitable transformations. Convergent solution of the nonlinear system is developed. The obtained results are analyzed through graphical illustrations for different parameters. Moreover, the features of the flow and heat transfer characteristics are analyzed. It is found that the skin friction coefficient and heat transfer rate at the surface are highest in copper-water nanofluid.Keywords: MHD nanofluid, porous medium, rotating disk, slip effect
Procedia PDF Downloads 260569 Fabrication Methodologies for Anti-Microbial Polypropylene Surfaces with Leachable and Non-leachable Anti-Microbial Agents
Authors: Saleh Alkarri, Dimple Sharma, Teresa M. Bergholz, Muhammad Rabnawaz
Abstract:
Aims: Develop a methodology for the fabrication of anti-microbial polypropylene (PP) surfaces with (i) leachable copper, (II) chloride dihydrate (CuCl₂·₂H₂O) and (ii) non-leachable magnesium hydroxide (Mg(OH)₂) biocides. Methods and Results: Two methodologies are used to develop anti-microbial PP surfaces. One method involves melt-blending and subsequent injection molding, where the biocide additives were compounded with PP and subsequently injection-molded. The other method involves the thermal embossing of anti-microbial agents on the surface of a PP substrate. The obtained biocide-bearing PP surfaces were evaluated against E. coli K-12 MG1655 for 0, 4, and 24 h to evaluate their anti-microbial properties. The injection-molded PP bearing 5% CuCl2·₂H₂O showed a 6-log reduction of E. coli K-12 MG1655 after 24 h, while only 1 log reduction was observed for PP bearing 5% Mg(OH)2. The thermally embossed PP surfaces bearing CuCl2·2H2O and Mg(OH)₂ particles (at a concentration of 10 mg/mL) showed 3 log and 4 log reduction, respectively, against E.coli K-12 MG1655 after 24 h. Conclusion: The results clearly demonstrate that CuCl₂·2H₂O conferred anti-microbial properties to PP surfaces that were prepared by both injection molding as well as thermal embossing approaches owing to the presence of leachable copper ions. In contrast, the non-leachable Mg(OH)₂ imparted anti-microbial properties only to the surface prepared via the thermal embossing technique. Significance and Impact of The Study: Plastics with leachable biocides are effective anti-microbial surfaces, but their toxicity is a major concern. This study provides a fabrication methodology for non-leachable PP-based anti-microbial surfaces that are potentially safer. In addition, this strategy can be extended to many other plastics substrates.Keywords: anti-microbial activity, E. coli K-12 MG1655, copper (II) chloride dihydrate, magnesium hydroxide, leachable, non-leachable, compounding, thermal embossing
Procedia PDF Downloads 78568 Fabrication Methodologies for Anti-microbial Polypropylene Surfaces with Leachable and Non-leachable Anti-microbial Agents
Authors: Saleh Alkarri, Dimple Sharma, Teresa M. Bergholz, Muhammad Rabnawa
Abstract:
Aims: Develop a methodology for the fabrication of anti-microbial polypropylene (PP) surfaces with (i) leachable copper (II) chloride dihydrate (CuCl2·2H2O) and (ii) non-leachable magnesium hydroxide (Mg(OH)2) biocides. Methods and Results: Two methodologies are used to develop anti-microbial PP surfaces. One method involves melt-blending and subsequent injection molding, where the biocide additives were compounded with PP and subsequently injection-molded. The other method involves the thermal embossing of anti-microbial agents on the surface of a PP substrate. The obtained biocide-bearing PP surfaces were evaluated against E. coli K-12 MG1655 for 0, 4, and 24 h to evaluate their anti-microbial properties. The injection-molded PP bearing 5% CuCl2·2H2O showed a 6-log reduction of E. coli K-12 MG1655 after 24 h, while only 1 log reduction was observed for PP bearing 5% Mg(OH)2. The thermally embossed PP surfaces bearing CuCl2·2H2O and Mg(OH)2 particles (at a concentration of 10 mg/mL) showed 3 log and 4 log reduction, respectively, against E.coli K-12 MG1655 after 24 h. Conclusion: The results clearly demonstrate that CuCl2·2H2O conferred anti-microbial properties to PP surfaces that were prepared by both injection molding as well as thermal embossing approaches owing to the presence of leachable copper ions. In contrast, the non-leachable Mg(OH)2 imparted anti-microbial properties only to the surface prepared via the thermal embossing technique. Significance and Impact of The Study: Plastics with leachable biocides are effective anti-microbial surfaces, but their toxicity is a major concern. This study provides a fabrication methodology for non-leachable PP-based anti-microbial surfaces that are potentially safer. In addition, this strategy can be extended to many other plastics substrates.Keywords: anti-microbial activity, E. coli K-12 MG1655, copper (II) chloride dihydrate, magnesium hydroxide, leachable, non-leachable, compounding, thermal embossing
Procedia PDF Downloads 85567 Influence of Carbon Addition on the Activity of Silica Supported Copper and Cobalt Catalysts in NO Reduction with CO
Authors: N. Stoeva, I. Spassova, R. Nickolov, M. Khristova
Abstract:
Exhaust gases from stationary and mobile combustion sources contain nitrogen oxides that cause a variety of environmentally harmful effects. The most common approach of their elimination is the catalytic reaction in the exhaust using various reduction agents such as NH3, CO and hydrocarbons. Transition metals (Co, Ni, Cu, etc.) are the most widely used as active components for deposition on various supports. However, since the interaction between different catalyst components have been extensively studied in different types of reaction systems, the possible cooperation between active components and the support material and the underlying mechanisms have not been thoroughly investigated. The support structure may affect how these materials maintain an active phase. The objective is to investigate the addition of carbonaceous materials with different nature and texture characteristics on the properties of the resulting silica-carbon support and how it influences of the catalytic properties of the supported copper and cobalt catalysts for reduction of NO with CO. The versatility of the physico-chemical properties of the composites and the supported copper and cobalt catalysts are discussed with an emphasis on the relationship of the properties with the catalytic performance. The catalysts were prepared by sol-gel process and were characterized by XRD, XPS, AAS and BET analysis. The catalytic experiments were carried out in catalytic flow apparatus with isothermal flow reactor in the temperature range 20–300оС. After the catalytic test temperature-programmed desorption (TPD) was carried out. The transient response method was used to study the interaction of the gas phase with the catalyst surface. The role of the interaction between the support and the active phase on the catalyst’s activity in the studied reaction was discussed. We suppose the carbon particles with small sizes to participate in the formation of the active sites for the reduction of NO with CO along with their effect on the kind of deposited metal oxide phase. The existence of micropore texture for some of composites also influences by mass-transfer limitations.Keywords: catalysts, no reduction, composites, bet analysis
Procedia PDF Downloads 424566 Analysis of a Faience Enema Found in the Assasif Tomb No. -28- of the Vizier Amenhotep Huy: Contributions to the Study of the Mummification Ritual Practiced in the Theban Necropolis
Authors: Alberto Abello Moreno-Cid
Abstract:
Mummification was the process through which immortality was granted to the deceased, so it was of extreme importance to the Egyptians. The techniques of embalming had evolved over the centuries, and specialists created increasingly sophisticated tools. However, due to its eminently religious nature, knowledge about everything related to this practice was jealously preserved, and the testimonies that have survived to our time are scarce. For this reason, embalming instruments found in archaeological excavations are uncommon. The tomb of the Vizier Amenhotep Huy (AT No. -28-), located in the el-Assasif necropolis that is being excavated since 2009 by the team of the Institute of Ancient Egyptian Studies, has been the scene of some discoveries of this type that evidences the existence of mummification practices in this place after the New Kingdom. The clysters or enemas are the fundamental tools in the second type of mummification described by the historian Herodotus to introduce caustic solutions inside the body of the deceased. Nevertheless, such objects only have been found in three locations: the tomb of Ankh-Hor in Luxor, where a copper enema belonged to the prophet of Ammon Uah-ib-Ra came to light; the excavation of the tomb of Menekh-ib-Nekau in Abusir, where was also found one made of copper; and the excavations in the Bucheum, where two more artifacts were discovered, also made of copper but in different shapes and sizes. Both of them were used for the mummification of sacred animals and this is the reason they vary significantly. Therefore, the object found in the tomb No. -28-, is the first known made of faience of all these peculiar tools and the oldest known until now, dated in the Third Intermediate Period (circa 1070-650 B.C.). This paper bases its investigation on the study of those parallelisms, the material, the current archaeological context and the full analysis and reconstruction of the object in question. The key point is the use of faience in the production of this item: creating a device intended to be in constant use seems to be a first illogical compared to other samples made of copper. Faience around the area of Deir el-Bahari had a strong religious component, associated with solar myths and principles of the resurrection, connected to the Osirian that characterises the mummification procedure. The study allows to refute some of the premises which are held unalterable in Egyptology, verifying the utilization of these sort of pieces, understanding its way of use and showing that this type of mummification was also applied to the highest social stratum, in which case the tools were thought out of an exceptional quality and religious symbolism.Keywords: clyster, el-Assasif, embalming, faience enema mummification, Theban necropolis
Procedia PDF Downloads 112