Search results for: discrete automation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1124

Search results for: discrete automation

824 Effect of Particle Shape on Monotonic and Cyclic Biaxial Behaviour of Sand Using Discrete Element Method

Authors: Raj Banerjee, Y. M. Parulekar, Aniruddha Sengupta, J. Chattopadhyay

Abstract:

This study proposes a Discrete Element Method (DEM) simulation using a commercial software PFC 2D (2019) for quantitatively simulating the monotonic and cyclic behaviour of sand using irregular shapes of sand grains. A preliminary analysis of the number of particles for optimal Representative Element Volume (REV) simulation of dimension 35mm x 35mm x 70mm using the scaled Grain Size Distribution (GSD) of sand is carried out. Subsequently, the effect of particle shape on the performance of sand during monotonic and cyclic bi-axial tests is assessed using numerical simulation. The validation of the numerical simulation for one case is carried out using the test results from the literature. Further numerical studies are performed in which the particles in REV are simulated by mixing round discs with irregular clumps (100% round disc, 75% round disc 25% irregular clump, 50% round disc 50% irregular clump, 25% round disc 75% irregular clump, 100% irregular clump) in different proportions using Dry Deposition (DD) method. The macro response for monotonic loading shows that irregular sand has a higher strength than round particles and that the Mohr-Coulomb failure envelope depends on the shape of the grains. During cyclic loading, it is observed that the liquefaction resistance curve (Cyclic Stress Ratio (CSR)-Number of cycles (N)) of sand is dependent on the combination of particle shapes with different proportions.

Keywords: biaxial test, particle shape, monotonic, cyclic

Procedia PDF Downloads 71
823 Detection and Classification of Mammogram Images Using Principle Component Analysis and Lazy Classifiers

Authors: Rajkumar Kolangarakandy

Abstract:

Feature extraction and selection is the primary part of any mammogram classification algorithms. The choice of feature, attribute or measurements have an important influence in any classification system. Discrete Wavelet Transformation (DWT) coefficients are one of the prominent features for representing images in frequency domain. The features obtained after the decomposition of the mammogram images using wavelet transformations have higher dimension. Even though the features are higher in dimension, they were highly correlated and redundant in nature. The dimensionality reduction techniques play an important role in selecting the optimum number of features from the higher dimension data, which are highly correlated. PCA is a mathematical tool that reduces the dimensionality of the data while retaining most of the variation in the dataset. In this paper, a multilevel classification of mammogram images using reduced discrete wavelet transformation coefficients and lazy classifiers is proposed. The classification is accomplished in two different levels. In the first level, mammogram ROIs extracted from the dataset is classified as normal and abnormal types. In the second level, all the abnormal mammogram ROIs is classified into benign and malignant too. A further classification is also accomplished based on the variation in structure and intensity distribution of the images in the dataset. The Lazy classifiers called Kstar, IBL and LWL are used for classification. The classification results obtained with the reduced feature set is highly promising and the result is also compared with the performance obtained without dimension reduction.

Keywords: PCA, wavelet transformation, lazy classifiers, Kstar, IBL, LWL

Procedia PDF Downloads 335
822 On the Influence of Thermal Radiation Upon Heat Transfer Characteristics of a Porous Media Under Local Thermal Non-Equilibrium Condition

Authors: Yasser Mahmoudi, Nader Karimi

Abstract:

The present work investigates numerically the effect of thermal radiation from the solid phase on the rate of heat transfer inside a porous medium. Forced convection heat transfer process within a pipe filled with a porous media is considered. The Darcy-Brinkman-Forchheimer model is utilized to represent the fluid transport within the porous medium. A local thermal non-equilibrium (LTNE), two-equation model is used to represent the energy transport for the solid and fluid phases. The radiative heat transfer equation is solved by discrete ordinate method (DOM) to compute the radiative heat flux in the porous medium. Two primary approaches (models A and B) are used to represent the boundary conditions for constant wall heat flux. The effects of radiative heat transfer on the Nusselt numbers of the two phases are examined by comparing the results obtained by the application of models A and B. The fluid Nusselt numbers calculated by the application of models A and B show that the Nusselt number obtained by model A for the radiative case is higher than those predicted for the non-radiative case. However, for model B the fluid Nusselt numbers obtained for the radiative and non-radiative cases are similar.

Keywords: porous media, local thermal non-equilibrium, forced convection heat transfer, thermal radiation, Discrete Ordinate Method (DOM)

Procedia PDF Downloads 323
821 Energy Consumption Statistic of Gas-Solid Fluidized Beds through Computational Fluid Dynamics-Discrete Element Method Simulations

Authors: Lei Bi, Yunpeng Jiao, Chunjiang Liu, Jianhua Chen, Wei Ge

Abstract:

Two energy paths are proposed from thermodynamic viewpoints. Energy consumption means total power input to the specific system, and it can be decomposed into energy retention and energy dissipation. Energy retention is the variation of accumulated mechanical energy in the system, and energy dissipation is the energy converted to heat by irreversible processes. Based on the Computational Fluid Dynamics-Discrete Element Method (CFD-DEM) framework, different energy terms are quantified from the specific flow elements of fluid cells and particles as well as their interactions with the wall. Direct energy consumption statistics are carried out for both cold and hot flow in gas-solid fluidization systems. To clarify the statistic method, it is necessary to identify which system is studied: the particle-fluid system or the particle sub-system. For the cold flow, the total energy consumption of the particle sub-system can predict the onset of bubbling and turbulent fluidization, while the trends of local energy consumption can reflect the dynamic evolution of mesoscale structures. For the hot flow, different heat transfer mechanisms are analyzed, and the original solver is modified to reproduce the experimental results. The influence of the heat transfer mechanisms and heat source on energy consumption is also investigated. The proposed statistic method has proven to be energy-conservative and easy to conduct, and it is hopeful to be applied to other multiphase flow systems.

Keywords: energy consumption statistic, gas-solid fluidization, CFD-DEM, regime transition, heat transfer mechanism

Procedia PDF Downloads 68
820 A Discrete Element Method Centrifuge Model of Monopile under Cyclic Lateral Loads

Authors: Nuo Duan, Yi Pik Cheng

Abstract:

This paper presents the data of a series of two-dimensional Discrete Element Method (DEM) simulations of a large-diameter rigid monopile subjected to cyclic loading under a high gravitational force. At present, monopile foundations are widely used to support the tall and heavy wind turbines, which are also subjected to significant from wind and wave actions. A safe design must address issues such as rotations and changes in soil stiffness subject to these loadings conditions. Design guidance on the issue is limited, so are the availability of laboratory and field test data. The interpretation of these results in sand, such as the relation between loading and displacement, relies mainly on empirical correlations to pile properties. Regarding numerical models, most data from Finite Element Method (FEM) can be found. They are not comprehensive, and most of the FEM results are sensitive to input parameters. The micro scale behaviour could change the mechanism of the soil-structure interaction. A DEM model was used in this paper to study the cyclic lateral loads behaviour. A non-dimensional framework is presented and applied to interpret the simulation results. The DEM data compares well with various set of published experimental centrifuge model test data in terms of lateral deflection. The accumulated permanent pile lateral displacements induced by the cyclic lateral loads were found to be dependent on the characteristics of the applied cyclic load, such as the extent of the loading magnitudes and directions.

Keywords: cyclic loading, DEM, numerical modelling, sands

Procedia PDF Downloads 320
819 Diagnosis of Induction Machine Faults by DWT

Authors: Hamidreza Akbari

Abstract:

In this paper, for detection of inclined eccentricity in an induction motor, time–frequency analysis of the stator startup current is carried out. For this purpose, the discrete wavelet transform is used. Data are obtained from simulations, using winding function approach. The results show the validity of the approach for detecting the fault and discriminating with respect to other faults.

Keywords: induction machine, fault, DWT, electric

Procedia PDF Downloads 350
818 Estimation of Scour Using a Coupled Computational Fluid Dynamics and Discrete Element Model

Authors: Zeinab Yazdanfar, Dilan Robert, Daniel Lester, S. Setunge

Abstract:

Scour has been identified as the most common threat to bridge stability worldwide. Traditionally, scour around bridge piers is calculated using the empirical approaches that have considerable limitations and are difficult to generalize. The multi-physic nature of scouring which involves turbulent flow, soil mechanics and solid-fluid interactions cannot be captured by simple empirical equations developed based on limited laboratory data. These limitations can be overcome by direct numerical modeling of coupled hydro-mechanical scour process that provides a robust prediction of bridge scour and valuable insights into the scour process. Several numerical models have been proposed in the literature for bridge scour estimation including Eulerian flow models and coupled Euler-Lagrange models incorporating an empirical sediment transport description. However, the contact forces between particles and the flow-particle interaction haven’t been taken into consideration. Incorporating collisional and frictional forces between soil particles as well as the effect of flow-driven forces on particles will facilitate accurate modeling of the complex nature of scour. In this study, a coupled Computational Fluid Dynamics and Discrete Element Model (CFD-DEM) has been developed to simulate the scour process that directly models the hydro-mechanical interactions between the sediment particles and the flowing water. This approach obviates the need for an empirical description as the fundamental fluid-particle, and particle-particle interactions are fully resolved. The sediment bed is simulated as a dense pack of particles and the frictional and collisional forces between particles are calculated, whilst the turbulent fluid flow is modeled using a Reynolds Averaged Navier Stocks (RANS) approach. The CFD-DEM model is validated against experimental data in order to assess the reliability of the CFD-DEM model. The modeling results reveal the criticality of particle impact on the assessment of scour depth which, to the authors’ best knowledge, hasn’t been considered in previous studies. The results of this study open new perspectives to the scour depth and time assessment which is the key to manage the failure risk of bridge infrastructures.

Keywords: bridge scour, discrete element method, CFD-DEM model, multi-phase model

Procedia PDF Downloads 131
817 Adapting Cyber Physical Production Systems to Small and Mid-Size Manufacturing Companies

Authors: Yohannes Haile, Dipo Onipede, Jr., Omar Ashour

Abstract:

The main thrust of our research is to determine Industry 4.0 readiness of small and mid-size manufacturing companies in our region and assist them to implement Cyber Physical Production System (CPPS) capabilities. Adopting CPPS capabilities will help organizations realize improved quality, order delivery, throughput, new value creation, and reduced idle time of machines and work centers of their manufacturing operations. The key metrics for the assessment include the level of intelligence, internal and external connections, responsiveness to internal and external environmental changes, capabilities for customization of products with reference to cost, level of additive manufacturing, automation, and robotics integration, and capabilities to manufacture hybrid products in the near term, where near term is defined as 0 to 18 months. In our initial evaluation of several manufacturing firms which are profitable and successful in what they do, we found low level of Physical-Digital-Physical (PDP) loop in their manufacturing operations, whereas 100% of the firms included in this research have specialized manufacturing core competencies that have differentiated them from their competitors. The level of automation and robotics integration is low to medium range, where low is defined as less than 30%, and medium is defined as 30 to 70% of manufacturing operation to include automation and robotics. However, there is a significant drive to include these capabilities at the present time. As it pertains to intelligence and connection of manufacturing systems, it is observed to be low with significant variance in tying manufacturing operations management to Enterprise Resource Planning (ERP). Furthermore, it is observed that the integration of additive manufacturing in general, 3D printing, in particular, to be low, but with significant upside of integrating it in their manufacturing operations in the near future. To hasten the readiness of the local and regional manufacturing companies to Industry 4.0 and transitions towards CPPS capabilities, our working group (ADMAR Working Group) in partnership with our university have been engaged with the local and regional manufacturing companies. The goal is to increase awareness, share know-how and capabilities, initiate joint projects, and investigate the possibility of establishing the Center for Cyber Physical Production Systems Innovation (C2P2SI). The center is intended to support the local and regional university-industry research of implementing intelligent factories, enhance new value creation through disruptive innovations, the development of hybrid and data enhanced products, and the creation of digital manufacturing enterprises. All these efforts will enhance local and regional economic development and educate students that have well developed knowledge and applications of cyber physical manufacturing systems and Industry 4.0.

Keywords: automation, cyber-physical production system, digital manufacturing enterprises, disruptive innovation, new value creation, physical-digital-physical loop

Procedia PDF Downloads 140
816 Two-Phase Flow Study of Airborne Transmission Control in Dental Practices

Authors: Mojtaba Zabihi, Stephen Munro, Jonathan Little, Ri Li, Joshua Brinkerhoff, Sina Kheirkhah

Abstract:

Occupational Safety and Health Administration (OSHA) identified dental workers at the highest risk of contracting COVID-19. This is because aerosol-generating procedures (AGP) during dental practices generate aerosols ( < 5µm) and droplets. These particles travel at varying speeds, in varying directions, and for varying durations. If these particles bear infectious viruses, their spreading causes airborne transmission of the virus in the dental room, exposing dentists, hygienists, dental assistants, and even other dental clinic clients to the infection risk. Computational fluid dynamics (CFD) simulation of two-phase flows based on a discrete phase model (DPM) is carried out to study the spreading of aerosol and droplets in a dental room. The simulation includes momentum, heat, and mass transfers between the particles and the airflow. Two simulations are conducted and compared. One simulation focuses on the effects of room ventilation in winter and summer on the particles' travel. The other simulation focuses on the control of aerosol and droplets' spreading. A suction collector is added near the source of aerosol and droplets, creating a flow sink in order to remove the particles. The effects of the suction flow on the aerosol and droplet travel are studied. The suction flow can remove aerosols and also reduce the spreading of droplets.

Keywords: aerosols, computational fluid dynamics, COVID-19, dental, discrete phase model, droplets, two-phase flow

Procedia PDF Downloads 265
815 DWT-SATS Based Detection of Image Region Cloning

Authors: Michael Zimba

Abstract:

A duplicated image region may be subjected to a number of attacks such as noise addition, compression, reflection, rotation, and scaling with the intention of either merely mating it to its targeted neighborhood or preventing its detection. In this paper, we present an effective and robust method of detecting duplicated regions inclusive of those affected by the various attacks. In order to reduce the dimension of the image, the proposed algorithm firstly performs discrete wavelet transform, DWT, of a suspicious image. However, unlike most existing copy move image forgery (CMIF) detection algorithms operating in the DWT domain which extract only the low frequency sub-band of the DWT of the suspicious image thereby leaving valuable information in the other three sub-bands, the proposed algorithm simultaneously extracts features from all the four sub-bands. The extracted features are not only more accurate representation of image regions but also robust to additive noise, JPEG compression, and affine transformation. Furthermore, principal component analysis-eigenvalue decomposition, PCA-EVD, is applied to reduce the dimension of the features. The extracted features are then sorted using the more computationally efficient Radix Sort algorithm. Finally, same affine transformation selection, SATS, a duplication verification method, is applied to detect duplicated regions. The proposed algorithm is not only fast but also more robust to attacks compared to the related CMIF detection algorithms. The experimental results show high detection rates.

Keywords: affine transformation, discrete wavelet transform, radix sort, SATS

Procedia PDF Downloads 230
814 Automation of AAA Game Development Using AI

Authors: Branden Heng, Harsheni Siddharthan, Allison Tseng, Paul Toprac, Sarah Abraham, Etienne Vouga

Abstract:

The goal of this project was to evaluate and document the capabilities and limitations of AI tools for empowering small teams to create high-budget, high-profile (AAA) 3D games typically developed by large studios. Two teams of novice game developers attempted to create two different games using AI and Unreal Engine 5.3. First, the teams evaluated 60 AI art, design, sound, and programming tools by considering their capability, ease of use, cost, and license restrictions. Then, the teams used a shortlist of 12 AI tools for game development. During this process, the following tools were found to be the most productive: (i) ChatGPT 4.0 for both game and narrative concepts and documentation; (ii) Dall-E 3 and OpenArt for concept art; (iii) Beatoven for music drafting; (iv) ChatGPT 4.0 and Github Copilot for generating simple code and to complement human-made tutorials as an additional learning resource. While current generative AI may appear impressive at first glance, the assets they produce fall short of AAA industry standards. Generative AI tools are helpful when brainstorming ideas such as concept art and basic storylines, but they still cannot replace human input or creativity at this time. Regarding programming, AI can only effectively generate simple code and act as an additional learning resource. Thus, generative AI tools are, at best, tools to enhance developer productivity rather than as a system to replace developers.

Keywords: AAA games, AI, automation tools, game development

Procedia PDF Downloads 26
813 Application of Vector Representation for Revealing the Richness of Meaning of Facial Expressions

Authors: Carmel Sofer, Dan Vilenchik, Ron Dotsch, Galia Avidan

Abstract:

Studies investigating emotional facial expressions typically reveal consensus among observes regarding the meaning of basic expressions, whose number ranges between 6 to 15 emotional states. Given this limited number of discrete expressions, how is it that the human vocabulary of emotional states is so rich? The present study argues that perceivers use sequences of these discrete expressions as the basis for a much richer vocabulary of emotional states. Such mechanisms, in which a relatively small number of basic components is expanded to a much larger number of possible combinations of meanings, exist in other human communications modalities, such as spoken language and music. In these modalities, letters and notes, which serve as basic components of spoken language and music respectively, are temporally linked, resulting in the richness of expressions. In the current study, in each trial participants were presented with sequences of two images containing facial expression in different combinations sampled out of the eight static basic expressions (total 64; 8X8). In each trial, using single word participants were required to judge the 'state of mind' portrayed by the person whose face was presented. Utilizing word embedding methods (Global Vectors for Word Representation), employed in the field of Natural Language Processing, and relying on machine learning computational methods, it was found that the perceived meanings of the sequences of facial expressions were a weighted average of the single expressions comprising them, resulting in 22 new emotional states, in addition to the eight, classic basic expressions. An interaction between the first and the second expression in each sequence indicated that every single facial expression modulated the effect of the other facial expression thus leading to a different interpretation ascribed to the sequence as a whole. These findings suggest that the vocabulary of emotional states conveyed by facial expressions is not restricted to the (small) number of discrete facial expressions. Rather, the vocabulary is rich, as it results from combinations of these expressions. In addition, present research suggests that using word embedding in social perception studies, can be a powerful, accurate and efficient tool, to capture explicit and implicit perceptions and intentions. Acknowledgment: The study was supported by a grant from the Ministry of Defense in Israel to GA and CS. CS is also supported by the ABC initiative in Ben-Gurion University of the Negev.

Keywords: Glove, face perception, facial expression perception. , facial expression production, machine learning, word embedding, word2vec

Procedia PDF Downloads 176
812 DesignChain: Automated Design of Products Featuring a Large Number of Variants

Authors: Lars Rödel, Jonas Krebs, Gregor Müller

Abstract:

The growing price pressure due to the increasing number of global suppliers, the growing individualization of products and ever-shorter delivery times are upcoming challenges in the industry. In this context, Mass Personalization stands for the individualized production of customer products in batch size 1 at the price of standardized products. The possibilities of digitalization and automation of technical order processing open up the opportunity for companies to significantly reduce their cost of complexity and lead times and thus enhance their competitiveness. Many companies already use a range of CAx tools and configuration solutions today. Often, the expert knowledge of employees is hidden in "knowledge silos" and is rarely networked across processes. DesignChain describes the automated digital process from the recording of individual customer requirements, through design and technical preparation, to production. Configurators offer the possibility of mapping variant-rich products within the Design Chain. This transformation of customer requirements into product features makes it possible to generate even complex CAD models, such as those for large-scale plants, on a rule-based basis. With the aid of an automated CAx chain, production-relevant documents are thus transferred digitally to production. This process, which can be fully automated, allows variants to always be generated on the basis of current version statuses.

Keywords: automation, design, CAD, CAx

Procedia PDF Downloads 76
811 Revolutionizing Gaming Setup Design: Utilizing Generative and Iterative Methods to Prop and Environment Design, Transforming the Landscape of Game Development Through Automation and Innovation

Authors: Rashmi Malik, Videep Mishra

Abstract:

The practice of generative design has become a transformative approach for an efficient way of generating multiple iterations for any design project. The conventional way of modeling the game elements is very time-consuming and requires skilled artists to design. A 3D modeling tool like 3D S Max, Blender, etc., is used traditionally to create the game library, which will take its stipulated time to model. The study is focused on using the generative design tool to increase the efficiency in game development at the stage of prop and environment generation. This will involve procedural level and customized regulated or randomized assets generation. The paper will present the system design approach using generative tools like Grasshopper (visual scripting) and other scripting tools to automate the process of game library modeling. The script will enable the generation of multiple products from the single script, thus creating a system that lets designers /artists customize props and environments. The main goal is to measure the efficacy of the automated system generated to create a wide variety of game elements, further reducing the need for manual content creation and integrating it into the workflow of AAA and Indie Games.

Keywords: iterative game design, generative design, gaming asset automation, generative game design

Procedia PDF Downloads 70
810 The Role of Robotization in Reshoring: An Overview of the Implications on International Trade

Authors: Thinh Huu Nguyen, Shahab Sharfaei, Jindřich Soukup

Abstract:

In the pursuit of reducing production costs, offshoring has been a major trend throughout global value chains for many decades. However, with the rise of advanced technologies, new opportunities to automate their production are changing the motivation of multinational firms to go offshore. Instead, many firms are working to relocate their offshored activities from developing economies back to their home countries. This phenomenon, known as reshoring, has recently garnered much attention as it becomes clear that automation in advanced countries might have major implications not only on their own economies but also through international trade on the economy of low-income countries, including their labor market outcomes and their comparative advantages. Thus, while using robots to substitute human labor may lower the relative costs of producing at home, it has the potential to decrease employment and demand for exports from developing economies through reshoring. In this paper, we investigate the recent literature to provide a further understanding of the relationships between robotization and the reshoring of production. Moreover, we analyze the impact of robot adoption on international trade in both developed and emerging markets. Finally, we identify the research gaps and provide avenues for future research in international economics. This study is a part of the project funded by the Internal Grant Agency (IGA) of the Faculty of Business Administration, Prague University of Economics and Business.

Keywords: automation, robotization, reshoring, international trade

Procedia PDF Downloads 108
809 Simulation of Utility Accrual Scheduling and Recovery Algorithm in Multiprocessor Environment

Authors: A. Idawaty, O. Mohamed, A. Z. Zuriati

Abstract:

This paper presents the development of an event based Discrete Event Simulation (DES) for a recovery algorithm known Backward Recovery Global Preemptive Utility Accrual Scheduling (BR_GPUAS). This algorithm implements the Backward Recovery (BR) mechanism as a fault recovery solution under the existing Time/Utility Function/ Utility Accrual (TUF/UA) scheduling domain for multiprocessor environment. The BR mechanism attempts to take the faulty tasks back to its initial safe state and then proceeds to re-execute the affected section of the faulty tasks to enable recovery. Considering that faults may occur in the components of any system; a fault tolerance system that can nullify the erroneous effect is necessary to be developed. Current TUF/UA scheduling algorithm uses the abortion recovery mechanism and it simply aborts the erroneous task as their fault recovery solution. None of the existing algorithm in TUF/UA scheduling domain in multiprocessor scheduling environment have considered the transient fault and implement the BR mechanism as a fault recovery mechanism to nullify the erroneous effect and solve the recovery problem in this domain. The developed BR_GPUAS simulator has derived the set of parameter, events and performance metrics according to a detailed analysis of the base model. Simulation results revealed that BR_GPUAS algorithm can saved almost 20-30% of the accumulated utilities making it reliable and efficient for the real-time application in the multiprocessor scheduling environment.

Keywords: real-time system (RTS), time utility function/ utility accrual (TUF/UA) scheduling, backward recovery mechanism, multiprocessor, discrete event simulation (DES)

Procedia PDF Downloads 305
808 Scalable CI/CD and Scalable Automation: Assisting in Optimizing Productivity and Fostering Delivery Expansion

Authors: Solanki Ravirajsinh, Kudo Kuniaki, Sharma Ankit, Devi Sherine, Kuboshima Misaki, Tachi Shuntaro

Abstract:

In software development life cycles, the absence of scalable CI/CD significantly impacts organizations, leading to increased overall maintenance costs, prolonged release delivery times, heightened manual efforts, and difficulties in meeting tight deadlines. Implementing CI/CD with standard serverless technologies using cloud services overcomes all the above-mentioned issues and helps organizations improve efficiency and faster delivery without the need to manage server maintenance and capacity. By integrating scalable CI/CD with scalable automation testing, productivity, quality, and agility are enhanced while reducing the need for repetitive work and manual efforts. Implementing scalable CI/CD for development using cloud services like ECS (Container Management Service), AWS Fargate, ECR (to store Docker images with all dependencies), Serverless Computing (serverless virtual machines), Cloud Log (for monitoring errors and logs), Security Groups (for inside/outside access to the application), Docker Containerization (Docker-based images and container techniques), Jenkins (CI/CD build management tool), and code management tools (GitHub, Bitbucket, AWS CodeCommit) can efficiently handle the demands of diverse development environments and are capable of accommodating dynamic workloads, increasing efficiency for faster delivery with good quality. CI/CD pipelines encourage collaboration among development, operations, and quality assurance teams by providing a centralized platform for automated testing, deployment, and monitoring. Scalable CI/CD streamlines the development process by automatically fetching the latest code from the repository every time the process starts, building the application based on the branches, testing the application using a scalable automation testing framework, and deploying the builds. Developers can focus more on writing code and less on managing infrastructure as it scales based on the need. Serverless CI/CD eliminates the need to manage and maintain traditional CI/CD infrastructure, such as servers and build agents, reducing operational overhead and allowing teams to allocate resources more efficiently. Scalable CI/CD adjusts the application's scale according to usage, thereby alleviating concerns about scalability, maintenance costs, and resource needs. Creating scalable automation testing using cloud services (ECR, ECS Fargate, Docker, EFS, Serverless Computing) helps organizations run more than 500 test cases in parallel, aiding in the detection of race conditions, performance issues, and reducing execution time. Scalable CI/CD offers flexibility, dynamically adjusting to varying workloads and demands, allowing teams to scale resources up or down as needed. It optimizes costs by only paying for the resources as they are used and increases reliability. Scalable CI/CD pipelines employ automated testing and validation processes to detect and prevent errors early in the development cycle.

Keywords: achieve parallel execution, cloud services, scalable automation testing, scalable continuous integration and deployment

Procedia PDF Downloads 43
807 Automated Irrigation System with Programmable Logic Controller and Photovoltaic Energy

Authors: J. P. Reges, L. C. S. Mazza, E. J. Braga, J. A. Bessa, A. R. Alexandria

Abstract:

This paper proposes the development of control and automation of irrigation system located sunflower harvest in the Teaching Unit, Research and Extension (UEPE), the Apodi Plateau in Limoeiro do Norte. The sunflower extraction, which in turn serves to get the produced oil from its seeds, animal feed, and is widely used in human food. Its nutritional potential is quite high what makes of foods produced from vegetal, very rich and healthy. The focus of research is to make the autonomous irrigation system sunflower crop from programmable logic control energized with alternative energy sources, solar photovoltaics. The application of automated irrigation system becomes interesting when it provides convenience and implements new forms of managements of the implementation of irrigated cropping systems. The intended use of automated addition to irrigation quality and consequently brings enormous improvement for production of small samples. Addition to applying the necessary and sufficient features of water management in irrigation systems, the system (PLC + actuators + Renewable Energy) will enable to manage the quantitative water required for each crop, and at the same time, insert the use of sources alternative energy. The entry of the automated collection will bring a new format, and in previous years, used the process of irrigation water wastage base and being the whole manual irrigation process.

Keywords: automation, control, sunflower, irrigation, programming, renewable energy

Procedia PDF Downloads 399
806 Dual-Actuated Vibration Isolation Technology for a Rotary System’s Position Control on a Vibrating Frame: Disturbance Rejection and Active Damping

Authors: Kamand Bagherian, Nariman Niknejad

Abstract:

A vibration isolation technology for precise position control of a rotary system powered by two permanent magnet DC (PMDC) motors is proposed, where this system is mounted on an oscillatory frame. To achieve vibration isolation for this system, active damping and disturbance rejection (ADDR) technology is presented which introduces a cooperation of a main and an auxiliary PMDC, controlled by discrete-time sliding mode control (DTSMC) based schemes. The controller of the main actuator tracks a desired position and the auxiliary actuator simultaneously isolates the induced vibration, as its controller follows a torque trend. To determine this torque trend, a combination of two algorithms is introduced by the ADDR technology. The first torque-trend producing algorithm rejects the disturbance by counteracting the perturbation, estimated using a model-based observer. The second torque trend applies active variable damping to minimize the oscillation of the output shaft. In this practice, the presented technology is implemented on a rotary system with a pendulum attached, mounted on a linear actuator simulating an oscillation-transmitting structure. In addition, the obtained results illustrate the functionality of the proposed technology.

Keywords: active damping, discrete-time nonlinear controller, disturbance tracking algorithm, oscillation transmitting support, position control, stability robustness, vibration isolation

Procedia PDF Downloads 100
805 Simulation Aided Life Cycle Sustainability Assessment Framework for Manufacturing Design and Management

Authors: Mijoh A. Gbededo, Kapila Liyanage, Ilias Oraifige

Abstract:

Decision making for sustainable manufacturing design and management requires critical considerations due to the complexity and partly conflicting issues of economic, social and environmental factors. Although there are tools capable of assessing the combination of one or two of the sustainability factors, the frameworks have not adequately integrated all the three factors. Case study and review of existing simulation applications also shows the approach lacks integration of the sustainability factors. In this paper we discussed the development of a simulation based framework for support of a holistic assessment of sustainable manufacturing design and management. To achieve this, a strategic approach is introduced to investigate the strengths and weaknesses of the existing decision supporting tools. Investigation reveals that Discrete Event Simulation (DES) can serve as a rock base for other Life Cycle Analysis frameworks. Simio-DES application optimizes systems for both economic and competitive advantage, Granta CES EduPack and SimaPro collate data for Material Flow Analysis and environmental Life Cycle Assessment, while social and stakeholders’ analysis is supported by Analytical Hierarchy Process, a Multi-Criteria Decision Analysis method. Such a common and integrated framework creates a platform for companies to build a computer simulation model of a real system and assess the impact of alternative solutions before implementing a chosen solution.

Keywords: discrete event simulation, life cycle sustainability analysis, manufacturing, sustainability

Procedia PDF Downloads 279
804 Discrete Element Simulations of Composite Ceramic Powders

Authors: Julia Cristina Bonaldo, Christophe L. Martin, Severine Romero Baivier, Stephane Mazerat

Abstract:

Alumina refractories are commonly used in steel and foundry industries. These refractories are prepared through a powder metallurgy route. They are a mixture of hard alumina particles and graphite platelets embedded into a soft carbonic matrix (binder). The powder can be cold pressed isostatically or uniaxially, depending on the application. The compact is then fired to obtain the final product. The quality of the product is governed by the microstructure of the composite and by the process parameters. The compaction behavior and the mechanical properties of the fired product depend greatly on the amount of each phase, on their morphology and on the initial microstructure. In order to better understand the link between these parameters and the macroscopic behavior, we use the Discrete Element Method (DEM) to simulate the compaction process and the fracture behavior of the fired composite. These simulations are coupled with well-designed experiments. Four mixes with various amounts of Al₂O₃ and binder were tested both experimentally and numerically. In DEM, each particle is modelled and the interactions between particles are taken into account through appropriate contact or bonding laws. Here, we model a bimodal mixture of large Al₂O₃ and small Al₂O₃ covered with a soft binder. This composite is itself mixed with graphite platelets. X-ray tomography images are used to analyze the morphologies of the different components. Large Al₂O₃ particles and graphite platelets are modelled in DEM as sets of particles bonded together. The binder is modelled as a soft shell that covers both large and small Al₂O₃ particles. When two particles with binder indent each other, they first interact through this soft shell. Once a critical indentation is reached (towards the end of compaction), hard Al₂O₃ - Al₂O₃ contacts appear. In accordance with experimental data, DEM simulations show that the amount of Al₂O₃ and the amount of binder play a major role for the compaction behavior. The graphite platelets bend and break during the compaction, also contributing to the macroscopic stress. Firing step is modeled in DEM by ascribing bonds to particles which contact each other after compaction. The fracture behavior of the compacted mixture is also simulated and compared with experimental data. Both diametrical tests (Brazilian tests) and triaxial tests are carried out. Again, the link between the amount of Al₂O₃ particles and the fracture behavior is investigated. The methodology described here can be generalized to other particulate materials that are used in the ceramic industry.

Keywords: cold compaction, composites, discrete element method, refractory materials, x-ray tomography

Procedia PDF Downloads 138
803 Mechanical Properties and Crack Extension Mechanism of Rock Contained Blocks Under Uniaxial Compression

Authors: Ruiyang Bi

Abstract:

Natural rock masses are cut into rock blocks of different shapes and sizes by intersecting joints. These rock blocks often determine the mechanical properties of the rock mass. In this study, fine sandstone cube specimens were produced, and three intersecting joint cracks were cut inside the specimen. Uniaxial compression tests were conducted using mechanical tests and numerical simulation methods to study the mechanical properties and crack propagation mechanism of triangular blocks within the rock. During the test, the mechanical strength, acoustic emission characteristics and strain field evolution of the specimen were analyzed. Discrete element software was used to study the expansion of microcracks during the specimen failure process, and the crack types were divided. The simulation results show that as the inclination angles of the three joints increase simultaneously, the mechanical strength of the specimen first decreases and then increases, and the crack type is mainly shear. As the inclination angle of a single joint increases, the strength of the specimen gradually decreases. When the inclination angles of the two joints increase at the same time, the strength of the specimen gradually decreases. The research results show that the stability of the rock mass is affected by the joint inclination angle and the size of the cut blocks. The greater the joint dip and block size, the more significant the development of micro-cracks in the rock mass, and the worse the stability.

Keywords: rock joints, uniaxial compression, crack extension, discrete element simulation

Procedia PDF Downloads 65
802 An Investigation of the Fracture Behavior of Model MgO-C Refractories Using the Discrete Element Method

Authors: Júlia Cristina Bonaldo, Christophe L. Martin, Martiniano Piccico, Keith Beale, Roop Kishore, Severine Romero-Baivier

Abstract:

Refractory composite materials employed in steel casting applications are prone to cracking and material damage because of the very high operating temperature (thermal shock) and mismatched properties of the constituent phases. The fracture behavior of a model MgO-C composite refractory is investigated to quantify and characterize its thermal shock resistance, employing a cold crushing test and Brazilian test with fractographic analysis. The discrete element method (DEM) is used to generate numerical refractory composites. The composite in DEM is represented by an assembly of bonded particle clusters forming perfectly spherical aggregates and single spherical particles. For the stresses to converge with a low standard deviation and a minimum number of particles to allow reasonable CPU calculation time, representative volume element (RVE) numerical packings are created with various numbers of particles. Key microscopic properties are calibrated sequentially by comparing stress-strain curves from crushing experimental data. Comparing simulations with experiments also allows for the evaluation of crack propagation, fracture energy, and strength. The crack propagation during Brazilian experimental tests is monitored with digital image correlation (DIC). Simulations and experiments reveal three distinct types of fracture. The crack may spread throughout the aggregate, at the aggregate-matrix interface, or throughout the matrix.

Keywords: refractory composite, fracture mechanics, crack propagation, DEM

Procedia PDF Downloads 80
801 The Influence of Air Temperature Controls in Estimation of Air Temperature over Homogeneous Terrain

Authors: Fariza Yunus, Jasmee Jaafar, Zamalia Mahmud, Nurul Nisa’ Khairul Azmi, Nursalleh K. Chang, Nursalleh K. Chang

Abstract:

Variation of air temperature from one place to another is cause by air temperature controls. In general, the most important control of air temperature is elevation. Another significant independent variable in estimating air temperature is the location of meteorological stations. Distances to coastline and land use type are also contributed to significant variations in the air temperature. On the other hand, in homogeneous terrain direct interpolation of discrete points of air temperature work well to estimate air temperature values in un-sampled area. In this process the estimation is solely based on discrete points of air temperature. However, this study presents that air temperature controls also play significant roles in estimating air temperature over homogenous terrain of Peninsular Malaysia. An Inverse Distance Weighting (IDW) interpolation technique was adopted to generate continuous data of air temperature. This study compared two different datasets, observed mean monthly data of T, and estimation error of T–T’, where T’ estimated value from a multiple regression model. The multiple regression model considered eight independent variables of elevation, latitude, longitude, coastline, and four land use types of water bodies, forest, agriculture and build up areas, to represent the role of air temperature controls. Cross validation analysis was conducted to review accuracy of the estimation values. Final results show, estimation values of T–T’ produced lower errors for mean monthly mean air temperature over homogeneous terrain in Peninsular Malaysia.

Keywords: air temperature control, interpolation analysis, peninsular Malaysia, regression model, air temperature

Procedia PDF Downloads 374
800 Substation Automation, Digitization, Cyber Risk and Chain Risk Management Reliability

Authors: Serzhan Ashirov, Dana Nour, Rafat Rob, Khaled Alotaibi

Abstract:

There has been a fast growth in the introduction and use of communications, information, monitoring, and sensing technologies. The new technologies are making their way to the Industrial Control Systems as embedded in products, software applications, IT services, or commissioned to enable integration and automation of increasingly global supply chains. As a result, the lines that separated the physical, digital, and cyber world have diminished due to the vast implementation of the new, disruptive digital technologies. The variety and increased use of these technologies introduce many cybersecurity risks affecting cyber-resilience of the supply chain, both in terms of the product or service delivered to a customer and members of the supply chain operation. US department of energy considers supply chain in the IR4 space to be the weakest link in cybersecurity. The IR4 identified the digitization of the field devices, followed by digitalization that eventually moved through the digital transformation space with little care for the new introduced cybersecurity risks. This paper will examine the best methodologies for securing the electrical substations from cybersecurity attacks due to supply chain risks, and due to digitization effort. SCADA systems are the most vulnerable part of the power system infrastructure due to digitization and due to the weakness and vulnerabilities in the supply chain security. The paper will discuss in details how create a secure supply chain methodology, secure substations, and mitigate the risks due to digitization

Keywords: cybersecurity, supply chain methodology, secure substation, digitization

Procedia PDF Downloads 64
799 CFD Simulation Approach for Developing New Powder Dispensing Device

Authors: Revanth Rallapalli

Abstract:

Manually dispensing powders can be difficult as it requires gradually pouring and checking the amount on the scale to be dispensed. Current systems are manual and non-continuous in nature and are user-dependent and difficult to control powder dispensation. Recurrent dosing of powdered medicines in precise amounts quickly and accurately has been an all-time challenge. Various new powder dispensing mechanisms are being designed to overcome these challenges. A battery-operated screw conveyor mechanism is being innovated to overcome the above problems faced. These inventions are numerically evaluated at the concept development level by employing Computational Fluid Dynamics (CFD) of gas-solids multiphase flow systems. CFD has been very helpful in the development of such devices saving time and money by reducing the number of prototypes and testing. This paper describes a simulation of powder dispensation from the trocar’s end by considering the powder as secondary flow in the air, is simulated by using the technique called Dense Discrete Phase Model incorporated with Kinetic Theory of Granular Flow (DDPM-KTGF). By considering the volume fraction of powder as 50%, the transportation of powder from the inlet side to the trocar’s end side is done by rotation of the screw conveyor. The performance is calculated for a 1-sec time frame in an unsteady computation manner. This methodology will help designers in developing design concepts to improve the dispensation and the effective area within a quick turnaround time frame.

Keywords: multiphase flow, screw conveyor, transient, dense discrete phase model (DDPM), kinetic theory of granular flow (KTGF)

Procedia PDF Downloads 146
798 Simulation and Experimental Study on Dual Dense Medium Fluidization Features of Air Dense Medium Fluidized Bed

Authors: Cheng Sheng, Yuemin Zhao, Chenlong Duan

Abstract:

Air dense medium fluidized bed is a typical application of fluidization techniques for coal particle separation in arid areas, where it is costly to implement wet coal preparation technologies. In the last three decades, air dense medium fluidized bed, as an efficient dry coal separation technique, has been studied in many aspects, including energy and mass transfer, hydrodynamics, bubbling behaviors, etc. Despite numerous researches have been published, the fluidization features, especially dual dense medium fluidization features have been rarely reported. In dual dense medium fluidized beds, different combinations of different dense mediums play a significant role in fluidization quality variation, thus influencing coal separation efficiency. Moreover, to what extent different dense mediums mix and to what extent the two-component particulate mixture affects the fluidization performance and quality have been in suspense. The proposed work attempts to reveal underlying mechanisms of generation and evolution of two-component particulate mixture in the fluidization process. Based on computational fluid dynamics methods and discrete particle modelling, movement and evolution of dual dense mediums in air dense medium fluidized bed have been simulated. Dual dense medium fluidization experiments have been conducted. Electrical capacitance tomography was employed to investigate the distribution of two-component mixture in experiments. Underlying mechanisms involving two-component particulate fluidization are projected to be demonstrated with the analysis and comparison of simulation and experimental results.

Keywords: air dense medium fluidized bed, particle separation, computational fluid dynamics, discrete particle modelling

Procedia PDF Downloads 381
797 A New Multi-Target, Multi-Agent Search and Rescue Path Planning Approach

Authors: Jean Berger, Nassirou Lo, Martin Noel

Abstract:

Perfectly suited for natural or man-made emergency and disaster management situations such as flood, earthquakes, tornadoes, or tsunami, multi-target search path planning for a team of rescue agents is known to be computationally hard, and most techniques developed so far come short to successfully estimate optimality gap. A novel mixed-integer linear programming (MIP) formulation is proposed to optimally solve the multi-target multi-agent discrete search and rescue (SAR) path planning problem. Aimed at maximizing cumulative probability of successful target detection, it captures anticipated feedback information associated with possible observation outcomes resulting from projected path execution, while modeling agent discrete actions over all possible moving directions. Problem modeling further takes advantage of network representation to encompass decision variables, expedite compact constraint specification, and lead to substantial problem-solving speed-up. The proposed MIP approach uses CPLEX optimization machinery, efficiently computing near-optimal solutions for practical size problems, while giving a robust upper bound obtained from Lagrangean integrality constraint relaxation. Should eventually a target be positively detected during plan execution, a new problem instance would simply be reformulated from the current state, and then solved over the next decision cycle. A computational experiment shows the feasibility and the value of the proposed approach.

Keywords: search path planning, search and rescue, multi-agent, mixed-integer linear programming, optimization

Procedia PDF Downloads 371
796 Application of Discrete-Event Simulation in Health Technology Assessment: A Cost-Effectiveness Analysis of Alzheimer’s Disease Treatment Using Real-World Evidence in Thailand

Authors: Khachen Kongpakwattana, Nathorn Chaiyakunapruk

Abstract:

Background: Decision-analytic models for Alzheimer’s disease (AD) have been advanced to discrete-event simulation (DES), in which individual-level modelling of disease progression across continuous severity spectra and incorporation of key parameters such as treatment persistence into the model become feasible. This study aimed to apply the DES to perform a cost-effectiveness analysis of treatment for AD in Thailand. Methods: A dataset of Thai patients with AD, representing unique demographic and clinical characteristics, was bootstrapped to generate a baseline cohort of patients. Each patient was cloned and assigned to donepezil, galantamine, rivastigmine, memantine or no treatment. Throughout the simulation period, the model randomly assigned each patient to discrete events including hospital visits, treatment discontinuation and death. Correlated changes in cognitive and behavioral status over time were developed using patient-level data. Treatment effects were obtained from the most recent network meta-analysis. Treatment persistence, mortality and predictive equations for functional status, costs (Thai baht (THB) in 2017) and quality-adjusted life year (QALY) were derived from country-specific real-world data. The time horizon was 10 years, with a discount rate of 3% per annum. Cost-effectiveness was evaluated based on the willingness-to-pay (WTP) threshold of 160,000 THB/QALY gained (4,994 US$/QALY gained) in Thailand. Results: Under a societal perspective, only was the prescription of donepezil to AD patients with all disease-severity levels found to be cost-effective. Compared to untreated patients, although the patients receiving donepezil incurred a discounted additional costs of 2,161 THB, they experienced a discounted gain in QALY of 0.021, resulting in an incremental cost-effectiveness ratio (ICER) of 138,524 THB/QALY (4,062 US$/QALY). Besides, providing early treatment with donepezil to mild AD patients further reduced the ICER to 61,652 THB/QALY (1,808 US$/QALY). However, the dominance of donepezil appeared to wane when delayed treatment was given to a subgroup of moderate and severe AD patients [ICER: 284,388 THB/QALY (8,340 US$/QALY)]. Introduction of a treatment stopping rule when the Mini-Mental State Exam (MMSE) score goes below 10 to a mild AD cohort did not deteriorate the cost-effectiveness of donepezil at the current treatment persistence level. On the other hand, none of the AD medications was cost-effective when being considered under a healthcare perspective. Conclusions: The DES greatly enhances real-world representativeness of decision-analytic models for AD. Under a societal perspective, treatment with donepezil improves patient’s quality of life and is considered cost-effective when used to treat AD patients with all disease-severity levels in Thailand. The optimal treatment benefits are observed when donepezil is prescribed since the early course of AD. With healthcare budget constraints in Thailand, the implementation of donepezil coverage may be most likely possible when being considered starting with mild AD patients, along with the stopping rule introduced.

Keywords: Alzheimer's disease, cost-effectiveness analysis, discrete event simulation, health technology assessment

Procedia PDF Downloads 129
795 Optimization of Multi Commodities Consumer Supply Chain: Part 1-Modelling

Authors: Zeinab Haji Abolhasani, Romeo Marian, Lee Luong

Abstract:

This paper and its companions (Part II, Part III) will concentrate on optimizing a class of supply chain problems known as Multi- Commodities Consumer Supply Chain (MCCSC) problem. MCCSC problem belongs to production-distribution (P-D) planning category. It aims to determine facilities location, consumers’ allocation, and facilities configuration to minimize total cost (CT) of the entire network. These facilities can be manufacturer units (MUs), distribution centres (DCs), and retailers/end-users (REs) but not limited to them. To address this problem, three major tasks should be undertaken. At the first place, a mixed integer non-linear programming (MINP) mathematical model is developed. Then, system’s behaviors under different conditions will be observed using a simulation modeling tool. Finally, the most optimum solution (minimum CT) of the system will be obtained using a multi-objective optimization technique. Due to the large size of the problem, and the uncertainties in finding the most optimum solution, integration of modeling and simulation methodologies is proposed followed by developing new approach known as GASG. It is a genetic algorithm on the basis of granular simulation which is the subject of the methodology of this research. In part II, MCCSC is simulated using discrete-event simulation (DES) device within an integrated environment of SimEvents and Simulink of MATLAB® software package followed by a comprehensive case study to examine the given strategy. Also, the effect of genetic operators on the obtained optimal/near optimal solution by the simulation model will be discussed in part III.

Keywords: supply chain, genetic algorithm, optimization, simulation, discrete event system

Procedia PDF Downloads 316