Search results for: branch and bound algorithm.
4028 Adaptive Multipath Mitigation Acquisition Approach for Global Positioning System Software Receivers
Authors: Animut Meseret Simachew
Abstract:
Parallel Code Phase Search Acquisition (PCSA) Algorithm has been considered as a promising method in GPS software receivers for detection and estimation of the accurate correlation peak between the received Global Positioning System (GPS) signal and locally generated replicas. GPS signal acquisition in highly dense multipath environments is the main research challenge. In this work, we proposed a robust variable step-size (RVSS) PCSA algorithm based on fast frequency transform (FFT) filtering technique to mitigate short time delay multipath signals. Simulation results reveal the effectiveness of the proposed algorithm over the conventional PCSA algorithm. The proposed RVSS-PCSA algorithm equalizes the received carrier wiped-off signal with locally generated C/A code.Keywords: adaptive PCSA, detection and estimation, GPS signal acquisition, GPS software receiver
Procedia PDF Downloads 1174027 Test Suite Optimization Using an Effective Meta-Heuristic BAT Algorithm
Authors: Anuradha Chug, Sunali Gandhi
Abstract:
Regression Testing is a very expensive and time-consuming process carried out to ensure the validity of modified software. Due to the availability of insufficient resources to re-execute all the test cases in time constrained environment, efforts are going on to generate test data automatically without human efforts. Many search based techniques have been proposed to generate efficient, effective as well as optimized test data, so that the overall cost of the software testing can be minimized. The generated test data should be able to uncover all potential lapses that exist in the software or product. Inspired from the natural behavior of bat for searching her food sources, current study employed a meta-heuristic, search-based bat algorithm for optimizing the test data on the basis certain parameters without compromising their effectiveness. Mathematical functions are also applied that can effectively filter out the redundant test data. As many as 50 Java programs are used to check the effectiveness of proposed test data generation and it has been found that 86% saving in testing efforts can be achieved using bat algorithm while covering 100% of the software code for testing. Bat algorithm was found to be more efficient in terms of simplicity and flexibility when the results were compared with another nature inspired algorithms such as Firefly Algorithm (FA), Hill Climbing Algorithm (HC) and Ant Colony Optimization (ACO). The output of this study would be useful to testers as they can achieve 100% path coverage for testing with minimum number of test cases.Keywords: regression testing, test case selection, test case prioritization, genetic algorithm, bat algorithm
Procedia PDF Downloads 3824026 A Novel Approach of Secret Communication Using Douglas-Peucker Algorithm
Authors: R. Kiruthika, A. Kannan
Abstract:
Steganography is the problem of hiding secret messages in 'innocent – looking' public communication so that the presence of the secret message cannot be detected. This paper introduces a steganographic security in terms of computational in-distinguishability from a channel of probability distributions on cover messages. This method first splits the cover image into two separate blocks using Douglas – Peucker algorithm. The text message and the image will be hided in the Least Significant Bit (LSB) of the cover image.Keywords: steganography, lsb, embedding, Douglas-Peucker algorithm
Procedia PDF Downloads 3644025 A Novel Probablistic Strategy for Modeling Photovoltaic Based Distributed Generators
Authors: Engy A. Mohamed, Y. G. Hegazy
Abstract:
This paper presents a novel algorithm for modeling photovoltaic based distributed generators for the purpose of optimal planning of distribution networks. The proposed algorithm utilizes sequential Monte Carlo method in order to accurately consider the stochastic nature of photovoltaic based distributed generators. The proposed algorithm is implemented in MATLAB environment and the results obtained are presented and discussed.Keywords: comulative distribution function, distributed generation, Monte Carlo
Procedia PDF Downloads 5864024 System Survivability in Networks
Authors: Asma Ben Yaghlane, Mohamed Naceur Azaiez
Abstract:
We consider the problem of attacks on networks. We define the concept of system survivability in networks in the presence of intelligent threats. Our setting of the problem assumes a flow to be sent from one source node to a destination node. The attacker attempts to disable the network by preventing the flow to reach its destination while the defender attempts to identify the best path-set to use to maximize the chance of arrival of the flow to the destination node. Our concept is shown to be different from the classical concept of network reliability. We distinguish two types of network survivability related to the defender and to the attacker of the network, respectively. We prove that the defender-based-network survivability plays the role of a lower bound while the attacker-based-network survivability plays the role of an upper bound of network reliability. We also prove that both concepts almost never agree nor coincide with network reliability. Moreover, we use the shortest-path problem to determine the defender-based-network survivability and the min-cut problem to determine the attacker-based-network survivability. We extend the problem to a variety of models including the minimum-spanning-tree problem and the multiple source-/destination-network problems.Keywords: defense/attack strategies, information, networks, reliability, survivability
Procedia PDF Downloads 3974023 Orthogonal Regression for Nonparametric Estimation of Errors-In-Variables Models
Authors: Anastasiia Yu. Timofeeva
Abstract:
Two new algorithms for nonparametric estimation of errors-in-variables models are proposed. The first algorithm is based on penalized regression spline. The spline is represented as a piecewise-linear function and for each linear portion orthogonal regression is estimated. This algorithm is iterative. The second algorithm involves locally weighted regression estimation. When the independent variable is measured with error such estimation is a complex nonlinear optimization problem. The simulation results have shown the advantage of the second algorithm under the assumption that true smoothing parameters values are known. Nevertheless the use of some indexes of fit to smoothing parameters selection gives the similar results and has an oversmoothing effect.Keywords: grade point average, orthogonal regression, penalized regression spline, locally weighted regression
Procedia PDF Downloads 4164022 LiDAR Based Real Time Multiple Vehicle Detection and Tracking
Authors: Zhongzhen Luo, Saeid Habibi, Martin v. Mohrenschildt
Abstract:
Self-driving vehicle require a high level of situational awareness in order to maneuver safely when driving in real world condition. This paper presents a LiDAR based real time perception system that is able to process sensor raw data for multiple target detection and tracking in dynamic environment. The proposed algorithm is nonparametric and deterministic that is no assumptions and priori knowledge are needed from the input data and no initializations are required. Additionally, the proposed method is working on the three-dimensional data directly generated by LiDAR while not scarifying the rich information contained in the domain of 3D. Moreover, a fast and efficient for real time clustering algorithm is applied based on a radially bounded nearest neighbor (RBNN). Hungarian algorithm procedure and adaptive Kalman filtering are used for data association and tracking algorithm. The proposed algorithm is able to run in real time with average run time of 70ms per frame.Keywords: lidar, segmentation, clustering, tracking
Procedia PDF Downloads 4264021 Independence and Path Independence on Cayley Digraphs of Left Groups and Right Groups
Authors: Nuttawoot Nupo, Sayan Panma
Abstract:
A semigroup S is said to be a left (right) zero semigroup if S satisfies the equation xy=x (xy=y) for all x,y in S. In addition, the semigroup S is called a left (right) group if S is isomorphic to the direct product of a group and a left (right) zero semigroup. The Cayley digraph Cay(S,A) of a semigroup S with a connection set A is defined to be a digraph with the vertex set S and the arc set E(Cay(S,A))={(x,xa) | x∈S, a∈A} where A is any subset of S. All sets in this research are assumed to be finite. Let D be a digraph together with a vertex set V and an arc set E. Let u and v be two different vertices in V and I a nonempty subset of V. The vertices u and v are said to be independent if (u,v)∉E and (v,u)∉E. The set I is called an independent set of D if any two different vertices in I are independent. The independence number of D is the maximum cardinality of an independent set of D. Moreover, the vertices u and v are said to be path independent if there is no dipath from u to v and there is no dipath from v to u. The set I is called a path independent set of D if any two different vertices in I are path independent. The path independence number of D is the maximum cardinality of a path independent set of D. In this research, we describe a lower bound and an upper bound of the independence number of Cayley digraphs of left groups and right groups. Some examples corresponding to those bounds are illustrated here. Furthermore, the exact value of the path independence number of Cayley digraphs of left groups and right groups are also presented.Keywords: Cayley digraphs, independence number, left groups, path independence number, right groups
Procedia PDF Downloads 2344020 Vision Based People Tracking System
Authors: Boukerch Haroun, Luo Qing Sheng, Li Hua Shi, Boukraa Sebti
Abstract:
In this paper we present the design and the implementation of a target tracking system where the target is set to be a moving person in a video sequence. The system can be applied easily as a vision system for mobile robot. The system is composed of two major parts the first is the detection of the person in the video frame using the SVM learning machine based on the “HOG” descriptors. The second part is the tracking of a moving person it’s done by using a combination of the Kalman filter and a modified version of the Camshift tracking algorithm by adding the target motion feature to the color feature, the experimental results had shown that the new algorithm had overcame the traditional Camshift algorithm in robustness and in case of occlusion.Keywords: camshift algorithm, computer vision, Kalman filter, object tracking
Procedia PDF Downloads 4484019 Sub-Pixel Mapping Based on New Mixed Interpolation
Authors: Zeyu Zhou, Xiaojun Bi
Abstract:
Due to the limited environmental parameters and the limited resolution of the sensor, the universal existence of the mixed pixels in the process of remote sensing images restricts the spatial resolution of the remote sensing images. Sub-pixel mapping technology can effectively improve the spatial resolution. As the bilinear interpolation algorithm inevitably produces the edge blur effect, which leads to the inaccurate sub-pixel mapping results. In order to avoid the edge blur effect that affects the sub-pixel mapping results in the interpolation process, this paper presents a new edge-directed interpolation algorithm which uses the covariance adaptive interpolation algorithm on the edge of the low-resolution image and uses bilinear interpolation algorithm in the low-resolution image smooth area. By using the edge-directed interpolation algorithm, the super-resolution of the image with low resolution is obtained, and we get the percentage of each sub-pixel under a certain type of high-resolution image. Then we rely on the probability value as a soft attribute estimate and carry out sub-pixel scale under the ‘hard classification’. Finally, we get the result of sub-pixel mapping. Through the experiment, we compare the algorithm and the bilinear algorithm given in this paper to the results of the sub-pixel mapping method. It is found that the sub-pixel mapping method based on the edge-directed interpolation algorithm has better edge effect and higher mapping accuracy. The results of the paper meet our original intention of the question. At the same time, the method does not require iterative computation and training of samples, making it easier to implement.Keywords: remote sensing images, sub-pixel mapping, bilinear interpolation, edge-directed interpolation
Procedia PDF Downloads 2304018 The Influence of Covariance Hankel Matrix Dimension on Algorithms for VARMA Models
Authors: Celina Pestano-Gabino, Concepcion Gonzalez-Concepcion, M. Candelaria Gil-Fariña
Abstract:
Some estimation methods for VARMA models, and Multivariate Time Series Models in general, rely on the use of a Hankel matrix. It is known that if the data sample is populous enough and the dimension of the Hankel matrix is unnecessarily large, this may result in an unnecessary number of computations as well as in numerical problems. In this sense, the aim of this paper is two-fold. First, we provide some theoretical results for these matrices which translate into a lower dimension for the matrices normally used in the algorithms. This contribution thus serves to improve those methods from a numerical and, presumably, statistical point of view. Second, we have chosen an estimation algorithm to illustrate in practice our improvements. The results we obtained in a simulation of VARMA models show that an increase in the size of the Hankel matrix beyond the theoretical bound proposed as valid does not necessarily lead to improved practical results. Therefore, for future research, we propose conducting similar studies using any of the linear system estimation methods that depend on Hankel matrices.Keywords: covariances Hankel matrices, Kronecker indices, system identification, VARMA models
Procedia PDF Downloads 2444017 Translation Methods Applied While Dealing With System-Bound Terms (Polish-English Translation)
Authors: Anna Kizinska
Abstract:
The research aims at discussing Polish and British incongruent terms that refer to company law. The Polish terms under analysis appear in the Polish Code of Commercial Partnerships and Companies and constitute legal terms or factual terms. The English equivalents of each Polish term under research appear in two Polish Code of Commercial Partnerships and Companies translations into English. The theoretical part of the paper includes the presentation of the definitions of a system-bound term and incongruity of terms. The aim of the analysis is to check if the classification of translation methods used in civil law terms translation comprehends the translation methods applied while translating company law terms into English. The translation procedures are defined according to Newmark. The stages of the research include 1) presentation of a definition of a Polish term, 2) enumerating the so-far published English equivalents of a given Polish term and comparing their definitions (as long as they appear in English law dictionaries ) with the definition of a given Polish term under analysis, 3) checking whether an English equivalent appears or not in, among others, the sources of the British law (legislation.gov.uk database) , 4) identifying the translation method that was applied while forming a given English equivalent.Keywords: translation, legal terms, equivalence, company law, incongruency
Procedia PDF Downloads 904016 Metrics and Methods for Improving Resilience in Agribusiness Supply Chains
Authors: Golnar Behzadi, Michael O'Sullivan, Tava Olsen, Abraham Zhang
Abstract:
By definition, increasing supply chain resilience improves the supply chain’s ability to return to normal, or to an even more desirable situation, quickly and efficiently after being hit by a disruption. This is especially critical in agribusiness supply chains where the products are perishable and have a short life-cycle. In this paper, we propose a resilience metric to capture and improve the recovery process in terms of both performance and time, of an agribusiness supply chain following either supply or demand-side disruption. We build a model that determines optimal supply chain recovery planning decisions and selects the best resilient strategies that minimize the loss of profit during the recovery time window. The model is formulated as a two-stage stochastic mixed-integer linear programming problem and solved with a branch-and-cut algorithm. The results show that the optimal recovery schedule is highly dependent on the duration of the time-window allowed for recovery. In addition, the profit loss during recovery is reduced by utilizing the proposed resilient actions.Keywords: agribusiness supply chain, recovery, resilience metric, risk management
Procedia PDF Downloads 3974015 Design an Algorithm for Software Development in CBSE Envrionment Using Feed Forward Neural Network
Authors: Amit Verma, Pardeep Kaur
Abstract:
In software development organizations, Component based Software engineering (CBSE) is emerging paradigm for software development and gained wide acceptance as it often results in increase quality of software product within development time and budget. In component reusability, main challenges are the right component identification from large repositories at right time. The major objective of this work is to provide efficient algorithm for storage and effective retrieval of components using neural network and parameters based on user choice through clustering. This research paper aims to propose an algorithm that provides error free and automatic process (for retrieval of the components) while reuse of the component. In this algorithm, keywords (or components) are extracted from software document, after by applying k mean clustering algorithm. Then weights assigned to those keywords based on their frequency and after assigning weights, ANN predicts whether correct weight is assigned to keywords (or components) or not, otherwise it back propagates in to initial step (re-assign the weights). In last, store those all keywords into repositories for effective retrieval. Proposed algorithm is very effective in the error correction and detection with user base choice while choice of component for reusability for efficient retrieval is there.Keywords: component based development, clustering, back propagation algorithm, keyword based retrieval
Procedia PDF Downloads 3794014 Efficiency of Grover’s Search Algorithm Implemented on Open Quantum System in the Presence of Drive-Induced Dissipation
Authors: Nilanjana Chanda, Rangeet Bhattacharyya
Abstract:
Grover’s search algorithm is the fastest possible quantum mechanical algorithm to search a certain element from an unstructured set of data of N items. The algorithm can determine the desired result in only O(√N) steps. It has been demonstrated theoretically and experimentally on two-qubit systems long ago. In this work, we investigate the fidelity of Grover’s search algorithm by implementing it on an open quantum system. In particular, we study with what accuracy one can estimate that the algorithm would deliver the searched state. In reality, every system has some influence on its environment. We include the environmental effects on the system dynamics by using a recently reported fluctuation-regulated quantum master equation (FRQME). We consider that the environment experiences thermal fluctuations, which leave its signature in the second-order term of the master equation through its appearance as a regulator. The FRQME indicates that in addition to the regular relaxation due to system-environment coupling, the applied drive also causes dissipation in the system dynamics. As a result, the fidelity is found to depend on both the drive-induced dissipative terms and the relaxation terms, and we find that there exists a competition between them, leading to an optimum drive amplitude for which the fidelity becomes maximum. For efficient implementation of the search algorithm, precise knowledge of this optimum drive amplitude is essential.Keywords: dissipation, fidelity, quantum master equation, relaxation, system-environment coupling
Procedia PDF Downloads 1064013 An Improved Cuckoo Search Algorithm for Voltage Stability Enhancement in Power Transmission Networks
Authors: Reza Sirjani, Nobosse Tafem Bolan
Abstract:
Many optimization techniques available in the literature have been developed in order to solve the problem of voltage stability enhancement in power systems. However, there are a number of drawbacks in the use of previous techniques aimed at determining the optimal location and size of reactive compensators in a network. In this paper, an Improved Cuckoo Search algorithm is applied as an appropriate optimization algorithm to determine the optimum location and size of a Static Var Compensator (SVC) in a transmission network. The main objectives are voltage stability improvement and total cost minimization. The results of the presented technique are then compared with other available optimization techniques.Keywords: cuckoo search algorithm, optimization, power system, var compensators, voltage stability
Procedia PDF Downloads 5534012 Meta-Learning for Hierarchical Classification and Applications in Bioinformatics
Authors: Fabio Fabris, Alex A. Freitas
Abstract:
Hierarchical classification is a special type of classification task where the class labels are organised into a hierarchy, with more generic class labels being ancestors of more specific ones. Meta-learning for classification-algorithm recommendation consists of recommending to the user a classification algorithm, from a pool of candidate algorithms, for a dataset, based on the past performance of the candidate algorithms in other datasets. Meta-learning is normally used in conventional, non-hierarchical classification. By contrast, this paper proposes a meta-learning approach for more challenging task of hierarchical classification, and evaluates it in a large number of bioinformatics datasets. Hierarchical classification is especially relevant for bioinformatics problems, as protein and gene functions tend to be organised into a hierarchy of class labels. This work proposes meta-learning approach for recommending the best hierarchical classification algorithm to a hierarchical classification dataset. This work’s contributions are: 1) proposing an algorithm for splitting hierarchical datasets into new datasets to increase the number of meta-instances, 2) proposing meta-features for hierarchical classification, and 3) interpreting decision-tree meta-models for hierarchical classification algorithm recommendation.Keywords: algorithm recommendation, meta-learning, bioinformatics, hierarchical classification
Procedia PDF Downloads 3144011 Syntactic Analyzer for Tamil Language
Authors: Franklin Thambi Jose.S
Abstract:
Computational Linguistics is a branch of linguistics, which deals with the computer and linguistic levels. It is also said, as a branch of language studies which applies computer techniques to linguistics field. In Computational Linguistics, Natural Language Processing plays an important role. This came to exist because of the invention of Information Technology. In computational syntax, the syntactic analyser breaks a sentence into phrases and clauses and identifies the sentence with the syntactic information. Tamil is one of the major Dravidian languages, which has a very long written history of more than 2000 years. It is mainly spoken in Tamilnadu (in India), Srilanka, Malaysia and Singapore. It is an official language in Tamilnadu (in India), Srilanka, Malaysia and Singapore. In Malaysia Tamil speaking people are considered as an ethnic group. In Tamil syntax, the sentences in Tamil are classified into four for this research, namely: 1. Main Sentence 2. Interrogative Sentence 3. Equational Sentence 4. Elliptical Sentence. In computational syntax, the first step is to provide required information regarding the head and its constituent of each sentence. This information will be incorporated to the system using programming languages. Now the system can easily analyse a given sentence with the criteria or mechanisms given to it. Providing needful criteria or mechanisms to the computer to identify the basic types of sentences using Syntactic parser in Tamil language is the major objective of this paper.Keywords: tamil, syntax, criteria, sentences, parser
Procedia PDF Downloads 5174010 A New Sign Subband Adaptive Filter Based on Dynamic Selection of Subbands
Authors: Mohammad Shams Esfand Abadi, Mehrdad Zalaghi, Reza ebrahimpour
Abstract:
In this paper, we propose a sign adaptive filter algorithm with the ability of dynamic selection of subband filters which leads to low computational complexity compared with conventional sign subband adaptive filter (SSAF) algorithm. Dynamic selection criterion is based on largest reduction of the mean square deviation at each adaption. We demonstrate that this simple proposed algorithm has the same performance of the conventional SSAF and somewhat faster than it. In the presence of impulsive interferences robustness of the simple proposed algorithm as well as the conventional SSAF and outperform the conventional normalized subband adaptive filter (NSAF) algorithm. Therefore, it is preferred for environments under impulsive interferences. Simulation results are presented to verify these above considerations very well have been achieved.Keywords: acoustic echo cancellation (AEC), normalized subband adaptive filter (NSAF), dynamic selection subband adaptive filter (DS-NSAF), sign subband adaptive filter (SSAF), impulsive noise, robust filtering
Procedia PDF Downloads 6014009 Transforaminal Ligaments of the Lumbar Foramina: An Anatomic Study
Authors: Dušica L. Marić, Mirela Erić, Dušan M. Maić, Nebojša T. Milošević, Dragana Radošević, Nikola Vučinić
Abstract:
The anatomical existence of transforaminal ligaments has been studied widely. The crucial anatomic study of these structures describes the transforaminal ligaments as an anomalous structure. The ligaments associated with the intervertebral foramen were classified in the external, intraforaminal and internal foraminal ligaments. The external ligaments are the most frequently reported type of transforaminal ligaments in adult spine. The purpose of this study was to examine the appearance of the ligaments within the external space of the intervertebral foramen in adult cadavers. External transforaminal ligaments branch out forward from the root of the transverse process toward the vertebral body with superior, transverse and inferior directions. The ligament detected in the study was different from the other reported descriptions of L1 foraminal ligaments. This ligament extends from the root of the pedicle to the inferior border of the vertebral body below the level of the disc and forms the compartment through which pass the ventral root of the spinal nerve and a small branch of the spinal artery. The results of this study show that the external ligaments can be clearly macroscopic visualized, and it is very important to have prior knowledge of the cadaveric specimens, to identify these structures. The presence of these ligaments is clinically important. These ligaments could be the cause of nerve root compression and the low back syndrome.Keywords: anatomy, ligaments, lumbar spine, spinal nerve roots
Procedia PDF Downloads 3334008 A Fuzzy Kernel K-Medoids Algorithm for Clustering Uncertain Data Objects
Authors: Behnam Tavakkol
Abstract:
Uncertain data mining algorithms use different ways to consider uncertainty in data such as by representing a data object as a sample of points or a probability distribution. Fuzzy methods have long been used for clustering traditional (certain) data objects. They are used to produce non-crisp cluster labels. For uncertain data, however, besides some uncertain fuzzy k-medoids algorithms, not many other fuzzy clustering methods have been developed. In this work, we develop a fuzzy kernel k-medoids algorithm for clustering uncertain data objects. The developed fuzzy kernel k-medoids algorithm is superior to existing fuzzy k-medoids algorithms in clustering data sets with non-linearly separable clusters.Keywords: clustering algorithm, fuzzy methods, kernel k-medoids, uncertain data
Procedia PDF Downloads 2164007 A New Evolutionary Algorithm for Multi-Objective Cylindrical Spur Gear Design Optimization
Authors: Hammoudi Abderazek
Abstract:
The present paper introduces a modified adaptive mixed differential evolution (MAMDE) to select the main geometry parameters of specific cylindrical spur gear. The developed algorithm used the self-adaptive mechanism in order to update the values of mutation and crossover factors. The feasibility rules are used in the selection phase to improve the search exploration of MAMDE. Moreover, the elitism is performed to keep the best individual found in each generation. For the constraints handling the normalization method is used to treat each constraint design equally. The finite element analysis is used to confirm the optimization results for the maximum bending resistance. The simulation results reached in this paper indicate clearly that the proposed algorithm is very competitive in precision gear design optimization.Keywords: evolutionary algorithm, spur gear, tooth profile, meta-heuristics
Procedia PDF Downloads 1324006 UAV’s Enhanced Data Collection for Heterogeneous Wireless Sensor Networks
Authors: Kamel Barka, Lyamine Guezouli, Assem Rezki
Abstract:
In this article, we propose a protocol called DataGA-DRF (a protocol for Data collection using a Genetic Algorithm through Dynamic Reference Points) that collects data from Heterogeneous wireless sensor networks. This protocol is based on DGA (Destination selection according to Genetic Algorithm) to control the movement of the UAV (Unmanned aerial vehicle) between dynamic reference points that virtually represent the sensor node deployment. The dynamics of these points ensure an even distribution of energy consumption among the sensors and also improve network performance. To determine the best points, DataGA-DRF uses a classification algorithm such as K-Means.Keywords: heterogeneous wireless networks, unmanned aerial vehicles, reference point, collect data, genetic algorithm
Procedia PDF Downloads 844005 The Selection of the Nearest Anchor Using Received Signal Strength Indication (RSSI)
Authors: Hichem Sassi, Tawfik Najeh, Noureddine Liouane
Abstract:
The localization information is crucial for the operation of WSN. There are principally two types of localization algorithms. The Range-based localization algorithm has strict requirements on hardware; thus, it is expensive to be implemented in practice. The Range-free localization algorithm reduces the hardware cost. However, it can only achieve high accuracy in ideal scenarios. In this paper, we locate unknown nodes by incorporating the advantages of these two types of methods. The proposed algorithm makes the unknown nodes select the nearest anchor using the Received Signal Strength Indicator (RSSI) and choose two other anchors which are the most accurate to achieve the estimated location. Our algorithm improves the localization accuracy compared with previous algorithms, which has been demonstrated by the simulating results.Keywords: WSN, localization, DV-Hop, RSSI
Procedia PDF Downloads 3634004 A Graph Theoretic Algorithm for Bandwidth Improvement in Computer Networks
Authors: Mehmet Karaata
Abstract:
Given two distinct vertices (nodes) source s and target t of a graph G = (V, E), the two node-disjoint paths problem is to identify two node-disjoint paths between s ∈ V and t ∈ V . Two paths are node-disjoint if they have no common intermediate vertices. In this paper, we present an algorithm with O(m)-time complexity for finding two node-disjoint paths between s and t in arbitrary graphs where m is the number of edges. The proposed algorithm has a wide range of applications in ensuring reliability and security of sensor, mobile and fixed communication networks.Keywords: disjoint paths, distributed systems, fault-tolerance, network routing, security
Procedia PDF Downloads 4444003 Radial Basis Surrogate Model Integrated to Evolutionary Algorithm for Solving Computation Intensive Black-Box Problems
Authors: Abdulbaset Saad, Adel Younis, Zuomin Dong
Abstract:
For design optimization with high-dimensional expensive problems, an effective and efficient optimization methodology is desired. This work proposes a series of modification to the Differential Evolution (DE) algorithm for solving computation Intensive Black-Box Problems. The proposed methodology is called Radial Basis Meta-Model Algorithm Assisted Differential Evolutionary (RBF-DE), which is a global optimization algorithm based on the meta-modeling techniques. A meta-modeling assisted DE is proposed to solve computationally expensive optimization problems. The Radial Basis Function (RBF) model is used as a surrogate model to approximate the expensive objective function, while DE employs a mechanism to dynamically select the best performing combination of parameters such as differential rate, cross over probability, and population size. The proposed algorithm is tested on benchmark functions and real life practical applications and problems. The test results demonstrate that the proposed algorithm is promising and performs well compared to other optimization algorithms. The proposed algorithm is capable of converging to acceptable and good solutions in terms of accuracy, number of evaluations, and time needed to converge.Keywords: differential evolution, engineering design, expensive computations, meta-modeling, radial basis function, optimization
Procedia PDF Downloads 3974002 Reduction of Impulsive Noise in OFDM System using Adaptive Algorithm
Authors: Alina Mirza, Sumrin M. Kabir, Shahzad A. Sheikh
Abstract:
The Orthogonal Frequency Division Multiplexing (OFDM) with high data rate, high spectral efficiency and its ability to mitigate the effects of multipath makes them most suitable in wireless application. Impulsive noise distorts the OFDM transmission and therefore methods must be investigated to suppress this noise. In this paper, a State Space Recursive Least Square (SSRLS) algorithm based adaptive impulsive noise suppressor for OFDM communication system is proposed. And a comparison with another adaptive algorithm is conducted. The state space model-dependent recursive parameters of proposed scheme enables to achieve steady state mean squared error (MSE), low bit error rate (BER), and faster convergence than that of some of existing algorithm.Keywords: OFDM, impulsive noise, SSRLS, BER
Procedia PDF Downloads 4584001 Channel Estimation for Orthogonal Frequency Division Multiplexing Systems over Doubly Selective Channels Base on DCS-DCSOMP Algorithm
Authors: Linyu Wang, Furui Huo, Jianhong Xiang
Abstract:
The Doppler shift generated by high-speed movement and multipath effects in the channel are the main reasons for the generation of a time-frequency doubly-selective (DS) channel. There is severe inter-carrier interference (ICI) in the DS channel. Channel estimation for an orthogonal frequency division multiplexing (OFDM) system over a DS channel is very difficult. The simultaneous orthogonal matching pursuit algorithm under distributed compressive sensing theory (DCS-SOMP) has been used in channel estimation for OFDM systems over DS channels. However, the reconstruction accuracy of the DCS-SOMP algorithm is not high enough in the low SNR stage. To solve this problem, in this paper, we propose an improved DCS-SOMP algorithm based on the inner product difference comparison operation (DCS-DCSOMP). The reconstruction accuracy is improved by increasing the number of candidate indexes and designing the comparison conditions of inner product difference. We combine the DCS-DCSOMP algorithm with the basis expansion model (BEM) to reduce the complexity of channel estimation. Simulation results show the effectiveness of the proposed algorithm and its advantages over other algorithms.Keywords: OFDM, doubly selective, channel estimation, compressed sensing
Procedia PDF Downloads 984000 Robot Operating System-Based SLAM for a Gazebo-Simulated Turtlebot2 in 2d Indoor Environment with Cartographer Algorithm
Authors: Wilayat Ali, Li Sheng, Waleed Ahmed
Abstract:
The ability of the robot to make simultaneously map of the environment and localize itself with respect to that environment is the most important element of mobile robots. To solve SLAM many algorithms could be utilized to build up the SLAM process and SLAM is a developing area in Robotics research. Robot Operating System (ROS) is one of the frameworks which provide multiple algorithm nodes to work with and provide a transmission layer to robots. Manyof these algorithms extensively in use are Hector SLAM, Gmapping and Cartographer SLAM. This paper describes a ROS-based Simultaneous localization and mapping (SLAM) library Google Cartographer mapping, which is open-source algorithm. The algorithm was applied to create a map using laser and pose data from 2d Lidar that was placed on a mobile robot. The model robot uses the gazebo package and simulated in Rviz. Our research work's primary goal is to obtain mapping through Cartographer SLAM algorithm in a static indoor environment. From our research, it is shown that for indoor environments cartographer is an applicable algorithm to generate 2d maps with LIDAR placed on mobile robot because it uses both odometry and poses estimation. The algorithm has been evaluated and maps are constructed against the SLAM algorithms presented by Turtlebot2 in the static indoor environment.Keywords: SLAM, ROS, navigation, localization and mapping, gazebo, Rviz, Turtlebot2, slam algorithms, 2d indoor environment, cartographer
Procedia PDF Downloads 1463999 Comparison of Back-Projection with Non-Uniform Fast Fourier Transform for Real-Time Photoacoustic Tomography
Authors: Moung Young Lee, Chul Gyu Song
Abstract:
Photoacoustic imaging is the imaging technology that combines the optical imaging and ultrasound. This provides the high contrast and resolution due to optical imaging and ultrasound imaging, respectively. We developed the real-time photoacoustic tomography (PAT) system using linear-ultrasound transducer and digital acquisition (DAQ) board. There are two types of algorithm for reconstructing the photoacoustic signal. One is back-projection algorithm, the other is FFT algorithm. Especially, we used the non-uniform FFT algorithm. To evaluate the performance of our system and algorithms, we monitored two wires that stands at interval of 2.89 mm and 0.87 mm. Then, we compared the images reconstructed by algorithms. Finally, we monitored the two hairs crossed and compared between these algorithms.Keywords: back-projection, image comparison, non-uniform FFT, photoacoustic tomography
Procedia PDF Downloads 434