Search results for: active power filter
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9947

Search results for: active power filter

9647 Voltage Stability Assessment and Enhancement Using STATCOM -A Case Study

Authors: Puneet Chawla, Balwinder Singh

Abstract:

Recently, increased attention has been devoted to the voltage instability phenomenon in power systems. Many techniques have been proposed in the literature for evaluating and predicting voltage stability using steady state analysis methods. In this paper, P-V and Q-V curves have been generated for a 57 bus Patiala Rajpura circle of India. The power-flow program is developed in MATLAB using Newton-Raphson method. Using Q-V curves, the weakest bus of the power system and the maximum reactive power change permissible on that bus is calculated. STATCOMs are placed on the weakest bus to improve the voltage and hence voltage stability and also the power transmission capability of the line.

Keywords: voltage stability, reactive power, power flow, weakest bus, STATCOM

Procedia PDF Downloads 500
9646 Assessing the Ways of Improving the Power Saving Modes in the Ore-Grinding Technological Process

Authors: Baghdasaryan Marinka

Abstract:

Monitoring the distribution of electric power consumption in the technological process of ore grinding is conducted. As a result, the impacts of the mill filling rate, the productivity of the ore supply, the volumetric density of the grinding balls, the specific density of the ground ore, and the relative speed of the mill rotation on the specific consumption of electric power have been studied. The power and technological factors affecting the reactive power generated by the synchronous motors, operating within the technological scheme are studied. A block diagram for evaluating the power consumption modes of the technological process is presented, which includes the analysis of the technological scheme, the determination of the place and volumetric density of the ore-grinding mill, the evaluation of the technological and power factors affecting the energy saving process, as well as the assessment of the electric power standards.

Keywords: electric power standard, factor, ore grinding, power consumption, reactive power, technological

Procedia PDF Downloads 533
9645 State Estimation Method Based on Unscented Kalman Filter for Vehicle Nonlinear Dynamics

Authors: Wataru Nakamura, Tomoaki Hashimoto, Liang-Kuang Chen

Abstract:

This paper provides a state estimation method for automatic control systems of nonlinear vehicle dynamics. A nonlinear tire model is employed to represent the realistic behavior of a vehicle. In general, all the state variables of control systems are not precisedly known, because those variables are observed through output sensors and limited parts of them might be only measurable. Hence, automatic control systems must incorporate some type of state estimation. It is needed to establish a state estimation method for nonlinear vehicle dynamics with restricted measurable state variables. For this purpose, unscented Kalman filter method is applied in this study for estimating the state variables of nonlinear vehicle dynamics. The objective of this paper is to propose a state estimation method using unscented Kalman filter for nonlinear vehicle dynamics. The effectiveness of the proposed method is verified by numerical simulations.

Keywords: state estimation, control systems, observer systems, nonlinear systems

Procedia PDF Downloads 119
9644 Theory of the Optimum Signal Approximation Clarifying the Importance in the Recognition of Parallel World and Application to Secure Signal Communication with Feedback

Authors: Takuro Kida, Yuichi Kida

Abstract:

In this paper, it is shown a base of the new trend of algorithm mathematically that treats a historical reason of continuous discrimination in the world as well as its solution by introducing new concepts of parallel world that includes an invisible set of errors as its companion. With respect to a matrix operator-filter bank that the matrix operator-analysis-filter bank H and the matrix operator-sampling-filter bank S are given, firstly, we introduce the detail algorithm to derive the optimum matrix operator-synthesis-filter bank Z that minimizes all the worst-case measures of the matrix operator-error-signals E(ω) = F(ω) − Y(ω) between the matrix operator-input-signals F(ω) and the matrix operator-output-signals Y(ω) of the matrix operator-filter bank at the same time. Further, feedback is introduced to the above approximation theory, and it is indicated that introducing conversations with feedback do not superior automatically to the accumulation of existing knowledge of signal prediction. Secondly, the concept of category in the field of mathematics is applied to the above optimum signal approximation and is indicated that the category-based approximation theory is applied to the set-theoretic consideration of the recognition of humans. Based on this discussion, it is shown naturally why the narrow perception that tends to create isolation shows an apparent advantage in the short term and, often, why such narrow thinking becomes intimate with discriminatory action in a human group. Throughout these considerations, it is presented that, in order to abolish easy and intimate discriminatory behavior, it is important to create a parallel world of conception where we share the set of invisible error signals, including the words and the consciousness of both worlds.

Keywords: matrix filterbank, optimum signal approximation, category theory, simultaneous minimization

Procedia PDF Downloads 121
9643 Simulation of Wind Generator with Fixed Wind Turbine under Matlab-Simulink

Authors: Mahdi Motahari, Mojtaba Farzaneh, Armin Parsian Nejad

Abstract:

The rapidly growing wind industry is highly expressing the need for education and training worldwide, particularly on the system level. Modelling and simulating wind generator system using Matlab-Simulink provides expert help in understanding wind systems engineering and system design. Working under Matlab-Simulink we present the integration of the developed WECS model with public electrical grid. A test of the calculated power and Cp related to the experimental equivalent data, using statistical analysis is performed. The statistical indicators of accuracy show better results of the presented method with RMSE: 21%, 22%, MBE : 0.77%, 0.12 % and MAE :3%, 4%.On the other hand we study its behavior when integrated in whole power system. Three level of wind speeds have been chosen: low with 5m/s as the mean value, medium with 8m/s as the mean value and high speed with 12m/s as the mean value. These allowed predicting and supervising the active power produced by the system, characterized respectively by the middle powers of -150 kW, -250kW and -480 kW which will be injected directly into the public electrical grid and the reactive power, characterized respectively by the middle powers of 60 kW, 180 kW and 320 kW and will be consumed by the wind generator.

Keywords: modelling, simulation, wind generator, fixed speed wind turbine, Matlab-Simulink

Procedia PDF Downloads 603
9642 The Unscented Kalman Filter Implementation for the Sensorless Speed Control of a Permanent Magnet Synchronous Motor

Authors: Justas Dilys

Abstract:

ThispaperaddressestheimplementationandoptimizationofanUnscentedKalmanFilter(UKF) for the Permanent Magnet Synchronous Motor (PMSM) sensorless control using an ARM Cortex- M3 microcontroller. A various optimization levels based on arithmetic calculation reduction was implemented in ARM Cortex-M3 microcontroller. The execution time of UKF estimator was up to 90µs without loss of accuracy. Moreover, simulation studies on the Unscented Kalman filters are carried out using Matlab to explore the usability of the UKF in a sensorless PMSMdrive.

Keywords: unscented kalman filter, ARM, PMSM, implementation

Procedia PDF Downloads 143
9641 A Case Study of Limited Dynamic Voltage Frequency Scaling in Low-Power Processors

Authors: Hwan Su Jung, Ahn Jun Gil, Jong Tae Kim

Abstract:

Power management techniques are necessary to save power in the microprocessor. By changing the frequency and/or operating voltage of processor, DVFS can control power consumption. In this paper, we perform a case study to find optimal power state transition for DVFS. We propose the equation to find the optimal ratio between executions of states while taking into account the deadline of processing time and the power state transition delay overhead. The experiment is performed on the Cortex-M4 processor, and average 6.5% power saving is observed when DVFS is applied under the deadline condition.

Keywords: deadline, dynamic voltage frequency scaling, power state transition

Procedia PDF Downloads 441
9640 Reliability, Availability and Capacity Analysis of Power Plants in Kuwait

Authors: Mehmet Savsar

Abstract:

One of the most important factors affecting power plant performance is the reliability of the turbine units operated under different conditions. Reliability directly affects plant availability and performance. Therefore, it is very important to be able to analyze turbine units, as well as power plant system reliability and availability under various operational conditions. In this paper, data related to power station failures are collected and analyzed in detail for all power stations in the state of Kuwait. Failures are characterized and categorized. Reliabilities of various power plants are analyzed and availabilities are quantified. Based on calculated availabilities of all installed power plants, actual power output is estimated. Furthermore, based on the past 15 years of data, power consumption trend is determined and the demand for power in the future is forecasted. Estimated power output is compared to the forecasted demand in order to determine the need for future capacity expansion.

Keywords: power plants, reliability, availability, capacity, preventive maintenance, forecasting

Procedia PDF Downloads 344
9639 Design and Study of a DC/DC Converter for High Power, 14.4 V and 300 A for Automotive Applications

Authors: Júlio Cesar Lopes de Oliveira, Carlos Henrique Gonçalves Treviso

Abstract:

The shortage of the automotive market in relation to options for sources of high power car audio systems, led to development of this work. Thus, we developed a source with stabilized voltage with 4320 W effective power. Designed to the voltage of 14.4 V and a choice of two currents: 30 A load option in battery banks and 300 A at full load. This source can also be considered as a source of general use dedicated commercial with a simple control circuit in analog form based on discrete components. The assembly of power circuit uses a methodology for higher power than the initially stipulated.

Keywords: DC-DC power converters, converters, power conversion, pulse width modulation converters

Procedia PDF Downloads 358
9638 Active Learning Management for Teacher's Professional Courses in Curriculum and Instruction, Faculty of Education Thaksin University

Authors: Chuanphit Chumkhong

Abstract:

This research aimed 1) to study the effects of the management of Active Learning among 3rd year students enrolled in teacher’s profession courses and 2) to assess the satisfaction of the students with courses using the Active Learning approach. The population for the study consisted of 442 3rd year undergraduate students enrolled in two teacher education courses in 2015: Curriculum Development and Learning Process Management. They were 442 from 11 education programs. Respondents for evaluation of satisfaction with Active Learning management comprised 432 students. The instruments used in research included a detailed course description and rating scale questionnaire on Active Learning. The data were analyzed using arithmetic mean and standard deviation. The results of the study reveal the following: 1. Overall, students gain a better understanding of the Active Learning due to their actual practice on the activity of course. Students have the opportunity to exchange learning knowledge and skills. The AL teaching activities make students interested in the contents and they seek to search for knowledge on their own. 2. Overall, 3rd year students are satisfied with the Active Learning management at a ‘high’ level with a mean score (μ) of 4.12 and standard deviation (σ) of. 51. By individual items, students are satisfied with the 10 elements in the two courses at a ‘high’ level with the mean score (μ) between 3.79 to 4.41 and a standard deviation (σ) between to 68. 79.

Keywords: active learning teaching model, teacher’s professional courses, professional courses, curriculum and instruction teacher's

Procedia PDF Downloads 230
9637 Islanding Detection of Wind Turbine by Rate of Change of Frequency (ROCOF) and Rate of change of Power (ROCOP) Method

Authors: Vipulkumar Jagodana

Abstract:

Recently the use of renewable sources has increased, these sources include fuel cell, photo voltaic, and wind turbine. Islanding occurs when one portion of grid is isolated from remaining grid. Use of the renewable sources can provide continuous power to isolated portion in islanding condition. One of the common renewable sources is wind generation using wind turbine. The efficiency of wind generation can be increased in combination with conventional sources. When islanding occurs, few parameters change which may be frequency, voltage, active power, and harmonics. According to large change in one of these parameters islanding is detected. In this paper, two passive methods Rate of Change of Frequency (ROCOF) and Rate of change of Power (ROCOP) have been implemented for islanding detection of small wind-turbine. Islanding detection of both methods have been simulated in PSCAD. Simulation results show at different islanding inception angle response of ROCOF and ROCOP.

Keywords: islanding, adopted methods, PSCAD simulation, comparison

Procedia PDF Downloads 205
9636 Utilizing Grid Computing to Enhance Power Systems Performance

Authors: Rafid A. Al-Khannak, Fawzi M. Al-Naima

Abstract:

Power load is one of the most important controlling keys which decide power demands and illustrate power usage to shape power market. Hence, power load forecasting is the parameter which facilitates understanding and analyzing all these aspects. In this paper, power load forecasting is solved under MATLAB environment by constructing a neural network for the power load to find an accurate simulated solution with the minimum error. A developed algorithm to achieve load forecasting application with faster technique is the aim for this paper. The algorithm is used to enable MATLAB power application to be implemented by multi machines in the Grid computing system, and to accomplish it within much less time, cost and with high accuracy and quality. Grid Computing, the modern computational distributing technology, has been used to enhance the performance of power applications by utilizing idle and desired Grid contributor(s) by sharing computational power resources.

Keywords: DeskGrid, Grid Server, idle contributor(s), grid computing, load forecasting

Procedia PDF Downloads 459
9635 Separate Powers Control Structure of DFIG Based on Fractional Regulator Fed by Multilevel Inverters DC Bus Voltages of a photovoltaic System

Authors: S. Ghoudelbourk, A. Omeiri, D. Dib, H. Cheghib

Abstract:

This paper shows that we can improve the performance of the auto-adjustable electric machines if a fractional dynamic is considered in the algorithm of the controlling order. This structure is particularly interested in the separate control of active and reactive power of the double-fed induction generator (DFIG) of wind power conversion chain. Fractional regulators are used in the regulation of chain of powers. Knowing that, usually, the source of DFIG is provided by converters through controlled rectifiers, all this system makes the currents of lines strongly polluted that can have a harmful effect for the connected loads and sensitive equipment nearby. The solution to overcome these problems is to replace the power of the rotor DFIG by multilevel inverters supplied by PV which improve the THD. The structure of the adopted adjustment is tested using Matlab/Simulink and the results are presented and analyzed for a variable wind.

Keywords: DFIG, fractional regulator, multilevel inverters, PV

Procedia PDF Downloads 392
9634 Realistic Testing Procedure of Power Swing Blocking Function in Distance Relay

Authors: Farzad Razavi, Behrooz Taheri, Mohammad Parpaei, Mehdi Mohammadi Ghalesefidi, Siamak Zarei

Abstract:

As one of the major problems in protecting large-dimension power systems, power swing and its effect on distance have caused a lot of damages to energy transfer systems in many parts of the world. Therefore, power swing has gained attentions of many researchers, which has led to invention of different methods for power swing detection. Power swing detection algorithm is highly important in distance relay, but protection relays should have general requirements such as correct fault detection, response rate, and minimization of disturbances in a power system. To ensure meeting the requirements, protection relays need different tests during development, setup, maintenance, configuration, and troubleshooting steps. This paper covers power swing scheme of the modern numerical relay protection, 7sa522 to address the effect of the different fault types on the function of the power swing blocking. In this study, it was shown that the different fault types during power swing cause different time for unblocking distance relay.

Keywords: power swing, distance relay, power system protection, relay test, transient in power system

Procedia PDF Downloads 362
9633 Polymer Solar Cells Synthesized with Copper Oxide Nanoparticles

Authors: Nidal H. Abu-Zahra, Aruna P. Wanninayake

Abstract:

Copper Oxide (CuO) is a p-type semiconductor with a band gap energy of 1.5 eV, this is close to the ideal energy gap of 1.4 eV required for solar cells to allow good solar spectral absorption. The inherent electrical characteristics of CuO nano particles make them attractive candidates for improving the performance of polymer solar cells when incorporated into the active polymer layer. The UV-visible absorption spectra and external quantum efficiency of P3HT/PC70BM solar cells containing different weight percentages of CuO nano particles showed a clear enhancement in the photo absorption of the active layer, this increased the power conversion efficiency of the solar cells by 24% in comparison to the reference cell. The short circuit current of the reference cell was found to be 5.234 mA/cm2 and it seemed to increase to 6.484 mA/cm2 in cells containing 0.6 mg of CuO NPs; in addition the fill factor increased from 61.15% to 68.0%, showing an enhancement of 11.2%. These observations suggest that the optimum concentration of CuO nano particles was 0.6 mg in the active layer. These significant findings can be applied to design high-efficiency polymer solar cells containing inorganic nano particles.

Keywords: copper oxide nanoparticle, UV-visible spectroscopy, polymer solar cells, P3HT/PCBM

Procedia PDF Downloads 404
9632 Compensation of Power Quality Disturbances Using DVR

Authors: R. Rezaeipour

Abstract:

One of the key aspects of power quality improvement in power system is the mitigation of voltage sags/swells and flicker. Custom power devices have been known as the best tools for voltage disturbances mitigation as well as reactive power compensation. Dynamic voltage restorer (DVR) which is the most efficient and effective modern custom power device can provide the most commercial solution to solve several problems of power quality in distribution networks. This paper deals with analysis and simulation technique of DVR based on instantaneous power theory which is a quick control to detect signals. The main purpose of this work is to remove three important disturbances including voltage sags/swells and flicker. Simulation of the proposed method was carried out on two sample systems by using MATLAB software environment and the results of simulation show that the proposed method is able to provide desirable power quality in the presence of wide range of disturbances.

Keywords: DVR, power quality, voltage sags, voltage swells, flicker

Procedia PDF Downloads 326
9631 Recursive Doubly Complementary Filter Design Using Particle Swarm Optimization

Authors: Ju-Hong Lee, Ding-Chen Chung

Abstract:

This paper deals with the optimal design of recursive doubly complementary (DC) digital filter design using a metaheuristic based optimization technique. Based on the theory of DC digital filters using two recursive digital all-pass filters (DAFs), the design problem is appropriately formulated to result in an objective function which is a weighted sum of the phase response errors of the designed DAFs. To deal with the stability of the recursive DC filters during the design process, we can either impose some necessary constraints on the phases of the recursive DAFs. Through a frequency sampling and a weighted least squares approach, the optimization problem of the objective function can be solved by utilizing a population based stochastic optimization approach. The resulting DC digital filters can possess satisfactory frequency response. Simulation results are presented for illustration and comparison.

Keywords: doubly complementary, digital all-pass filter, weighted least squares algorithm, particle swarm optimization

Procedia PDF Downloads 665
9630 Effect of Fabrication Errors on High Frequency Filter Circuits

Authors: Wesam Ali

Abstract:

This paper provides useful guidelines to the circuit designers on the magnitude of fabrication errors in multilayer millimeter-wave components that are acceptable and presents data not previously reported in the literature. A particularly significant error that was quantified was that of skew between conductors on different layers, where it was found that a skew angle of only 0.1° resulted in very significant changes in bandwidth and insertion loss. The work was supported by a detailed investigation on a 35GHz, multilayer edge-coupled band-pass filter, which was fabricated on alumina substrates using photoimageable thick film process.

Keywords: fabrication errors, multilayer, high frequency band, photoimagable technology

Procedia PDF Downloads 458
9629 Controlling Interactions and Non-Equilibrium Steady State in Spinning Active Matter Monolayers

Authors: Joshua Paul Steimel, Michael Pappas, Ethan Hall

Abstract:

Particle-particle interactions are critical in determining the state of an active matter system. Unique and ubiquitous non-equilibrium behavior like swarming, vortexing, spiraling, and much more is governed by interactions between active units or particles. In hybrid active-passive matter systems, the attraction between spinning active units in a 2D monolayer of passive particles is controlled by the mechanical behavior of the passive monolayer. We demonstrate here that the range and dynamics of this attraction can be controlled by changing the composition of the passive monolayer by adding dopant passive particles. These dopant passive particles effectively pin the movement of dislocation motion in the passive media and reduce the probability of defect motion required to erode the bridge of passive particles between active spinners, thus reducing the range of attraction. Additionally, by adding an out of plane component to the magnetic moment and creating a top-like motion a short range repulsion emerges between the top-like particle. At inter-top distances less than four particle diameters apart, the tops repel but beyond that, distance attract up to 13 particle diameters apart. The tops were also able to locally and transiently anneal the passive monolayer. Thus we demonstrate that by tuning several parameters of the hybrid active matter system, one can observe very different emergent behavior.

Keywords: active matter, colloids, ferromagnetic, annealing

Procedia PDF Downloads 89
9628 Comparison of Loosely Coupled and Tightly Coupled INS/GNSS Architecture for Guided Rocket Navigation System

Authors: Rahmat Purwoko, Bambang Riyanto Trilaksono

Abstract:

This paper gives comparison of INS/GNSS architecture namely Loosely Coupled and Tightly Coupled using Hardware in the Loop Simulation in Guided Missile RKX-200 rocket model. INS/GNSS Tightly Coupled architecture requires pseudo-range, pseudo-range rate, and position and velocity of each satellite in constellation from GPS (Global Positioning System) measurement. The Loosely Coupled architecture use estimated position and velocity from GNSS receiver. INS/GNSS architecture also requires angular rate and specific force measurement from IMU (Inertial Measurement Unit). Loosely Coupled arhitecture designed using 15 states Kalman Filter and Tightly Coupled designed using 17 states Kalman Filter. Integration algorithm calculation using ECEF frame. Navigation System implemented Zedboard All Programmable SoC.

Keywords: kalman filter, loosely coupled, navigation system, tightly coupled

Procedia PDF Downloads 291
9627 Stability of Power System with High Penetration of Wind Energy: A Comprehensive Review

Authors: Jignesh Patel, Satish K. Joshi

Abstract:

This paper presents the literature review on the works done so far in the area of stability of power system with high penetration of Wind Power with other conventional power sources. Out of many problems, the voltage and frequency stability is of prime concern as it is directly related with the stable operation of power system. In this paper, different aspects of stability of power system, particularly voltage and frequency, Optimization of FACTS-Energy Storage devices is discussed.

Keywords: small singal stability, voltage stability, frequency stability, LVRT, wind power, FACTS

Procedia PDF Downloads 472
9626 State Estimation Based on Unscented Kalman Filter for Burgers’ Equation

Authors: Takashi Shimizu, Tomoaki Hashimoto

Abstract:

Controlling the flow of fluids is a challenging problem that arises in many fields. Burgers’ equation is a fundamental equation for several flow phenomena such as traffic, shock waves, and turbulence. The optimal feedback control method, so-called model predictive control, has been proposed for Burgers’ equation. However, the model predictive control method is inapplicable to systems whose all state variables are not exactly known. In practical point of view, it is unusual that all the state variables of systems are exactly known, because the state variables of systems are measured through output sensors and limited parts of them can be only available. In fact, it is usual that flow velocities of fluid systems cannot be measured for all spatial domains. Hence, any practical feedback controller for fluid systems must incorporate some type of state estimator. To apply the model predictive control to the fluid systems described by Burgers’ equation, it is needed to establish a state estimation method for Burgers’ equation with limited measurable state variables. To this purpose, we apply unscented Kalman filter for estimating the state variables of fluid systems described by Burgers’ equation. The objective of this study is to establish a state estimation method based on unscented Kalman filter for Burgers’ equation. The effectiveness of the proposed method is verified by numerical simulations.

Keywords: observer systems, unscented Kalman filter, nonlinear systems, Burgers' equation

Procedia PDF Downloads 134
9625 A Transform Domain Function Controlled VSSLMS Algorithm for Sparse System Identification

Authors: Cemil Turan, Mohammad Shukri Salman

Abstract:

The convergence rate of the least-mean-square (LMS) algorithm deteriorates if the input signal to the filter is correlated. In a system identification problem, this convergence rate can be improved if the signal is white and/or if the system is sparse. We recently proposed a sparse transform domain LMS-type algorithm that uses a variable step-size for a sparse system identification. The proposed algorithm provided high performance even if the input signal is highly correlated. In this work, we investigate the performance of the proposed TD-LMS algorithm for a large number of filter tap which is also a critical issue for standard LMS algorithm. Additionally, the optimum value of the most important parameter is calculated for all experiments. Moreover, the convergence analysis of the proposed algorithm is provided. The performance of the proposed algorithm has been compared to different algorithms in a sparse system identification setting of different sparsity levels and different number of filter taps. Simulations have shown that the proposed algorithm has prominent performance compared to the other algorithms.

Keywords: adaptive filtering, sparse system identification, TD-LMS algorithm, VSSLMS algorithm

Procedia PDF Downloads 337
9624 Wind Power Forecast Error Simulation Model

Authors: Josip Vasilj, Petar Sarajcev, Damir Jakus

Abstract:

One of the major difficulties introduced with wind power penetration is the inherent uncertainty in production originating from uncertain wind conditions. This uncertainty impacts many different aspects of power system operation, especially the balancing power requirements. For this reason, in power system development planing, it is necessary to evaluate the potential uncertainty in future wind power generation. For this purpose, simulation models are required, reproducing the performance of wind power forecasts. This paper presents a wind power forecast error simulation models which are based on the stochastic process simulation. Proposed models capture the most important statistical parameters recognized in wind power forecast error time series. Furthermore, two distinct models are presented based on data availability. First model uses wind speed measurements on potential or existing wind power plant locations, while the seconds model uses statistical distribution of wind speeds.

Keywords: wind power, uncertainty, stochastic process, Monte Carlo simulation

Procedia PDF Downloads 462
9623 Structural Stress of Hegemon’s Power Loss: A Pestle Analysis for Pacification and Security Policy Plan

Authors: Sehrish Qayyum

Abstract:

Active military power contention is shifting to economic and cyberwar to retain hegemony. Attuned Pestle analysis confirms that structural stress of hegemon’s power loss drives a containment approach towards caging actions. Ongoing diplomatic, asymmetric, proxy and direct wars are increasing stress hegemon’s power retention due to tangled military and economic alliances. It creates the condition of catalepsy with defective reflexive control which affects the core warfare operations. When one’s own power is doubted it gives power to one’s own doubt to ruin all planning either done with superlative cost-benefit analysis. Strategically calculated estimation of Hegemon’s power game since the early WWI to WWII, WWII-to Cold War and then to the current era in three chronological periods exposits that Thucydides’s trap became the reason for war broke out. Thirst for power is the demise of imagination and cooperation for better sense to prevail instead it drives ashes to dust. Pestle analysis is a wide array of evaluation from political and economic to legal dimensions of the state matters. It helps to develop the Pacification and Security Policy Plan (PSPP) to avoid hegemon’s structural stress of power loss in fact, in turn, creates an alliance with maximum amicable outputs. PSPP may serve to regulate and pause the hurricane of power clashes. PSPP along with a strategic work plan is based on Pestle analysis to deal with any conceivable war condition and approach for saving international peace. Getting tangled into self-imposed epistemic dilemmas results in regret that becomes the only option of performance. It is a generic application of probability tests to find the best possible options and conditions to develop PSPP for any adversity possible so far. Innovation in expertise begets innovation in planning and action-plan to serve as a rheostat approach to deal with any plausible power clash.

Keywords: alliance, hegemon, pestle analysis, pacification and security policy plan, security

Procedia PDF Downloads 92
9622 Availability Analysis of a Power Plant by Computer Simulation

Authors: Mehmet Savsar

Abstract:

Reliability and availability of power stations are extremely important in order to achieve a required level of power generation. In particular, in the hot desert climate of Kuwait, reliable power generation is extremely important because of cooling requirements at temperatures exceeding 50-centigrade degrees. In this paper, a particular power plant, named Sabiya Power Plant, which has 8 steam turbines and 13 gas turbine stations, has been studied in detail; extensive data are collected; and availability of station units are determined. Furthermore, a simulation model is developed and used to analyze the effects of different maintenance policies on availability of these stations. The results show that significant improvements can be achieved in power plant availabilities if appropriate maintenance policies are implemented.

Keywords: power plants, steam turbines, gas turbines, maintenance, availability, simulation

Procedia PDF Downloads 603
9621 Performance and Availability Analysis of 2N Redundancy Models

Authors: Yutae Lee

Abstract:

In this paper, we consider the performance and availability of a redundancy model. The redundancy model is a form of resilience that ensures service availability in the event of component failure. This paper considers a 2N redundancy model. In the model there are at most one active service unit and at most one standby service unit. The active one is providing the service while the standby is prepared to take over the active role when the active fails. We design our analysis model using Stochastic Reward Nets, and then evaluate the performance and availability of 2N redundancy model using Stochastic Petri Net Package (SPNP).

Keywords: availability, performance, stochastic reward net, 2N redundancy

Procedia PDF Downloads 399
9620 Feature Extraction Based on Contourlet Transform and Log Gabor Filter for Detection of Ulcers in Wireless Capsule Endoscopy

Authors: Nimisha Elsa Koshy, Varun P. Gopi, V. I. Thajudin Ahamed

Abstract:

The entire visualization of GastroIntestinal (GI) tract is not possible with conventional endoscopic exams. Wireless Capsule Endoscopy (WCE) is a low risk, painless, noninvasive procedure for diagnosing diseases such as bleeding, polyps, ulcers, and Crohns disease within the human digestive tract, especially the small intestine that was unreachable using the traditional endoscopic methods. However, analysis of massive images of WCE detection is tedious and time consuming to physicians. Hence, researchers have developed software methods to detect these diseases automatically. Thus, the effectiveness of WCE can be improved. In this paper, a novel textural feature extraction method is proposed based on Contourlet transform and Log Gabor filter to distinguish ulcer regions from normal regions. The results show that the proposed method performs well with a high accuracy rate of 94.16% using Support Vector Machine (SVM) classifier in HSV colour space.

Keywords: contourlet transform, log gabor filter, ulcer, wireless capsule endoscopy

Procedia PDF Downloads 522
9619 Enhance Power Quality by HVDC System, Comparison Technique between HVDC and HVAC Transmission Systems

Authors: Smko Zangana, Ergun Ercelebi

Abstract:

The alternating current is the main power in all industries and other aspects especially for the short and mid distances, but as far as long a distance which exceeds 500 KMs, using the alternating current technically will face many difficulties and more costs because it's difficult to control the current and also other restrictions. Therefore, recently those reasons led to building transmission lines HVDC to transmit power for long distances. This document presents technical comparison and assessments for power transmission system among distances either ways and studying the stability of the system regarding the proportion of losses in the actual power sent and received between both sides in different systems and also categorizing filters used in the HVDC system and its impact and effect on reducing Harmonic in the power transmission. MATLAB /Simulink simulation software is used to simulate both HVAC & HVDC power transmission system topologies.

Keywords: HVAC power system, HVDC power system, power system simulation (MATLAB), the alternating current, voltage stability

Procedia PDF Downloads 349
9618 The Direct Deconvolutional Model in the Large-Eddy Simulation of Turbulence

Authors: Ning Chang, Zelong Yuan, Yunpeng Wang, Jianchun Wang

Abstract:

The utilization of Large Eddy Simulation (LES) has been extensive in turbulence research. LES concentrates on resolving the significant grid-scale motions while representing smaller scales through subfilter-scale (SFS) models. The deconvolution model, among the available SFS models, has proven successful in LES of engineering and geophysical flows. Nevertheless, the thorough investigation of how sub-filter scale dynamics and filter anisotropy affect SFS modeling accuracy remains lacking. The outcomes of LES are significantly influenced by filter selection and grid anisotropy, factors that have not been adequately addressed in earlier studies. This study examines two crucial aspects of LES: Firstly, the accuracy of direct deconvolution models (DDM) is evaluated concerning sub-filter scale (SFS) dynamics across varying filter-to-grid ratios (FGR) in isotropic turbulence. Various invertible filters are employed, including Gaussian, Helmholtz I and II, Butterworth, Chebyshev I and II, Cauchy, Pao, and rapidly decaying filters. The importance of FGR becomes evident as it plays a critical role in controlling errors for precise SFS stress prediction. When FGR is set to 1, the DDM models struggle to faithfully reconstruct SFS stress due to inadequate resolution of SFS dynamics. Notably, prediction accuracy improves when FGR is set to 2, leading to accurate reconstruction of SFS stress, except for cases involving Helmholtz I and II filters. Remarkably high precision, nearly 100%, is achieved at an FGR of 4 for all DDM models. Furthermore, the study extends to filter anisotropy and its impact on SFS dynamics and LES accuracy. By utilizing the dynamic Smagorinsky model (DSM), dynamic mixed model (DMM), and direct deconvolution model (DDM) with anisotropic filters, aspect ratios (AR) ranging from 1 to 16 are examined in LES filters. The results emphasize the DDM’s proficiency in accurately predicting SFS stresses under highly anisotropic filtering conditions. Notably high correlation coefficients exceeding 90% are observed in the a priori study for the DDM’s reconstructed SFS stresses, surpassing those of the DSM and DMM models. However, these correlations tend to decrease as filter anisotropy increases. In the a posteriori analysis, the DDM model consistently outperforms the DSM and DMM models across various turbulence statistics, including velocity spectra, probability density functions related to vorticity, SFS energy flux, velocity increments, strainrate tensors, and SFS stress. It is evident that as filter anisotropy intensifies, the results of DSM and DMM deteriorate, while the DDM consistently delivers satisfactory outcomes across all filter-anisotropy scenarios. These findings underscore the potential of the DDM framework as a valuable tool for advancing the development of sophisticated SFS models for LES in turbulence research.

Keywords: deconvolution model, large eddy simulation, subfilter scale modeling, turbulence

Procedia PDF Downloads 55