Search results for: Object Identification
3765 A Study of Quality Assurance and Unit Verification Methods in Safety Critical Environment
Authors: Miklos Taliga
Abstract:
In the present case study we examined the development and testing methods of systems that contain safety-critical elements in different industrial fields. Consequentially, we observed the classical object-oriented development and testing environment, as both medical technology and automobile industry approaches the development of safety critical elements that way. Subsequently, we examined model-based development. We introduce the quality parameters that define development and testing. While taking modern agile methodology (scrum) into consideration, we examined whether and to what extent the methodologies we found fit into this environment.Keywords: safety-critical elements, quality managent, unit verification, model base testing, agile methods, scrum, metamodel, object-oriented programming, field specific modelling, sprint, user story, UML Standard
Procedia PDF Downloads 5853764 Time Efficient Color Coding for Structured-Light 3D Scanner
Authors: Po-Hao Huang, Pei-Ju Chiang
Abstract:
The structured light 3D scanner is commonly used for measuring the 3D shape of an object. Through projecting designed light patterns on the object, deformed patterns can be obtained and used for the geometric shape reconstruction. At present, Gray code is the most reliable and commonly used light pattern in the structured light 3D scanner. However, the trade-off between scanning efficiency and accuracy is a long-standing and challenging problem. The design of light patterns plays a significant role in the scanning efficiency and accuracy. Thereby, we proposed a novel encoding method integrating color information and Gray-code to improve the scanning efficiency. We will demonstrate that with the proposed method, the scanning time can be reduced to approximate half of the one needed by Gray-code without reduction of precision.Keywords: gray-code, structured light scanner, 3D shape acquisition, 3D reconstruction
Procedia PDF Downloads 4573763 Genetic Identification of Crop Cultivars Using Barcode System
Authors: Kesavan Markkandan, Ha Young Park, Seung-Il Yoo, Sin-Gi Park, Junhyung Park
Abstract:
For genetic identification of crop cultivars, insertions/deletions (InDel) markers have been preferred currently because they are easy to use, PCR based, co-dominant and relatively abundant. However, new InDels need to be developed for genetic studies of new varieties due to the difference of allele frequencies in InDels among the population groups. These new varieties are evolved with low levels of genetic diversity in specific genome loci with high recombination rate. In this study, we described soybean barcode system approach based on InDel makers, each of which is specific to a variation block (VB), where the genomes split by all assumed recombination sites. Firstly, VBs in crop cultivars were mined for transferability to VB-specific InDel markers. Secondly, putative InDels in the VB regions were identified for the development of barcode system by analyzing particular cultivar’s whole genome data. Thirdly, common VB-specific InDels from all cultivars were selected by gel electrophoresis, which were converted as 2D barcode types according to comparing amplicon polymorphisms in the five cultivars to the reference cultivar. Finally, the polymorphism of the selected markers was assessed with other cultivars, and the barcode system that allows a clear distinction among those cultivars is described. The same approach can be applicable for other commercial crops. Hence, VB-based genetic identification not only minimize the molecular markers but also useful for assessing cultivars and for marker-assisted breeding in other crop species.Keywords: variation block, polymorphism, InDel marker, genetic identification
Procedia PDF Downloads 3803762 Clothes Identification Using Inception ResNet V2 and MobileNet V2
Authors: Subodh Chandra Shakya, Badal Shrestha, Suni Thapa, Ashutosh Chauhan, Saugat Adhikari
Abstract:
To tackle our problem of clothes identification, we used different architectures of Convolutional Neural Networks. Among different architectures, the outcome from Inception ResNet V2 and MobileNet V2 seemed promising. On comparison of the metrices, we observed that the Inception ResNet V2 slightly outperforms MobileNet V2 for this purpose. So this paper of ours proposes the cloth identifier using Inception ResNet V2 and also contains the comparison between the outcome of ResNet V2 and MobileNet V2. The document here contains the results and findings of the research that we performed on the DeepFashion Dataset. To improve the dataset, we used different image preprocessing techniques like image shearing, image rotation, and denoising. The whole experiment was conducted with the intention of testing the efficiency of convolutional neural networks on cloth identification so that we could develop a reliable system that is good enough in identifying the clothes worn by the users. The whole system can be integrated with some kind of recommendation system.Keywords: inception ResNet, convolutional neural net, deep learning, confusion matrix, data augmentation, data preprocessing
Procedia PDF Downloads 1873761 Experimental Assessment of the Effectiveness of Judicial Instructions and of Expert Testimony in Improving Jurors’ Evaluation of Eyewitness Evidence
Authors: Alena Skalon, Jennifer L. Beaudry
Abstract:
Eyewitness misidentifications can sometimes lead to wrongful convictions of innocent people. This occurs in part because jurors tend to believe confident eyewitnesses even when the identification took place under suggestive conditions. Empirical research demonstrated that jurors are often unaware of the factors that can influence the reliability of eyewitness identification. Most common legal safeguards that are designed to educate jurors about eyewitness evidence are judicial instructions and expert testimony. To date, very few studies assessed the effectiveness of judicial instructions and most of them found that judicial instructions make jurors more skeptical of eyewitness evidence or do not have any effect on jurors’ judgments. Similar results were obtained for expert testimony. However, none of the previous studies focused on the ability of legal safeguards to improve jurors’ assessment of evidence obtained from suggestive identification procedures—this is one of the gaps addressed by this paper. Furthermore, only three studies investigated whether legal safeguards improve the ultimate accuracy of jurors’ judgments—that is, whether after listening to judicial instructions or expert testimony jurors can differentiate between accurate and inaccurate eyewitnesses. This presentation includes two studies. Both studies used genuine eyewitnesses (i.e., eyewitnesses who watched the crime) and manipulated the suggestiveness of identification procedures. The first study manipulated the presence of judicial instructions; the second study manipulated the presence of one of two types of expert testimony: a traditional, verbal expert testimony or expert testimony accompanied by visual aids. All participant watched a video-recording of an identification procedure and of an eyewitness testimony. The results indicated that neither judicial instructions nor expert testimony affected jurors’ judgments. However, consistent with the previous findings, when the identification procedure was non-suggestive, jurors believed accurate eyewitnesses more often than inaccurate eyewitnesses. When the procedure was suggestive, jurors believed accurate and inaccurate eyewitnesses at the same rate. The paper will discuss the implications of these studies and directions for future research.Keywords: expert testimony, eyewitness evidence, judicial instructions, jurors’ decision making, legal safeguards
Procedia PDF Downloads 1773760 Evaluation of Real-Time Background Subtraction Technique for Moving Object Detection Using Fast-Independent Component Analysis
Authors: Naoum Abderrahmane, Boumehed Meriem, Alshaqaqi Belal
Abstract:
Background subtraction algorithm is a larger used technique for detecting moving objects in video surveillance to extract the foreground objects from a reference background image. There are many challenges to test a good background subtraction algorithm, like changes in illumination, dynamic background such as swinging leaves, rain, snow, and the changes in the background, for example, moving and stopping of vehicles. In this paper, we propose an efficient and accurate background subtraction method for moving object detection in video surveillance. The main idea is to use a developed fast-independent component analysis (ICA) algorithm to separate background, noise, and foreground masks from an image sequence in practical environments. The fast-ICA algorithm is adapted and adjusted with a matrix calculation and searching for an optimum non-quadratic function to be faster and more robust. Moreover, in order to estimate the de-mixing matrix and the denoising de-mixing matrix parameters, we propose to convert all images to YCrCb color space, where the luma component Y (brightness of the color) gives suitable results. The proposed technique has been verified on the publicly available datasets CD net 2012 and CD net 2014, and experimental results show that our algorithm can detect competently and accurately moving objects in challenging conditions compared to other methods in the literature in terms of quantitative and qualitative evaluations with real-time frame rate.Keywords: background subtraction, moving object detection, fast-ICA, de-mixing matrix
Procedia PDF Downloads 963759 Identification of Shark Species off The Nigerian Coast Using DNA Barcoding
Authors: O. O. Fola-Matthews, O. O. Soyinka, D. N. Bitalo
Abstract:
Nigeria is one of the major shark fishing nations in Africa, but its fisheries managers still record catch data in aggregates ‘sharks’ with no species-specific details. This is because most of the shark specimens look identical in morphology, and field identification of some closely related species is tricky. This study uses DNA barcoding as a method to identify shark species from five different landing areas off the Nigerian Coast. 100 dorsal fins were sampled in order to provide a Chondrichthyan sequence that would be matched to reference specimens in a DNA barcode databaseKeywords: BOLD, DNA barcoding, nigeria, sharks
Procedia PDF Downloads 1673758 Host Range and Taxonomy of Hairy Caterpillars (Erebidae: Lepidoptera) in Different Cropping Ecosystems
Authors: Mallikarjun Warad, C. M. Kalleshwaraswamy, P. R. Shashank
Abstract:
Studies were conducted to record the occurrence of different species of hairy caterpillar on different host plants in and around Shivamogga, Karnataka, India. Twelve genera of hairy caterpillars belonging to Arctiinae and Lymantriinae were recorded on different host plants and reared to adults in laboratory on their respective hosts. The Porthesia sp. feed on castor, Creatonotus gangis on cocoa, Perina nuda on fig, Pericalia ricini on pigeon pea, Utetheisa pulchella on sunhemp and Euproctis sp. on paddy and banana. Illustrations of immature and adults were made to associate them. Along with this, light traps were also set during the rainy season, to capture adults of hairy caterpillars. An illustrated identification key was provided for easy and accurate identification of adult of hairy caterpillars based on their morphological (male genitalial) characters. The study through a light on the existence of sexual dimorphism, polyphagous nature and diapause are the major hindrance in taxonomic identification. Hence, attempts were made to address these issues in the study.Keywords: Erebidae, hairy caterpillars, male genitalia, taxonomy
Procedia PDF Downloads 2063757 An Intelligent Text Independent Speaker Identification Using VQ-GMM Model Based Multiple Classifier System
Authors: Ben Soltane Cheima, Ittansa Yonas Kelbesa
Abstract:
Speaker Identification (SI) is the task of establishing identity of an individual based on his/her voice characteristics. The SI task is typically achieved by two-stage signal processing: training and testing. The training process calculates speaker specific feature parameters from the speech and generates speaker models accordingly. In the testing phase, speech samples from unknown speakers are compared with the models and classified. Even though performance of speaker identification systems has improved due to recent advances in speech processing techniques, there is still need of improvement. In this paper, a Closed-Set Tex-Independent Speaker Identification System (CISI) based on a Multiple Classifier System (MCS) is proposed, using Mel Frequency Cepstrum Coefficient (MFCC) as feature extraction and suitable combination of vector quantization (VQ) and Gaussian Mixture Model (GMM) together with Expectation Maximization algorithm (EM) for speaker modeling. The use of Voice Activity Detector (VAD) with a hybrid approach based on Short Time Energy (STE) and Statistical Modeling of Background Noise in the pre-processing step of the feature extraction yields a better and more robust automatic speaker identification system. Also investigation of Linde-Buzo-Gray (LBG) clustering algorithm for initialization of GMM, for estimating the underlying parameters, in the EM step improved the convergence rate and systems performance. It also uses relative index as confidence measures in case of contradiction in identification process by GMM and VQ as well. Simulation results carried out on voxforge.org speech database using MATLAB highlight the efficacy of the proposed method compared to earlier work.Keywords: feature extraction, speaker modeling, feature matching, Mel frequency cepstrum coefficient (MFCC), Gaussian mixture model (GMM), vector quantization (VQ), Linde-Buzo-Gray (LBG), expectation maximization (EM), pre-processing, voice activity detection (VAD), short time energy (STE), background noise statistical modeling, closed-set tex-independent speaker identification system (CISI)
Procedia PDF Downloads 3093756 Pupil Size: A Measure of Identification Memory in Target Present Lineups
Authors: Camilla Elphick, Graham Hole, Samuel Hutton, Graham Pike
Abstract:
Pupil size has been found to change irrespective of luminosity, suggesting that it can be used to make inferences about cognitive processes, such as cognitive load. To see whether identifying a target requires a different cognitive load to rejecting distractors, the effect of viewing a target (compared with viewing distractors) on pupil size was investigated using a sequential video lineup procedure with two lineup sessions. Forty one participants were chosen randomly via the university. Pupil sizes were recorded when viewing pre target distractors and post target distractors and compared to pupil size when viewing the target. Overall, pupil size was significantly larger when viewing the target compared with viewing distractors. In the first session, pupil size changes were significantly different between participants who identified the target (Hits) and those who did not. Specifically, the pupil size of Hits reduced significantly after viewing the target (by 26%), suggesting that cognitive load reduced following identification. The pupil sizes of Misses (who made no identification) and False Alarms (who misidentified a distractor) did not reduce, suggesting that the cognitive load remained high in participants who failed to make the correct identification. In the second session, pupil sizes were smaller overall, suggesting that cognitive load was smaller in this session, and there was no significant difference between Hits, Misses and False Alarms. Furthermore, while the frequency of Hits increased, so did False Alarms. These two findings suggest that the benefits of including a second session remain uncertain, as the second session neither provided greater accuracy nor a reliable way to measure it. It is concluded that pupil size is a measure of face recognition strength in the first session of a target present lineup procedure. However, it is still not known whether cognitive load is an adequate explanation for this, or whether cognitive engagement might describe the effect more appropriately. If cognitive load and cognitive engagement can be teased apart with further investigation, this would have positive implications for understanding eyewitness identification. Nevertheless, this research has the potential to provide a tool for improving the reliability of lineup procedures.Keywords: cognitive load, eyewitness identification, face recognition, pupillometry
Procedia PDF Downloads 4043755 Iot-Based Interactive Patient Identification and Safety Management System
Authors: Jonghoon Chun, Insung Kim, Jonghyun Lim, Gun Ro
Abstract:
We believe that it is possible to provide a solution to reduce patient safety accidents by displaying correct medical records and prescription information through interactive patient identification. Our system is based on the use of smart bands worn by patients and these bands communicate with the hybrid gateways which understand both BLE and Wifi communication protocols. Through the convergence of low-power Bluetooth (BLE) and hybrid gateway technology, which is one of short-range wireless communication technologies, we implement ‘Intelligent Patient Identification and Location Tracking System’ to prevent medical malfunction frequently occurring in medical institutions. Based on big data and IOT technology using MongoDB, smart band (BLE, NFC function) and hybrid gateway, we develop a system to enable two-way communication between medical staff and hospitalized patients as well as to store locational information of the patients in minutes. Based on the precise information provided using big data systems, such as location tracking and movement of in-hospital patients wearing smart bands, our findings include the fact that a patient-specific location tracking algorithm can more efficiently operate HIS (Hospital Information System) and other related systems. Through the system, we can always correctly identify patients using identification tags. In addition, the system automatically determines whether the patient is a scheduled for medical service by the system in use at the medical institution, and displays the appropriateness of the medical treatment and the medical information (medical record and prescription information) on the screen and voice. This work was supported in part by the Korea Technology and Information Promotion Agency for SMEs (TIPA) grant funded by the Korean Small and Medium Business Administration (No. S2410390).Keywords: BLE, hybrid gateway, patient identification, IoT, safety management, smart band
Procedia PDF Downloads 3113754 Identification of Functional T Cell Receptors Reactive to Tumor Antigens from the T Cell Repertoire of Healthy Donors
Authors: Isaac Quiros-Fernandez, Angel Cid-Arregui
Abstract:
Tumor-reactive T cell receptors (TCRs) are being subject of intense investigation since they offer great potential in adoptive cell therapies against cancer. However, the identification of tumor-specific TCRs has proven challenging, for instance, due to the limited expansion capacity of tumor-infiltrating T cells (TILs) and the extremely low frequencies of tumor-reactive T cells in the repertoire of patients and healthy donors. We have developed an approach for rapid identification and characterization of neoepitope-reactive TCRs from the T cell repertoire of healthy donors. CD8 T cells isolated from multiple donors are subjected to a first sorting step after staining with HLA multimers carrying the peptide of interest. The isolated cells are expanded for two weeks, after which a second sorting is performed using the same peptide-HLA multimers. The cells isolated in this way are then processed for single-cell sequencing of their TCR alpha and beta chains. Newly identified TCRs are cloned in appropriate expression vectors for functional analysis on Jurkat, NK92, and primary CD8 T cells and tumor cells expressing the appropriate antigen. We have identified TCRs specifically binding HLA-A2 presenting epitopes of tumor antigens, which are capable of inducing TCR-mediated cell activation and cytotoxicity in target cancer cell lines. This method allows the identification of tumor-reactive TCRs in about two to three weeks, starting from peripheral blood samples of readily available healthy donors.Keywords: cancer, TCR, tumor antigens, immunotherapy
Procedia PDF Downloads 693753 Image Ranking to Assist Object Labeling for Training Detection Models
Authors: Tonislav Ivanov, Oleksii Nedashkivskyi, Denis Babeshko, Vadim Pinskiy, Matthew Putman
Abstract:
Training a machine learning model for object detection that generalizes well is known to benefit from a training dataset with diverse examples. However, training datasets usually contain many repeats of common examples of a class and lack rarely seen examples. This is due to the process commonly used during human annotation where a person would proceed sequentially through a list of images labeling a sufficiently high total number of examples. Instead, the method presented involves an active process where, after the initial labeling of several images is completed, the next subset of images for labeling is selected by an algorithm. This process of algorithmic image selection and manual labeling continues in an iterative fashion. The algorithm used for the image selection is a deep learning algorithm, based on the U-shaped architecture, which quantifies the presence of unseen data in each image in order to find images that contain the most novel examples. Moreover, the location of the unseen data in each image is highlighted, aiding the labeler in spotting these examples. Experiments performed using semiconductor wafer data show that labeling a subset of the data, curated by this algorithm, resulted in a model with a better performance than a model produced from sequentially labeling the same amount of data. Also, similar performance is achieved compared to a model trained on exhaustive labeling of the whole dataset. Overall, the proposed approach results in a dataset that has a diverse set of examples per class as well as more balanced classes, which proves beneficial when training a deep learning model.Keywords: computer vision, deep learning, object detection, semiconductor
Procedia PDF Downloads 1363752 Large-Scale Electroencephalogram Biometrics through Contrastive Learning
Authors: Mostafa ‘Neo’ Mohsenvand, Mohammad Rasool Izadi, Pattie Maes
Abstract:
EEG-based biometrics (user identification) has been explored on small datasets of no more than 157 subjects. Here we show that the accuracy of modern supervised methods falls rapidly as the number of users increases to a few thousand. Moreover, supervised methods require a large amount of labeled data for training which limits their applications in real-world scenarios where acquiring data for training should not take more than a few minutes. We show that using contrastive learning for pre-training, it is possible to maintain high accuracy on a dataset of 2130 subjects while only using a fraction of labels. We compare 5 different self-supervised tasks for pre-training of the encoder where our proposed method achieves the accuracy of 96.4%, improving the baseline supervised models by 22.75% and the competing self-supervised model by 3.93%. We also study the effects of the length of the signal and the number of channels on the accuracy of the user-identification models. Our results reveal that signals from temporal and frontal channels contain more identifying features compared to other channels.Keywords: brainprint, contrastive learning, electroencephalo-gram, self-supervised learning, user identification
Procedia PDF Downloads 1573751 Trigonelline: A Promising Compound for The Treatment of Alzheimer's Disease
Authors: Mai M. Farid, Ximeng Yang, Tomoharu Kuboyama, Chihiro Tohda
Abstract:
Trigonelline is a major alkaloid component derived from Trigonella foenum-graecum L. (fenugreek) and has been reported before as a potential neuroprotective agent, especially in Alzheimer’s disease (AD). However, the previous data were unclear and used model mice were not well established. In the present study, the effect of trigonelline on memory function was investigated in Alzheimer’s disease transgenic model mouse, 5XFAD which overexpresses the mutated APP and PS1 genes. Oral administration of trigonelline for 14 days significantly enhanced object recognition and object location memories. Plasma and cerebral cortex were isolated at 30 min, 1h, 3h, and 6 h after oral administration of trigonelline. LC-MS/MS analysis indicated that trigonelline was detected in both plasma and cortex from 30 min after, suggesting good penetration of trigonelline into the brain. In addition, trigonelline significantly ameliorated axonal and dendrite atrophy in Amyloid β-treated cortical neurons. These results suggest that trigonelline could be a promising therapeutic candidate for AD.Keywords: alzheimer’s disease, cortical neurons, LC-MS/MS analysis, trigonelline
Procedia PDF Downloads 1473750 Detecting Characters as Objects Towards Character Recognition on Licence Plates
Authors: Alden Boby, Dane Brown, James Connan
Abstract:
Character recognition is a well-researched topic across disciplines. Regardless, creating a solution that can cater to multiple situations is still challenging. Vehicle licence plates lack an international standard, meaning that different countries and regions have their own licence plate format. A problem that arises from this is that the typefaces and designs from different regions make it difficult to create a solution that can cater to a wide range of licence plates. The main issue concerning detection is the character recognition stage. This paper aims to create an object detection-based character recognition model trained on a custom dataset that consists of typefaces of licence plates from various regions. Given that characters have featured consistently maintained across an array of fonts, YOLO can be trained to recognise characters based on these features, which may provide better performance than OCR methods such as Tesseract OCR.Keywords: computer vision, character recognition, licence plate recognition, object detection
Procedia PDF Downloads 1213749 Identification of Individuals in Forensic Situations after Allo-Hematopoietic Stem Cell Transplantation
Authors: Anupuma Raina, Ajay Parkash
Abstract:
In forensic investigation, DNA analysis helps in the identification of a particular individual under investigation. A set of Short Tandem Repeats loci are widely used for individualization at a molecular level in forensic testing. STRs with tetrameric repeats of DNA are highly polymorphic and widely used for forensic DNA analysis. Identification of an individual became challenging for forensic examiners after Hematopoietic Stem Cell Transplantation. HSCT is a well-accepted and life-saving treatment to treat malignant and nonmalignant diseases. It involves the administration of healthy donor stem cells to replace the patient’s own unhealthy stem cells. A successful HSCT results in complete donor-derived cells in a patient’s hematopoiesis and hence have the capability to change the genetic makeup of the patient. Although an individual who has undergone HSCT and then committed a crime is a very rare situation, but not impossible. Keeping such a situation in mind, various biological samples like blood, buccal swab, and hair follicle were collected and studied after a certain interval of time after HSCT. Blood was collected from both the patient and the donor before the transplant. The DNA profile of both was analyzed using a short tandem repeat kit for autosomal chromosomes. Among all exhibits studied, only hair follicles were found to be the most suitable biological exhibit, as no donor DNA profile was observed for up to 90 days of study.Keywords: chimerism, HSCT, STRs analysis, forensic identification
Procedia PDF Downloads 653748 Post-Earthquake Damage Detection Using System Identification with a Pair of Seismic Recordings
Authors: Lotfi O. Gargab, Ruichong R. Zhang
Abstract:
A wave-based framework is presented for modeling seismic motion in multistory buildings and using measured response for system identification which can be utilized to extract important information regarding structure integrity. With one pair of building response at two locations, a generalized model response is formulated based on wave propagation features and expressed as frequency and time response functions denoted, respectively, as GFRF and GIRF. In particular, GIRF is fundamental in tracking arrival times of impulsive wave motion initiated at response level which is dependent on local model properties. Matching model and measured-structure responses can help in identifying model parameters and infer building properties. To show the effectiveness of this approach, the Millikan Library in Pasadena, California is identified with recordings of the Yorba Linda earthquake of September 3, 2002.Keywords: system identification, continuous-discrete mass modeling, damage detection, post-earthquake
Procedia PDF Downloads 3693747 Refactoring Object Oriented Software through Community Detection Using Evolutionary Computation
Authors: R. Nagarani
Abstract:
An intrinsic property of software in a real-world environment is its need to evolve, which is usually accompanied by the increase of software complexity and deterioration of software quality, making software maintenance a tough problem. Refactoring is regarded as an effective way to address this problem. Many refactoring approaches at the method and class level have been proposed. But the extent of research on software refactoring at the package level is less. This work presents a novel approach to refactor the package structures of object oriented software using genetic algorithm based community detection. It uses software networks to represent classes and their dependencies. It uses a constrained community detection algorithm to obtain the optimized community structures in software networks, which also correspond to the optimized package structures. It finally provides a list of classes as refactoring candidates by comparing the optimized package structures with the real package structures.Keywords: community detection, complex network, genetic algorithm, package, refactoring
Procedia PDF Downloads 4183746 Leveraging SHAP Values for Effective Feature Selection in Peptide Identification
Authors: Sharon Li, Zhonghang Xia
Abstract:
Post-database search is an essential phase in peptide identification using tandem mass spectrometry (MS/MS) to refine peptide-spectrum matches (PSMs) produced by database search engines. These engines frequently face difficulty differentiating between correct and incorrect peptide assignments. Despite advances in statistical and machine learning methods aimed at improving the accuracy of peptide identification, challenges remain in selecting critical features for these models. In this study, two machine learning models—a random forest tree and a support vector machine—were applied to three datasets to enhance PSMs. SHAP values were utilized to determine the significance of each feature within the models. The experimental results indicate that the random forest model consistently outperformed the SVM across all datasets. Further analysis of SHAP values revealed that the importance of features varies depending on the dataset, indicating that a feature's role in model predictions can differ significantly. This variability in feature selection can lead to substantial differences in model performance, with false discovery rate (FDR) differences exceeding 50% between different feature combinations. Through SHAP value analysis, the most effective feature combinations were identified, significantly enhancing model performance.Keywords: peptide identification, SHAP value, feature selection, random forest tree, support vector machine
Procedia PDF Downloads 233745 Multiperson Drone Control with Seamless Pilot Switching Using Onboard Camera and Openpose Real-Time Keypoint Detection
Authors: Evan Lowhorn, Rocio Alba-Flores
Abstract:
Traditional classification Convolutional Neural Networks (CNN) attempt to classify an image in its entirety. This becomes problematic when trying to perform classification with a drone’s camera in real-time due to unpredictable backgrounds. Object detectors with bounding boxes can be used to isolate individuals and other items, but the original backgrounds remain within these boxes. These basic detectors have been regularly used to determine what type of object an item is, such as “person” or “dog.” Recent advancement in computer vision, particularly with human imaging, is keypoint detection. Human keypoint detection goes beyond bounding boxes to fully isolate humans and plot points, or Regions of Interest (ROI), on their bodies within an image. ROIs can include shoulders, elbows, knees, heads, etc. These points can then be related to each other and used in deep learning methods such as pose estimation. For drone control based on human motions, poses, or signals using the onboard camera, it is important to have a simple method for pilot identification among multiple individuals while also giving the pilot fine control options for the drone. To achieve this, the OpenPose keypoint detection network was used with body and hand keypoint detection enabled. OpenPose supports the ability to combine multiple keypoint detection methods in real-time with a single network. Body keypoint detection allows simple poses to act as the pilot identifier. The hand keypoint detection with ROIs for each finger can then offer a greater variety of signal options for the pilot once identified. For this work, the individual must raise their non-control arm to be identified as the operator and send commands with the hand on their other arm. The drone ignores all other individuals in the onboard camera feed until the current operator lowers their non-control arm. When another individual wish to operate the drone, they simply raise their arm once the current operator relinquishes control, and then they can begin controlling the drone with their other hand. This is all performed mid-flight with no landing or script editing required. When using a desktop with a discrete NVIDIA GPU, the drone’s 2.4 GHz Wi-Fi connection combined with OpenPose restrictions to only body and hand allows this control method to perform as intended while maintaining the responsiveness required for practical use.Keywords: computer vision, drone control, keypoint detection, openpose
Procedia PDF Downloads 1843744 Material Parameter Identification of Modified AbdelKarim-Ohno Model
Authors: Martin Cermak, Tomas Karasek, Jaroslav Rojicek
Abstract:
The key role in phenomenological modelling of cyclic plasticity is good understanding of stress-strain behaviour of given material. There are many models describing behaviour of materials using numerous parameters and constants. Combination of individual parameters in those material models significantly determines whether observed and predicted results are in compliance. Parameter identification techniques such as random gradient, genetic algorithm, and sensitivity analysis are used for identification of parameters using numerical modelling and simulation. In this paper genetic algorithm and sensitivity analysis are used to study effect of 4 parameters of modified AbdelKarim-Ohno cyclic plasticity model. Results predicted by Finite Element (FE) simulation are compared with experimental data from biaxial ratcheting test with semi-elliptical loading path.Keywords: genetic algorithm, sensitivity analysis, inverse approach, finite element method, cyclic plasticity, ratcheting
Procedia PDF Downloads 4533743 Fast and Robust Long-term Tracking with Effective Searching Model
Authors: Thang V. Kieu, Long P. Nguyen
Abstract:
Kernelized Correlation Filter (KCF) based trackers have gained a lot of attention recently because of their accuracy and fast calculation speed. However, this algorithm is not robust in cases where the object is lost by a sudden change of direction, being obscured or going out of view. In order to improve KCF performance in long-term tracking, this paper proposes an anomaly detection method for target loss warning by analyzing the response map of each frame, and a classification algorithm for reliable target re-locating mechanism by using Random fern. Being tested with Visual Tracker Benchmark and Visual Object Tracking datasets, the experimental results indicated that the precision and success rate of the proposed algorithm were 2.92 and 2.61 times higher than that of the original KCF algorithm, respectively. Moreover, the proposed tracker handles occlusion better than many state-of-the-art long-term tracking methods while running at 60 frames per second.Keywords: correlation filter, long-term tracking, random fern, real-time tracking
Procedia PDF Downloads 1383742 Recognition of Spelling Problems during the Text in Progress: A Case Study on the Comments Made by Portuguese Students Newly Literate
Authors: E. Calil, L. A. Pereira
Abstract:
The acquisition of orthography is a complex process, involving both lexical and grammatical questions. This learning occurs simultaneously with the domain of multiple textual aspects (e.g.: graphs, punctuation, etc.). However, most of the research on orthographic acquisition focus on this acquisition from an autonomous point of view, separated from the process of textual production. This means that their object of analysis is the production of words selected by the researcher or the requested sentences in an experimental and controlled setting. In addition, the analysis of the Spelling Problems (SP) are identified by the researcher on the sheet of paper. Considering the perspective of Textual Genetics, from an enunciative approach, this study will discuss the SPs recognized by dyads of newly literate students, while they are writing a text collaboratively. Six proposals of textual production were registered, requested by a 2nd year teacher of a Portuguese Primary School between January and March 2015. In our case study we discuss the SPs recognized by the dyad B and L (7 years old). We adopted as a methodological tool the Ramos System audiovisual record. This system allows real-time capture of the text in process and of the face-to-face dialogue between both students and their teacher, and also captures the body movements and facial expressions of the participants during textual production proposals in the classroom. In these ecological conditions of multimodal registration of collaborative writing, we could identify the emergence of SP in two dimensions: i. In the product (finished text): SP identification without recursive graphic marks (without erasures) and the identification of SPs with erasures, indicating the recognition of SP by the student; ii. In the process (text in progress): identification of comments made by students about recognized SPs. Given this, we’ve analyzed the comments on identified SPs during the text in progress. These comments characterize a type of reformulation referred to as Commented Oral Erasure (COE). The COE has two enunciative forms: Simple Comment (SC) such as ' 'X' is written with 'Y' '; or Unfolded Comment (UC), such as ' 'X' is written with 'Y' because...'. The spelling COE may also occur before or during the SP (Early Spelling Recognition - ESR) or after the SP has been entered (Later Spelling Recognition - LSR). There were 631 words entered in the 6 stories written by the B-L dyad, 145 of them containing some type of SP. During the text in progress, the students recognized orally 174 SP, 46 of which were identified in advance (ESRs) and 128 were identified later (LSPs). If we consider that the 88 erasure SPs in the product indicate some form of SP recognition, we can observe that there were twice as many SPs recognized orally. The ESR was characterized by SC when students asked their colleague or teacher how to spell a given word. The LSR presented predominantly UC, verbalizing meta-orthographic arguments, mostly made by L. These results indicate that writing in dyad is an important didactic strategy for the promotion of metalinguistic reflection, favoring the learning of spelling.Keywords: collaborative writing, erasure, learning, metalinguistic awareness, spelling, text production
Procedia PDF Downloads 1633741 Laser - Ultrasonic Method for the Measurement of Residual Stresses in Metals
Authors: Alexander A. Karabutov, Natalia B. Podymova, Elena B. Cherepetskaya
Abstract:
The theoretical analysis is carried out to get the relation between the ultrasonic wave velocity and the value of residual stresses. The laser-ultrasonic method is developed to evaluate the residual stresses and subsurface defects in metals. The method is based on the laser thermooptical excitation of longitudinal ultrasonic wave sand their detection by a broadband piezoelectric detector. A laser pulse with the time duration of 8 ns of the full width at half of maximum and with the energy of 300 µJ is absorbed in a thin layer of the special generator that is inclined relative to the object under study. The non-uniform heating of the generator causes the formation of a broadband powerful pulse of longitudinal ultrasonic waves. It is shown that the temporal profile of this pulse is the convolution of the temporal envelope of the laser pulse and the profile of the in-depth distribution of the heat sources. The ultrasonic waves reach the surface of the object through the prism that serves as an acoustic duct. At the interface ‚laser-ultrasonic transducer-object‘ the conversion of the most part of the longitudinal wave energy takes place into the shear, subsurface longitudinal and Rayleigh waves. They spread within the subsurface layer of the studied object and are detected by the piezoelectric detector. The electrical signal that corresponds to the detected acoustic signal is acquired by an analog-to-digital converter and when is mathematically processed and visualized with a personal computer. The distance between the generator and the piezodetector as well as the spread times of acoustic waves in the acoustic ducts are the characteristic parameters of the laser-ultrasonic transducer and are determined using the calibration samples. There lative precision of the measurement of the velocity of longitudinal ultrasonic waves is 0.05% that corresponds to approximately ±3 m/s for the steels of conventional quality. This precision allows one to determine the mechanical stress in the steel samples with the minimal detection threshold of approximately 22.7 MPa. The results are presented for the measured dependencies of the velocity of longitudinal ultrasonic waves in the samples on the values of the applied compression stress in the range of 20-100 MPa.Keywords: laser-ultrasonic method, longitudinal ultrasonic waves, metals, residual stresses
Procedia PDF Downloads 3253740 Classification of Random Doppler-Radar Targets during the Surveillance Operations
Authors: G. C. Tikkiwal, Mukesh Upadhyay
Abstract:
During the surveillance operations at war or peace time, the Radar operator gets a scatter of targets over the screen. This may be a tracked vehicle like tank vis-à-vis T72, BMP etc, or it may be a wheeled vehicle like ALS, TATRA, 2.5Tonne, Shaktiman or moving the army, moving convoys etc. The radar operator selects one of the promising targets into single target tracking (STT) mode. Once the target is locked, the operator gets a typical audible signal into his headphones. With reference to the gained experience and training over the time, the operator then identifies the random target. But this process is cumbersome and is solely dependent on the skills of the operator, thus may lead to misclassification of the object. In this paper, we present a technique using mathematical and statistical methods like fast fourier transformation (FFT) and principal component analysis (PCA) to identify the random objects. The process of classification is based on transforming the audible signature of target into music octave-notes. The whole methodology is then automated by developing suitable software. This automation increases the efficiency of identification of the random target by reducing the chances of misclassification. This whole study is based on live data.Keywords: radar target, FFT, principal component analysis, eigenvector, octave-notes, DSP
Procedia PDF Downloads 3943739 Plant Leaf Recognition Using Deep Learning
Authors: Aadhya Kaul, Gautam Manocha, Preeti Nagrath
Abstract:
Our environment comprises of a wide variety of plants that are similar to each other and sometimes the similarity between the plants makes the identification process tedious thus increasing the workload of the botanist all over the world. Now all the botanists cannot be accessible all the time for such laborious plant identification; therefore, there is an urge for a quick classification model. Also, along with the identification of the plants, it is also necessary to classify the plant as healthy or not as for a good lifestyle, humans require good food and this food comes from healthy plants. A large number of techniques have been applied to classify the plants as healthy or diseased in order to provide the solution. This paper proposes one such method known as anomaly detection using autoencoders using a set of collections of leaves. In this method, an autoencoder model is built using Keras and then the reconstruction of the original images of the leaves is done and the threshold loss is found in order to classify the plant leaves as healthy or diseased. A dataset of plant leaves is considered to judge the reconstructed performance by convolutional autoencoders and the average accuracy obtained is 71.55% for the purpose.Keywords: convolutional autoencoder, anomaly detection, web application, FLASK
Procedia PDF Downloads 1633738 Damage Identification in Reinforced Concrete Beams Using Modal Parameters and Their Formulation
Authors: Ali Al-Ghalib, Fouad Mohammad
Abstract:
The identification of damage in reinforced concrete structures subjected to incremental cracking performance exploiting vibration data is recognized as a challenging topic in the published and heavily cited literature. Therefore, this paper attempts to shine light on the extent of dynamic methods when applied to reinforced concrete beams simulated with various scenarios of defects. For this purpose, three different reinforced concrete beams are tested through the course of the study. The three beams are loaded statically to failure in incremental successive load cycles and later rehabilitated. After each static load stage, the beams are tested under free-free support condition using experimental modal analysis. The beams were all of the same length and cross-sectional area (2.0x0.14x0.09)m, but they were different in concrete compressive strength and the type of damage presented. The experimental modal parameters as damage identification parameters were showed computationally expensive, time consuming and require substantial inputs and considerable expertise. Nonetheless, they were proved plausible for the condition monitoring of the current case study as well as structural changes in the course of progressive loads. It was accentuated that a satisfactory localization and quantification for structural changes (Level 2 and Level 3 of damage identification problem) can only be achieved reasonably through considering frequencies and mode shapes of a system in a proper analytical model. A convenient post analysis process for various datasets of vibration measurements for the three beams is conducted in order to extract, check and correlate the basic modal parameters; namely, natural frequency, modal damping and mode shapes. The results of the extracted modal parameters and their combination are utilized and discussed in this research as quantification parameters.Keywords: experimental modal analysis, damage identification, structural health monitoring, reinforced concrete beam
Procedia PDF Downloads 2633737 Kantian Epistemology in Examination of the Axiomatic Principles of Economics: The Synthetic a Priori in the Economic Structure of Society
Authors: Mirza Adil Ahmad Mughal
Abstract:
Transcendental analytics, in the critique of pure reason, combines space and time as conditions of the possibility of the phenomenon from the transcendental aesthetic with the pure magnitude-intuition notion. The property of continuity as a qualitative result of the additive magnitude brings the possibility of connecting with experience, even though only as a potential because of the a priori necessity from assumption, as syntheticity of the a priori task of a scientific method of philosophy given by Kant, which precludes the application of categories to something not empirically reducible to the content of such a category's corresponding and possible object. This continuity as the qualitative result of a priori constructed notion of magnitude lies as a fundamental assumption and property of, what in Microeconomic theory is called as, 'choice rules' which combine the potentially-empirical and practical budget-price pairs with preference relations. This latter result is the purest qualitative side of the choice rules', otherwise autonomously, quantitative nature. The theoretical, barring the empirical, nature of this qualitative result is a synthetic a priori truth, which, if at all, it should be, if the axiomatic structure of the economic theory is held to be correct. It has a potentially verifiable content as its possible object in the form of quantitative price-budget pairs. Yet, the object that serves the respective Kantian category is qualitative itself, which is utility. This article explores the validity of Kantian qualifications for this application of 'categories' to the economic structure of society.Keywords: categories of understanding, continuity, convexity, psyche, revealed preferences, synthetic a priori
Procedia PDF Downloads 983736 Algorithm for Modelling Land Surface Temperature and Land Cover Classification and Their Interaction
Authors: Jigg Pelayo, Ricardo Villar, Einstine Opiso
Abstract:
The rampant and unintended spread of urban areas resulted in increasing artificial component features in the land cover types of the countryside and bringing forth the urban heat island (UHI). This paved the way to wide range of negative influences on the human health and environment which commonly relates to air pollution, drought, higher energy demand, and water shortage. Land cover type also plays a relevant role in the process of understanding the interaction between ground surfaces with the local temperature. At the moment, the depiction of the land surface temperature (LST) at city/municipality scale particularly in certain areas of Misamis Oriental, Philippines is inadequate as support to efficient mitigations and adaptations of the surface urban heat island (SUHI). Thus, this study purposely attempts to provide application on the Landsat 8 satellite data and low density Light Detection and Ranging (LiDAR) products in mapping out quality automated LST model and crop-level land cover classification in a local scale, through theoretical and algorithm based approach utilizing the principle of data analysis subjected to multi-dimensional image object model. The paper also aims to explore the relationship between the derived LST and land cover classification. The results of the presented model showed the ability of comprehensive data analysis and GIS functionalities with the integration of object-based image analysis (OBIA) approach on automating complex maps production processes with considerable efficiency and high accuracy. The findings may potentially lead to expanded investigation of temporal dynamics of land surface UHI. It is worthwhile to note that the environmental significance of these interactions through combined application of remote sensing, geographic information tools, mathematical morphology and data analysis can provide microclimate perception, awareness and improved decision-making for land use planning and characterization at local and neighborhood scale. As a result, it can aid in facilitating problem identification, support mitigations and adaptations more efficiently.Keywords: LiDAR, OBIA, remote sensing, local scale
Procedia PDF Downloads 282