Search results for: simple multiple-attribute rating technique
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9590

Search results for: simple multiple-attribute rating technique

6350 [Keynote Speech]: Simulation Studies of Pulsed Voltage Effects on Cells

Authors: Jiahui Song

Abstract:

In order to predict or explain a complicated biological process, it is important first to construct mathematical models that can be used to yield analytical solutions. Through numerical simulation, mathematical model results can be used to test scenarios that might not be easily attained in a laboratory experiment, or to predict parameters or phenomena. High-intensity, nanosecond pulse electroporation has been a recent development in bioelectrics. The dynamic pore model can be achieved by including a dynamic aspect and a dependence on the pore population density into pore formation energy equation to analyze and predict such electroporation effects. For greater accuracy, with inclusion of atomistic details, molecular dynamics (MD) simulations were also carried out during this study. Besides inducing pores in cells, external voltages could also be used in principle to modulate action potential generation in nerves. This could have an application in electrically controlled ‘pain management’. Also a simple model-based rate equation treatment of the various cellular bio-chemical processes has been used to predict the pulse number dependent cell survival trends.

Keywords: model, high-intensity, nanosecond, bioelectrics

Procedia PDF Downloads 212
6349 Construction of Large Scale UAVs Using Homebuilt Composite Techniques

Authors: Brian J. Kozak, Joshua D. Shipman, Peng Hao Wang, Blake Shipp

Abstract:

The unmanned aerial system (UAS) industry is growing at a rapid pace. This growth has increased the demand for low cost, custom made and high strength unmanned aerial vehicles (UAV). The area of most growth is in the area of 25 kg to 200 kg vehicles. Vehicles this size are beyond the size and scope of simple wood and fabric designs commonly found in hobbyist aircraft. These high end vehicles require stronger materials to complete their mission. Traditional aircraft construction materials such as aluminum are difficult to use without machining or advanced computer controlled tooling. However, by using general aviation composite aircraft homebuilding techniques and materials, a large scale UAV can be constructed cheaply and easily. Furthermore, these techniques could be used to easily manufacture cost made composite shapes and airfoils that would be cost prohibitive when using metals. These homebuilt aircraft techniques are being demonstrated by the researchers in the construction of a 75 kg aircraft.

Keywords: composite aircraft, homebuilding, unmanned aerial system industry, UAS, unmanned aerial vehicles, UAV

Procedia PDF Downloads 121
6348 NiO-CeO2 Nano-Catalyst for the Removal of Priority Organic Pollutants from Wastewater through Catalytic Wet Air Oxidation at Mild Conditions

Authors: Anushree, Chhaya Sharma, Satish Kumar

Abstract:

Catalytic wet air oxidation (CWAO) is normally carried out at elevated temperature and pressure. This work investigates the potential of NiO-CeO2 nano-catalyst in CWAO of paper industry wastewater under milder operating conditions of 90 °C and 1 atm. The NiO-CeO2 nano-catalysts were synthesized by a simple co-precipitation method and characterized by X-ray diffraction (XRD), before and after use, in order to study any crystallographic change during experiment. The extent of metal-leaching from the catalyst was determined using the inductively coupled plasma optical emission spectrometry (ICP-OES). The catalytic activity of nano-catalysts was studied in terms of total organic carbon (TOC), adsorbable organic halides (AOX) and chlorophenolics (CHPs) removal. Interestingly, mixed oxide catalysts exhibited higher activity than the corresponding single-metal oxides. The maximum removal efficiency was achieved with Ce40Ni60 catalyst. The results indicate that the CWAO process is efficient in removing the priority organic pollutants from wastewater, as it exhibited up to 59% TOC, 55% AOX, and 54 % CHPs removal.

Keywords: catalysis, nano-materials, NiO-CeO2, paper mill, wastewater, wet air oxidation

Procedia PDF Downloads 241
6347 Wideband Performance Analysis of C-FDTD Based Algorithms in the Discretization Impoverishment of a Curved Surface

Authors: Lucas L. L. Fortes, Sandro T. M. Gonçalves

Abstract:

In this work, it is analyzed the wideband performance with the mesh discretization impoverishment of the Conformal Finite Difference Time-Domain (C-FDTD) approaches developed by Raj Mittra, Supriyo Dey and Wenhua Yu for the Finite Difference Time-Domain (FDTD) method. These approaches are a simple and efficient way to optimize the scattering simulation of curved surfaces for Dielectric and Perfect Electric Conducting (PEC) structures in the FDTD method, since curved surfaces require dense meshes to reduce the error introduced due to the surface staircasing. Defined, on this work, as D-FDTD-Diel and D-FDTD-PEC, these approaches are well-known in the literature, but the improvement upon their application is not quantified broadly regarding wide frequency bands and poorly discretized meshes. Both approaches bring improvement of the accuracy of the simulation without requiring dense meshes, also making it possible to explore poorly discretized meshes which bring a reduction in simulation time and the computational expense while retaining a desired accuracy. However, their applications present limitations regarding the mesh impoverishment and the frequency range desired. Therefore, the goal of this work is to explore the approaches regarding both the wideband and mesh impoverishment performance to bring a wider insight over these aspects in FDTD applications. The D-FDTD-Diel approach consists in modifying the electric field update in the cells intersected by the dielectric surface, taking into account the amount of dielectric material within the mesh cells edges. By taking into account the intersections, the D-FDTD-Diel provides accuracy improvement at the cost of computational preprocessing, which is a fair trade-off, since the update modification is quite simple. Likewise, the D-FDTD-PEC approach consists in modifying the magnetic field update, taking into account the PEC curved surface intersections within the mesh cells and, considering a PEC structure in vacuum, the air portion that fills the intersected cells when updating the magnetic fields values. Also likewise to D-FDTD-Diel, the D-FDTD-PEC provides a better accuracy at the cost of computational preprocessing, although with a drawback of having to meet stability criterion requirements. The algorithms are formulated and applied to a PEC and a dielectric spherical scattering surface with meshes presenting different levels of discretization, with Polytetrafluoroethylene (PTFE) as the dielectric, being a very common material in coaxial cables and connectors for radiofrequency (RF) and wideband application. The accuracy of the algorithms is quantified, showing the approaches wideband performance drop along with the mesh impoverishment. The benefits in computational efficiency, simulation time and accuracy are also shown and discussed, according to the frequency range desired, showing that poorly discretized mesh FDTD simulations can be exploited more efficiently, retaining the desired accuracy. The results obtained provided a broader insight over the limitations in the application of the C-FDTD approaches in poorly discretized and wide frequency band simulations for Dielectric and PEC curved surfaces, which are not clearly defined or detailed in the literature and are, therefore, a novelty. These approaches are also expected to be applied in the modeling of curved RF components for wideband and high-speed communication devices in future works.

Keywords: accuracy, computational efficiency, finite difference time-domain, mesh impoverishment

Procedia PDF Downloads 113
6346 Impact of the Oxygen Content on the Optoelectronic Properties of the Indium-Tin-Oxide Based Transparent Electrodes for Silicon Heterojunction Solar Cells

Authors: Brahim Aissa

Abstract:

Transparent conductive oxides (TCOs) used as front electrodes in solar cells must feature simultaneously high electrical conductivity, low contact resistance with the adjacent layers, and an appropriate refractive index for maximal light in-coupling into the device. However, these properties may conflict with each other, motivating thereby the search for TCOs with high performance. Additionally, due to the presence of temperature sensitive layers in many solar cell designs (for example, in thin-film silicon and silicon heterojunction (SHJ)), low-temperature deposition processes are more suitable. Several deposition techniques have been already explored to fabricate high-mobility TCOs at low temperatures, including sputter deposition, chemical vapor deposition, and atomic layer deposition. Among this variety of methods, to the best of our knowledge, magnetron sputtering deposition is the most established technique, despite the fact that it can lead to damage of underlying layers. The Sn doped In₂O₃ (ITO) is the most commonly used transparent electrode-contact in SHJ technology. In this work, we studied the properties of ITO thin films grown by RF sputtering. Using different oxygen fraction in the argon/oxygen plasma, we prepared ITO films deposited on glass substrates, on one hand, and on a-Si (p and n-types):H/intrinsic a-Si/glass substrates, on the other hand. Hall Effect measurements were systematically conducted together with total-transmittance (TT) and total-reflectance (TR) spectrometry. The electrical properties were drastically affected whereas the TT and TR were found to be slightly impacted by the oxygen variation. Furthermore, the time of flight-secondary ion mass spectrometry (TOF-SIMS) technique was used to determine the distribution of various species throughout the thickness of the ITO and at various interfaces. The depth profiling of indium, oxygen, tin, silicon, phosphorous, boron and hydrogen was investigated throughout the various thicknesses and interfaces, and obtained results are discussed accordingly. Finally, the extreme conditions were selected to fabricate rear emitter SHJ devices, and the photovoltaic performance was evaluated; the lower oxygen flow ratio was found to yield the best performance attributed to lower series resistance.

Keywords: solar cell, silicon heterojunction, oxygen content, optoelectronic properties

Procedia PDF Downloads 139
6345 A Comparative Study of k-NN and MLP-NN Classifiers Using GA-kNN Based Feature Selection Method for Wood Recognition System

Authors: Uswah Khairuddin, Rubiyah Yusof, Nenny Ruthfalydia Rosli

Abstract:

This paper presents a comparative study between k-Nearest Neighbour (k-NN) and Multi-Layer Perceptron Neural Network (MLP-NN) classifier using Genetic Algorithm (GA) as feature selector for wood recognition system. The features have been extracted from the images using Grey Level Co-Occurrence Matrix (GLCM). The use of GA based feature selection is mainly to ensure that the database used for training the features for the wood species pattern classifier consists of only optimized features. The feature selection process is aimed at selecting only the most discriminating features of the wood species to reduce the confusion for the pattern classifier. This feature selection approach maintains the ‘good’ features that minimizes the inter-class distance and maximizes the intra-class distance. Wrapper GA is used with k-NN classifier as fitness evaluator (GA-kNN). The results shows that k-NN is the best choice of classifier because it uses a very simple distance calculation algorithm and classification tasks can be done in a short time with good classification accuracy.

Keywords: feature selection, genetic algorithm, optimization, wood recognition system

Procedia PDF Downloads 529
6344 Case Study of Mechanised Shea Butter Production in South-Western Nigeria Using the LCA Approach from Gate-to-Gate

Authors: Temitayo Abayomi Ewemoje, Oluwamayowa Oluwafemi Oluwaniyi

Abstract:

Agriculture and food processing, industry are among the largest industrial sectors that uses large amount of energy. Thus, a larger amount of gases from their fuel combustion technologies is being released into the environment. The choice of input energy supply not only directly having affects the environment, but also poses a threat to human health. The study was therefore designed to assess each unit production processes in order to identify hotspots using life cycle assessments (LCA) approach in South-western Nigeria. Data such as machine power rating, operation duration, inputs and outputs of shea butter materials for unit processes obtained at site were used to modelled Life Cycle Impact Analysis on GaBi6 (Holistic Balancing) software. Four scenarios were drawn for the impact assessments. Material sourcing from Kaiama, Scenarios 1, 3 and Minna Scenarios 2, 4 but different heat supply sources (Liquefied Petroleum Gas ‘LPG’ Scenarios 1, 2 and 10.8 kW Diesel Heater, scenarios 3, 4). Modelling of shea butter production on GaBi6 was for 1kg functional unit of shea butter produced and the Tool for the Reduction and Assessment of Chemical and other Environmental Impacts (TRACI) midpoint assessment was tool used to was analyse the life cycle inventories of the four scenarios. Eight categories in all four Scenarios were observed out of which three impact categories; Global Warming Potential (GWP) (0.613, 0.751, 0.661, 0.799) kg CO2¬-Equiv., Acidification Potential (AP) (0.112, 0.132, 0.129, 0.149) kg H+ moles-Equiv., and Smog (0.044, 0.059, 0.049, 0.063) kg O3-Equiv., categories had the greater impacts on the environment in Scenarios 1-4 respectively. Impacts from transportation activities was also seen to contribute more to these environmental impact categories due to large volume of petrol combusted leading to releases of gases such as CO2, CH4, N2O, SO2, and NOx into the environment during the transportation of raw shea kernel purchased. The ratio of transportation distance from Minna and Kaiama to production site was approximately 3.5. Shea butter unit processes with greater impacts in all categories was the packaging, milling and with the churning processes in ascending order of magnitude was identified as hotspots that may require attention. From the 1kg shea butter functional unit, it was inferred that locating production site at the shortest travelling distance to raw material sourcing and combustion of LPG for heating would reduce all the impact categories assessed on the environment.

Keywords: GaBi6, Life cycle assessment, shea butter production, TRACI

Procedia PDF Downloads 298
6343 A Technical Solution for Micro Mixture with Micro Fluidic Oscillator in Chemistry

Authors: Brahim Dennai, Abdelhak Bentaleb, Rachid Khelfaoui, Asma Abdenbi

Abstract:

The diffusion flux given by the Fick’s law characterizethe mixing rate. A passive mixing strategy is proposed to enhance mixing of two fluids through perturbed jet low. A numerical study of passive mixers has been presented. This paper is focused on the modeling of a micro-injection systems composed of passive amplifier without mechanical part. The micro-system modeling is based on geometrical oscillators form. An asymmetric micro-oscillator design based on a monostable fluidic amplifier is proposed. The characteristic size of the channels is generally about a few hundred of microns. The numerical results indicate that the mixing performance can be as high as 99 % within a typical mixing chamber of 0.20 mm diameter inlet and 2.0 mm distance of nozzle - spliter. In addition, the results confirm that self-rotation in the circular mixer significantly enhances the mixing performance. The novel micro mixing method presented in this study provides a simple solution to mixing problems in microsystem for application in chemistry.

Keywords: micro oscillator, modeling, micro mixture, diffusion, size effect, chemical equation

Procedia PDF Downloads 408
6342 Optimal Protection Coordination in Distribution Systems with Distributed Generations

Authors: Abdorreza Rabiee, Shahla Mohammad Hoseini Mirzaei

Abstract:

The advantages of distributed generations (DGs) based on renewable energy sources (RESs) leads to high penetration level of DGs in distribution network. With incorporation of DGs in distribution systems, the system reliability and security, as well as voltage profile, is improved. However, the protection of such systems is still challenging. In this paper, at first, the related papers are reviewed and then a practical scheme is proposed for coordination of OCRs in distribution system with DGs. The coordination problem is formulated as a nonlinear programming (NLP) optimization problem with the object function of minimizing total operating time of OCRs. The proposed method is studied based on a simple test system. The optimization problem is solved by General Algebraic Modeling System (GAMS) to calculate the optimal time dial setting (TDS) and also pickup current setting of OCRs. The results show the effectiveness of the proposed method and its applicability.

Keywords: distributed generation, DG, distribution network, over current relay, OCR, protection coordination, pickup current, time dial setting, TDS

Procedia PDF Downloads 120
6341 Experimental and Numerical Analyses of Tehran Research Reactor

Authors: A. Lashkari, H. Khalafi, H. Khazeminejad, S. Khakshourniya

Abstract:

In this paper, a numerical model is presented. The model is used to analyze a steady state thermo-hydraulic and reactivity insertion transient in TRR reference cores respectively. The model predictions are compared with the experiments and PARET code results. The model uses the piecewise constant and lumped parameter methods for the coupled point kinetics and thermal-hydraulics modules respectively. The advantages of the piecewise constant method are simplicity, efficiency and accuracy. A main criterion on the applicability range of this model is that the exit coolant temperature remains below the saturation temperature, i.e. no bulk boiling occurs in the core. The calculation values of power and coolant temperature, in steady state and positive reactivity insertion scenario, are in good agreement with the experiment values. However, the model is a useful tool for the transient analysis of most research reactor encountered in practice. The main objective of this work is using simple calculation methods and benchmarking them with experimental data. This model can be used for training proposes.

Keywords: thermal-hydraulic, research reactor, reactivity insertion, numerical modeling

Procedia PDF Downloads 384
6340 Operation Strategy of Multi-Energy Storage System Considering Power System Reliability

Authors: Wook-Won Kim, Je-Seok Shin, Jin-O Kim

Abstract:

As the penetration of Energy Storage System (ESS) increases in the power system due to higher performance and lower cost than ever, ESS is expanding its role to the ancillary service as well as the storage of extra energy from the intermittent renewable energy resources. For multi-ESS with different capacity and SOC level each other, it is required to make the optimal schedule of SOC level use the multi-ESS effectively. This paper proposes the energy allocation method for the multiple battery ESS with reliability constraint, in order to make the ESS discharge the required energy as long as possible. A simple but effective method is proposed in this paper, to satisfy the power for the spinning reserve requirement while improving the system reliability. Modelling of ESS is also proposed, and reliability is evaluated by using the combined reliability model which includes the proposed ESS model and conventional generation one. In the case study, it can be observed that the required power is distributed to each ESS adequately and accordingly, the SOC is scheduled to improve the reliability indices such as Loss of Load Probability (LOLP) and Loss of Load Expectation (LOLE).

Keywords: multiple energy storage system (MESS), energy allocation method, SOC schedule, reliability constraints

Procedia PDF Downloads 350
6339 Correlation and Correspondence between Clause and Sentence: An In-Class Observation in Jazan University English Department Context

Authors: Mohammad Mozammel Haque

Abstract:

A clause is a sentence or a part of a sentence having a subject and a principal verb; it may or may not express a complete thought. But, a sentence is a group of words arranged orderly, and it has a complete thought. Clause and sentence are interrelated with each other. It is really quite impossible to decide whether a sentence is simple, complex or compound without having an idea about clauses. Correspondingly, knowing whether a clause is main or subordinate without having an idea about sentence is equally not easy. It is even a task somewhat difficult task for a teacher to teach sentences and clauses in a classroom, unconnectedly or independently. When discussing types of sentences, the teacher must talk about clauses. Likewise, he/she must confer sentences when he teaches clauses in a classroom. This paper aims at discussing types of clauses and sentences in detail, and showing their interrelationship. It also shows that it is requisite to discuss clauses when teaching sentences in the same class, and that the students also have trouble understanding the one without having, at least, a little idea about the other. Ardent and practical paradigms from the books selected for various skill courses in the English Department of Jazan University have also been discussed in this paper.

Keywords: clause, correlation, dependent, independent, interrelationship, sentence

Procedia PDF Downloads 214
6338 A New Fixed Point Theorem for Almost θ-Contraction

Authors: Hichem Ramoul

Abstract:

In this work, we introduce a new type of contractive maps and we establish a new fixed point theorem for the class of almost θ-contractions (more general than the class of almost contractions) in a complete generalized metric space. The major novelty of our work is to prove a new fixed point result by weakening some hypotheses imposed on the function θ which will change completely the classical technique used in the literature review to prove fixed point theorems for almost θ-contractions in a complete generalized metric space.

Keywords: almost contraction, almost θ-contraction, fixed point, generalized metric space

Procedia PDF Downloads 287
6337 Interaction between Unsteady Supersonic Jet and Vortex Rings

Authors: Kazumasa Kitazono, Hiroshi Fukuoka, Nao Kuniyoshi, Minoru Yaga, Eri Ueno, Naoaki Fukuda, Toshio Takiya

Abstract:

The unsteady supersonic jet formed by a shock tube with a small high-pressure chamber was used as a simple alternative model for pulsed laser ablation. Understanding the vortex ring formed by the shock wave is crucial in clarifying the behavior of unsteady supersonic jet discharged from an elliptical cell. Therefore, this study investigated the behavior of vortex rings and a jet. The experiment and numerical calculation were conducted using the schlieren method and by solving the axisymmetric two-dimensional compressible Navier–Stokes equations, respectively. In both, the calculation and the experiment, laser ablation is conducted for a certain duration, followed by discharge through the exit. Moreover, a parametric study was performed to demonstrate the effect of pressure ratio on the interaction among vortex rings and the supersonic jet. The interaction between the supersonic jet and the vortex rings increased the velocity of the supersonic jet up to the magnitude of the velocity at the center of the vortex rings. The interaction between the vortex rings increased the velocity at the center of the vortex ring.

Keywords: computational fluid dynamics, shock-wave, unsteady jet, vortex ring

Procedia PDF Downloads 456
6336 Non-Population Search Algorithms for Capacitated Material Requirement Planning in Multi-Stage Assembly Flow Shop with Alternative Machines

Authors: Watcharapan Sukkerd, Teeradej Wuttipornpun

Abstract:

This paper aims to present non-population search algorithms called tabu search (TS), simulated annealing (SA) and variable neighborhood search (VNS) to minimize the total cost of capacitated MRP problem in multi-stage assembly flow shop with two alternative machines. There are three main steps for the algorithm. Firstly, an initial sequence of orders is constructed by a simple due date-based dispatching rule. Secondly, the sequence of orders is repeatedly improved to reduce the total cost by applying TS, SA and VNS separately. Finally, the total cost is further reduced by optimizing the start time of each operation using the linear programming (LP) model. Parameters of the algorithm are tuned by using real data from automotive companies. The result shows that VNS significantly outperforms TS, SA and the existing algorithm.

Keywords: capacitated MRP, tabu search, simulated annealing, variable neighborhood search, linear programming, assembly flow shop, application in industry

Procedia PDF Downloads 222
6335 Flow Analysis for Different Pelton Turbine Bucket by Applying Computation Fluid Dynamic

Authors: Sedat Yayla, Azhin Abdullah

Abstract:

In the process of constructing hydroelectric power plants, the Pelton turbine, which is characterized by its simple manufacturing and construction, is performed in high head and low water flow. Parameters of the turbine have to be comprised in the designing process for obtaining hydraulic turbine with the highest efficiency during different operating conditions. The present investigation applied three-dimensional computational fluid dynamics (CFD). In addition, the bucket of Pelton turbine models with different splitter angle and inlet velocity values were examined for determining the force and visualizing the flow pattern on the bucket. The study utilized two diverse bucket models at various inlet velocities (20, 25, 30,35and 40m/s) and four different splitter angles (55, 75,90and 115 degree) for finding out the impacts of every single parameter on the effective force on the bucket. The acquired outcomes revealed that there is a linear relationship between force and inlet velocity on the bucket. Furthermore, the results also uncovered that the relationship between splitter angle and force on the bucket is linear until 90 degree.

Keywords: bucket design, computational fluid dynamics (CFD), free surface flow, two-phase flow, volume of fluid (VOF)

Procedia PDF Downloads 260
6334 ISSR-PCR Based Genetic Diversity Analysis on Copper Tolerant versus Wild Type Strains of Unicellular alga Chlorella Vulgaris

Authors: Abdullah M. Alzahrani

Abstract:

The unicellular alga Chlorella vulgaris was isolated from Al-Asfar Lake, which is located in the Al-Ahsa province of Saudi Arabia. Two different isolates were sub-cultured under laboratory conditions. The wild type was grown under a regular concentration of copper, whereas the other isolate was grown under a progressively increasing copper concentration. An Inter Simple Sequence Repeats (ISSR) analysis was performed using DNA isolated from the wild type and tolerant strains. The sum of the scored bands of the wild type was 155, with 100 (64.5%) considered to be polymorphic bands, whereas the resistant strain displayed 147 bands, with 92 (62.6%) considered to be polymorphic bands. The sum of the scored bands of a mixed sample was 117 bands, of which only 4 (3.4%) were considered to be polymorphic. The average Nei's genetic diversity (h) and Shannon-Weiner diversity indices (I) were 0.3891 and 0.5394, respectively. These results clearly indicate that the adaptation to a high level of copper in Chlorella vulgaris is not merely physiological but rather driven by modifications at the genomic level.

Keywords: chlorella vulgaris, copper tolerance, genetic diversity, green algae

Procedia PDF Downloads 419
6333 Effect of Surfactant Concentration on Dissolution of Hydrodynamically Trapped Sparingly Soluble Oil Micro Droplets

Authors: Adil Mustafa, Ahmet Erten, Alper Kiraz, Melikhan Tanyeri

Abstract:

Work presented here is based on a novel experimental technique used to hydrodynamically trap oil microdroplets inside a microfluidic chip at the junction of microchannels known as stagnation point. Hydrodynamic trapping has been recently used to trap and manipulate a number of particles starting from microbeads to DNA and single cells. Benzyl Benzoate (BB) is used as droplet material. The microdroplets are trapped individually at stagnation point and their dissolution was observed. Experiments are performed for two concentrations (10mM or 10µM) of AOT surfactant (Docusate Sodium Salt) and two flow rates for each case. Moreover, experimental data is compared with Zhang-Yang-Mao (ZYM) model which studies dissolution of liquid microdroplets in the presence of a host fluid experiencing extensional creeping flow. Industrial processes like polymer blending systems in which heat or mass transport occurs experience extensional flow and an insight into these phenomena is of significant importance to many industrial processes. The experimental technique exploited here gives an insight into the dissolution of liquid microdroplets under extensional flow regime. The comparison of our experimental results with ZYM model reveals that dissolution of microdroplets at lower surfactant concentration (10µM) fits the ZYM model at saturation concentration (Cs) value reported in literature (Cs = 15×10⁻³Kg\m³) while for higher surfactant concentration (10mM) which is also above the critical micelle concentration (CMC) of surfactant (5mM) the data fits ZYM model at (Cs = 45×10⁻³Kg\m³) which is 3X times the value reported in literature. The difference in Cs value from the literature shows enhancement in dissolution rate of sparingly soluble BB microdroplets at surfactant concentrations higher than CMC. Enhancement in the dissolution of sparingly soluble materials is of great importance in pharmaceutical industry. Enhancement in the dissolution of sparingly soluble drugs is a key research area for drug design industry. The experimental method is also advantageous because it is robust and has no mechanical contact with droplets under study are freely suspended in the fluid as compared existing methods used for testing dissolution of drugs. The experiments also give an insight into CMC measurement for surfactants.

Keywords: extensional flow, hydrodynamic trapping, Zhang-Yang-Mao, CMC

Procedia PDF Downloads 330
6332 Implicit Force Control of a Position Controlled Robot - A Comparison with Explicit Algorithms

Authors: Alexander Winkler, Jozef Suchý

Abstract:

This paper investigates simple implicit force control algorithms realizable with industrial robots. A lot of approaches already published are difficult to implement in commercial robot controllers, because the access to the robot joint torques is necessary or the complete dynamic model of the manipulator is used. In the past we already deal with explicit force control of a position controlled robot. Well known schemes of implicit force control are stiffness control, damping control and impedance control. Using such algorithms the contact force cannot be set directly. It is further the result of controller impedance, environment impedance and the commanded robot motion/position. The relationships of these properties are worked out in this paper in detail for the chosen implicit approaches. They have been adapted to be implementable on a position controlled robot. The behaviors of stiffness control and damping control are verified by practical experiments. For this purpose a suitable test bed was configured. Using the full mechanical impedance within the controller structure will not be practical in the case when the robot is in physical contact with the environment. This fact will be verified by simulation.

Keywords: robot force control, stiffness control, damping control, impedance control, stability

Procedia PDF Downloads 506
6331 Emotiv EPOC BCI Matrix Speller Based on Single Emokey

Authors: S. M. Abdullah Al Mamun

Abstract:

Human Computer Interaction (HCI) is an excellent area for the researchers to make daily life more simple and fast. Necessary hardware equipments for any BCI are generally expensive and not affordable for most of the people. Emotiv is one of the solutions for this problem, which can provide electroencephalograph (EEG) signal and explain the brain activities. BCI virtual speller was one of the important applications for the people who have lost their hand or speaking ability because of diseases or unexpected accident. In this paper, a matrix speller has been designed for the first time for Bengali speaking people around the world. Bengali is one of the most commonly spoken languages. Among them, a lot of disabled person will be able to express their desire in their mother tongue. This application is also usable for the social networks and daily life communications. For this virtual keyboard, the well-known matrix speller method with column flashing is applied and controlled by single Emokey only. Emokey is a great feature which translates emotional state for application inputs. In this paper, it is presented that the ITR (Information Transfer Rate) were 29.4 bits/min and typing speed achieved up to 7.43 char/per min.

Keywords: brain computer interface, Emotiv EPOC, EEG, virtual keyboard, matrix speller

Procedia PDF Downloads 288
6330 A Dynamic Approach for Evaluating the Climate Change Risks on Building Performance

Authors: X. Lu, T. Lu, S. Javadi

Abstract:

A simple dynamic approach is presented for analyzing thermal and moisture dynamics of buildings, which is of particular relevance to understanding climate change impacts on buildings, including assessment of risks and applications of resilience strategies. With the goal to demonstrate the proposed modeling methodology, to verify the model, and to show that wooden materials provide a mechanism that can facilitate the reduction of moisture risks and be more resilient to global warming, a wooden church equipped with high precision measurement systems was taken as a test building for full-scale time-series measurements. Sensitivity analyses indicate a high degree of accuracy in the model prediction regarding the indoor environment. The model is then applied to a future projection of climate indoors aiming to identify significant environmental factors, the changing temperature and humidity, and effective response to the climate change impacts. The paper suggests that wooden building materials offer an effective and resilient response to anticipated future climate changes.

Keywords: dynamic model, forecast, climate change impact, wooden structure, buildings

Procedia PDF Downloads 134
6329 Nanowire by Ac Electrodeposition Into Nanoporous Alumina Fabrication of High Aspect Ratio Metalic

Authors: M. Beyzaiea, S. Mohammadia

Abstract:

High aspect ratio metallic (silver, cobalt) nanowire arrays were fabricated using ac electrodeposition techniques into the nanoporous alumina template. The template with long pore dept fabricated by hard anodization (HA) and thinned for ac electrodeposition. Template preparation was done in short time by using HA technique and high speed thing process. The TEM and XRD investigation confirm the three dimensional nucleation growth mechanism of metallic nanowire inside the nanoporous alumina that fabricated by HA process.

Keywords: metallic, nanowire, nanoporous alumina, ac electrodeposition

Procedia PDF Downloads 260
6328 Synthesis of Iso-Amyl, Benzyl and Cinnamyl Esters over Active, Selective, Reusable and Eco-Friendly Natural Silica Catalyst

Authors: Abd El-Aziz Said

Abstract:

In this study, natural silica was used as an active, selective, reusable and eco-friendly catalyst for the liquid phase synthesis of iso-amyl, benzyl and cinnamyl esters. The original and calcined natural silica were characterized by TG-DTA, XRF, XRD, FTIR, SEM, and N2-sorption analysis. The surface acidity of the catalysts was determined using isopropanol dehydration and the strength of available acid sites was measured using chemisorption of pyridine (PY) and dimethyl pyridine (DMPY). The results of acidity specified that the acidic sites are of Brönsted type, while PY-TPD demonstrated that almost of the acidic sites over the surface of natural silica are of weak and intermediate strength. The catalytic activity of natural silica towards esterification of acetic acid with alcohols was extensively studied. The results revealed that natural silica had high catalytic activity with 100% selectivity to all targeted esters. In addition, the yields obtained in batch methods were 83, 81, and 80%, respectively, whereas these yields after simple distillation were improved 97, 99.5, and 90%, respectively.

Keywords: liquid-phase esterification, natural silica, acidity esters, characterization

Procedia PDF Downloads 115
6327 Comparison between Hardy-Cross Method and Water Software to Solve a Pipe Networking Design Problem for a Small Town

Authors: Ahmed Emad Ahmed, Zeyad Ahmed Hussein, Mohamed Salama Afifi, Ahmed Mohammed Eid

Abstract:

Water has a great importance in life. In order to deliver water from resources to the users, many procedures should be taken by the water engineers. One of the main procedures to deliver water to the community is by designing pressurizer pipe networks for water. The main aim of this work is to calculate the water demand of a small town and then design a simple water network to distribute water resources among the town with the smallest losses. Literature has been mentioned to cover the main point related to water distribution. Moreover, the methodology has introduced two approaches to solve the research problem, one by the iterative method of Hardy-cross and the other by water software Pipe Flow. The results have introduced two main designs to satisfy the same research requirements. Finally, the researchers have concluded that the use of water software provides more abilities and options for water engineers.

Keywords: looping pipe networks, hardy cross networks accuracy, relative error of hardy cross method

Procedia PDF Downloads 143
6326 Clinical Feature Analysis and Prediction on Recurrence in Cervical Cancer

Authors: Ravinder Bahl, Jamini Sharma

Abstract:

The paper demonstrates analysis of the cervical cancer based on a probabilistic model. It involves technique for classification and prediction by recognizing typical and diagnostically most important test features relating to cervical cancer. The main contributions of the research include predicting the probability of recurrences in no recurrence (first time detection) cases. The combination of the conventional statistical and machine learning tools is applied for the analysis. Experimental study with real data demonstrates the feasibility and potential of the proposed approach for the said cause.

Keywords: cervical cancer, recurrence, no recurrence, probabilistic, classification, prediction, machine learning

Procedia PDF Downloads 347
6325 Numerical Applications of Tikhonov Regularization for the Fourier Multiplier Operators

Authors: Fethi Soltani, Adel Almarashi, Idir Mechai

Abstract:

Tikhonov regularization and reproducing kernels are the most popular approaches to solve ill-posed problems in computational mathematics and applications. And the Fourier multiplier operators are an essential tool to extend some known linear transforms in Euclidean Fourier analysis, as: Weierstrass transform, Poisson integral, Hilbert transform, Riesz transforms, Bochner-Riesz mean operators, partial Fourier integral, Riesz potential, Bessel potential, etc. Using the theory of reproducing kernels, we construct a simple and efficient representations for some class of Fourier multiplier operators Tm on the Paley-Wiener space Hh. In addition, we give an error estimate formula for the approximation and obtain some convergence results as the parameters and the independent variables approaches zero. Furthermore, using numerical quadrature integration rules to compute single and multiple integrals, we give numerical examples and we write explicitly the extremal function and the corresponding Fourier multiplier operators.

Keywords: fourier multiplier operators, Gauss-Kronrod method of integration, Paley-Wiener space, Tikhonov regularization

Procedia PDF Downloads 299
6324 Minimizing the Impact of Covariate Detection Limit in Logistic Regression

Authors: Shahadut Hossain, Jacek Wesolowski, Zahirul Hoque

Abstract:

In many epidemiological and environmental studies covariate measurements are subject to the detection limit. In most applications, covariate measurements are usually truncated from below which is known as left-truncation. Because the measuring device, which we use to measure the covariate, fails to detect values falling below the certain threshold. In regression analyses, it causes inflated bias and inaccurate mean squared error (MSE) to the estimators. This paper suggests a response-based regression calibration method to correct the deleterious impact introduced by the covariate detection limit in the estimators of the parameters of simple logistic regression model. Compared to the maximum likelihood method, the proposed method is computationally simpler, and hence easier to implement. It is robust to the violation of distributional assumption about the covariate of interest. In producing correct inference, the performance of the proposed method compared to the other competing methods has been investigated through extensive simulations. A real-life application of the method is also shown using data from a population-based case-control study of non-Hodgkin lymphoma.

Keywords: environmental exposure, detection limit, left truncation, bias, ad-hoc substitution

Procedia PDF Downloads 222
6323 Socio-Economic Modelling Approaches Linked to Water Quality: A Review

Authors: Aurelia Samuel

Abstract:

Socio-economic modelling approaches linked to water management have contributed to impact assessments of agricultural policies and management practices on water quality at catchment level. With an increasing interest in informing water management policy that considers complex links between socioeconomic factors, climate change, agricultural production, and water quality, several models have been developed and applied in the literature to capture these relationships. This paper offers an overview of socio-economic approaches that have been incorporated within an integrated framework. It also highlights how data gaps on socio-economic factors have been addressed using forecasting techniques. Findings of the review show that while integrated frameworks have the potential to account for complexities within dynamic systems, they generally do not provide direct, measurable financial impact of socio-economic factors on biophysical water parameters that affect water quality. The paper concludes with a recommendation that modelling framework is kept simple to make it more transparent and easier to capture the most important relationship.

Keywords: financial impact, integrated framework, socio-economic modelling, water quality

Procedia PDF Downloads 135
6322 Vortices Structure in Internal Laminar and Turbulent Flows

Authors: Farid Gaci, Zoubir Nemouchi

Abstract:

A numerical study of laminar and turbulent fluid flows in 90° bend of square section was carried out. Three-dimensional meshes, based on hexahedral cells, were generated. The QUICK scheme was employed to discretize the convective term in the transport equations. The SIMPLE algorithm was adopted to treat the velocity-pressure coupling. The flow structure obtained showed interesting features such as recirculation zones and counter-rotating pairs of vortices. The performance of three different turbulence models was evaluated: the standard k- ω model, the SST k-ω model and the Reynolds Stress Model (RSM). Overall, it was found that, the multi-equation model performed better than the two equation models. In fact, the existence of four pairs of counter rotating cells, in the straight duct upstream of the bend, were predicted by the RSM closure but not by the standard eddy viscosity model nor the SST k-ω model. The analysis of the results led to a better understanding of the induced three dimensional secondary flows and the behavior of the local pressure coefficient and the friction coefficient.

Keywords: curved duct, counter-rotating cells, secondary flow, laminar, turbulent

Procedia PDF Downloads 324
6321 Application of Low-order Modeling Techniques and Neural-Network Based Models for System Identification

Authors: Venkatesh Pulletikurthi, Karthik B. Ariyur, Luciano Castillo

Abstract:

The system identification from the turbulence wakes will lead to the tactical advantage to prepare and also, to predict the trajectory of the opponents’ movements. A low-order modeling technique, POD, is used to predict the object based on the wake pattern and compared with pre-trained image recognition neural network (NN) to classify the wake patterns into objects. It is demonstrated that low-order modeling, POD, is able to predict the objects better compared to pretrained NN by ~30%.

Keywords: the bluff body wakes, low-order modeling, neural network, system identification

Procedia PDF Downloads 164