Search results for: randomized controlled trials
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3537

Search results for: randomized controlled trials

357 Analysis in Mexico on Workers Performing Highly Repetitive Movements with Sensory Thermography in the Surface of the Wrist and Elbows

Authors: Sandra K. Enriquez, Claudia Camargo, Jesús E. Olguín, Juan A. López, German Galindo

Abstract:

Currently companies have increased the number of disorders of cumulative trauma (CTDs), these are increasing significantly due to the Highly Repetitive Movements (HRM) performed in workstations, which causes economic losses to businesses, due to temporary and permanent disabilities of workers. This analysis focuses on the prevention of disorders caused by: repeatability, duration and effort; And focuses on reducing cumulative trauma disorders such as occupational diseases using sensory thermography as a noninvasive method, the above is to evaluate the injuries could have workers to perform repetitive motions. Objectives: The aim is to define rest periods or job rotation before they generate a CTD, this sensory thermography by analyzing changes in temperature patterns on wrists and elbows when the worker is performing HRM over a period of time 2 hours and 30 minutes. Information on non-work variables such as wrist and elbow injuries, weight, gender, age, among others, and work variables such as temperature workspace, repetitiveness and duration also met. Methodology: The analysis to 4 industrial designers, 2 men and 2 women to be specific was conducted in a business in normal health for a period of 12 days, using the following time ranges: the first day for every 90 minutes continuous work were asked to rest 5 minutes, the second day for every 90 minutes of continuous work were asked to rest 10 minutes, the same to work 60 and 30 minutes straight. Each worker was tested with 6 different ranges at least twice. This analysis was performed in a controlled room temperature between 20 and 25 ° C, and a time to stabilize the temperature of the wrists and elbows than 20 minutes at the beginning and end of the analysis. Results: The range time of 90 minutes working continuous and a rest of 5 minutes of activity is where the maximum temperature (Tmax) was registered in the wrists and elbows in the office, we found the Tmax was 35.79 ° C with a difference of 2.79 ° C between the initial and final temperature of the left elbow presented at the individual 4 during the 86 minutes, in of range in 90 minutes continuously working and rested for 5 minutes of your activity. Conclusions: It is possible with this alternative technology is sensory thermography predict ranges of rotation or rest for the prevention of CTD to perform HRM work activities, obtaining with this reduce occupational disease, quotas by health agencies and increasing the quality of life of workers, taking this technology a cost-benefit acceptable in the future.

Keywords: sensory thermography, temperature, cumulative trauma disorder (CTD), highly repetitive movement (HRM)

Procedia PDF Downloads 401
356 Biocontrol Potential of Trichoderma longibrachiatum as an Entomopathogenic Fungi against Bemisia tabaci

Authors: Waheed Anwar, Kiran Nawaz, Muhammad Saleem Haider, Ahmad Ali Shahid, Sehrish Iftikhar

Abstract:

The whitefly, Bemisia tabaci (Gennadius), is a complex insect species, including many cryptic species or biotypes. Whitefly causes damage to many ornamental and horticultural crops through directly feeding on phloem sap, resulting in sooty mould and critically decreases the rate of photosynthesis of many host plants. Biological control has emerged as one of the most important methods for the management of soil-borne plant pathogens. Among the natural enemies of insects different entomopathogenic fungi are mostly used as biological control of the pest. The purpose of this research was to find indigenous insect-associated fungi and their virulence against Bemisia tabaci. A detailed survey of cotton fields in sample collection was conducted during July and August 2013 from the central mixed zone of Punjab, Pakistan. For the isolation of T. longibrachiatum, sabouraud dextrose peptone yeast extract agar (SDAY) media was used and morphological characterization of isolated T. longibrachiatum was studied using different dichotomous keys. Molecular Identification of the pathogen was confirmed by amplifying the internal transcribed spacer region. Blastn analysis showed 100% homology with already reported sequences on the database. For these bioassays, two conidial concentrations 4 × 108/mL & 4 × 104/mL of T. longibrachiatum was sprayed in clip cages for nymph and adult B. tabaci respectively under controlled environmental conditions. The pathogenicity of T. longibrachiatum was tested on nymph and adult whitefly to check mortality. Mortality of B. tabaci at nymphal and adult stages were observed after 24-hour intervals. Percentage mortality of nymphs treated with 4 x 104/mL conidia of T. longibrachiatum was 20, 24, 36 and 40% after 48, 72, 96, 72, 96, 120 and 144 hours respectively. However, no considerable difference was recorded in percentage mortality of whitefly after 120 and 144 hours. There were great variations after 24, 48, 72 and 96 hours in the rate of mortality. The efficacy of T. longibrachiatum as entomopathogenic fungi was evaluated in adult and nymphal stages of whitefly. Trichoderma longibrachiatum showed maximum activity on nymphal stages of whitefly as compared to adult stages. The percentage of conidial germination was also recorded on the outer surface of adult and nymphal stages of B. tabaci. The present findings indicated that T. longibrachiatum is an entomopathogenic fungus against B. tabaci and many species of Trichoderma were already reported as an antagonistc organism against a wide range of bacterial and fungal pathogens.

Keywords: efficacy, Trichoderma, virulence, bioassay

Procedia PDF Downloads 253
355 The Effectiveness of a Self-Efficacy Psychoeducational Programme to Enhance Outcomes of Patients with End-Stage Renal Disease

Authors: H. C. Chen, S. W. C. Chan, K. Cheng, A. Vathsala, H. K. Sran, H. He

Abstract:

Background: End-stage renal disease (ESRD) is the last stage of chronic kidney disease. The numbers of patients with ESRD have increased worldwide due to the growing number of aging, diabetes and hypertension populations. Patients with ESRD suffer from physical illness and psychological distress due to complex treatment regimens, which often affect the patients’ social and psychological functioning. As a result, the patients may fail to perform daily self-care and self-management, and consequently experience worsening conditions. Aims: The study aims to examine the effectiveness of a self-efficacy psychoeducational programme on primary outcome (self-efficacy) and secondary outcomes (psychological wellbeing, treatment adherence, and quality of life) in patients with ESRD and haemodialysis in Singapore. Methodology: A randomised controlled, two-group pretest and repeated posttests design will be carried out. A total of 154 participants (n=154) will be recruited. The participants in the control group will receive a routine treatment. The participants in the intervention group will receive a self-efficacy psychoeducational programme in addition to the routine treatment. The programme is a two-session of educational intervention in a week. A booklet, two consecutive sessions of face-to-face individual education, and an abdominal breathing exercise are adopted in the programme. Outcome measurements include Dialysis Specific Self-efficacy Scale, Kidney Disease Quality of Life- 36 Hospital Anxiety and Depression Scale, Renal Adherence Attitudes Questionnaire and Renal Adherence Behaviour Questionnaire. The questionnaires will be used to measure at baseline, 1- and 3- and 6-month follow-up periods. Process evaluation will be conducted with a semi-structured face to face interview. Quantitative data will be analysed using SPSS21.0 software. Qualitative data will be analysed by content analysis. Significance of the study: This study will identify a clinically useful and potentially effective approach to help patients with end-stage renal disease and haemodialysis by enhancing their self-efficacy in self-care behaviour, and therefore improving their psychological well-being, treatment adherence and quality of life. This study will provide information to develop clinical guidelines to improve patients’ disease self-management and to enhance health-related outcomes and it will help reducing disease burden.

Keywords: end-stage renal disease (ESRD), haemodialysis, psychoeducation, self-efficacy

Procedia PDF Downloads 289
354 Reducing the Impact of Pathogenic Fungi on Barley Using Bacteria: Bacterial Biocontrol in the Barley-Malt-Beer Industry

Authors: Eusèbe Gnonlonfoun, Xavier Framboisier, Michel Fick, Emmanuel Rondags

Abstract:

Pathogenic fungi represent a generic problem for cereals, including barley, as they can produce a number of thermostable toxic metabolites such as mycotoxins that contaminate plants and food products, leading to serious health issues for humans and animals and causing significant losses in global food production. In addition, mycotoxins represent a significant technological concern for the malting and brewing industries, as they may affect the quality and safety of raw materials (barley and malt) and final products (beer). Moreover, this situation is worsening due to the highly variable climatic conditions that favor microbial development and the societal desire to reduce the use of phytosanitary products, including fungicides. In this complex environmental, regulatory and economic context for the French barley-malt-beer industry, this project aims to develop an innovative biocontrol process by using technological bacteria, isolated from infection-resistant barley cultures, that are able to reduce the development of spoilage fungi and the associated mycotoxin production. The experimental approach consists of i) coculturing bacterial and pathogenic fungal strains in solid and liquid media to access the growth kinetics of these microorganisms and to evaluate the impact of these bacteria on fungal growth and mycotoxin production; then ii) the results will be used to carry out a micro-malting process in order to develop the aforementioned process, and iii) the technological and sanitary properties of the generated barley malts will finally be evaluated in order to validate the biocontrol process developed. The process is expected to make it possible to guarantee, with controlled costs, an irreproachable hygienic and technological quality of the malt, despite the increasingly complex and variable conditions for barley production. Thus, the results will not only make it possible to maintain the dominant world position of the French barley-malt chain but will also allow it to conquer emerging markets, mainly in Africa and Asia. The use of this process will also contribute to the reduction of the use of phytosanitary products in the field for barley production while reducing the level of contamination of malting plant effluents. Its environmental impact would therefore be significant, especially considering that barley is the fourth most-produced cereal in the world.

Keywords: barley, pathogenic fungi, mycotoxins, malting, bacterial biocontrol

Procedia PDF Downloads 150
353 Soil Improvement through Utilization of Calcifying Bhargavaea cecembensis N1 in an Affordable Whey Culture Medium

Authors: Fatemeh Elmi, Zahra Etemadifar

Abstract:

Improvement of soil mechanical properties is crucial before its use in construction, as the low mechanical strength and unstable structure of soil in many parts of the world can lead to the destruction of engineering infrastructure, resulting in financial and human losses. Although, conventional methods, such as chemical injection, are often utilized to enhance soil strength and stiffness, they are generally expensive, require heavy machinery, and cause significant environmental effects due to chemical usage, and also disrupt urban infrastructure. Moreover, they are not suitable for treating large volume of soil. Recently, an alternative method to improve various soil properties, including strength, hardness, and permeability, has received much attention: the application of biological methods. One of the most widely used is biocementation, which is based on the microbial precipitation of calcium carbonte crystalls using ureolytic bacteria However, there are still limitations to its large-scale use that need to be resolved before it can be commercialized. These issues have not received enough attention in prior research. One limitation of MICP (microbially induced calcium carbonate precipitation) is that microorganisms cannot operate effectively in harsh and variable environments, unlike the controlled conditions of a laboratory. Another limitation of applying this technique on a large scale is the high cost of producing a substantial amount of bacterial culture and reagents required for soil treatment. Therefore, the purpose of the present study was to investigate soil improvement using the biocementation activity of poly-extremophile, calcium carbonate crystal- producing bacterial strain, Bhargavaea cecembensis N1, in whey as an inexpensive medium. This strain was isolated and molecularly identified from sandy soils in our previous research, and its 16S rRNA gene sequences was deposited in the NCBI Gene Bank with an accession number MK420385. This strain exhibited a high level of urease activity (8.16 U/ml) and produced a large amount of calcium carbonate (4.1 mg/ ml). It was able to improve the soil by increasing the compressive strength up to 205 kPa and reducing permeability by 36%, with 20% of the improvement attributable of calcium carbonate production. This was achieved using this strain in a whey culture medium. This strain can be an eco-friendly and economical alternative to conventional methods in soil stabilization, and other MICP related applications.

Keywords: biocementation, Bhargavaea cecembensis, soil improvement, whey culture medium

Procedia PDF Downloads 26
352 Impact of Alternative Fuel Feeding on Fuel Cell Performance and Durability

Authors: S. Rodosik, J. P. Poirot-Crouvezier, Y. Bultel

Abstract:

With the expansion of the hydrogen economy, Proton Exchange Membrane Fuel Cell (PEMFC) systems are often presented as promising energy converters suitable for transport applications. However, reaching a durability of 5000 h recommended by the U.S. Department of Energy and decreasing system cost are still major hurdles to their development. In order to increase the system efficiency and simplify the system without affecting the fuel cell lifetime, an architecture called alternative fuel feeding has been developed. It consists in a fuel cell stack divided into two parts, alternatively fed, implemented on a 5-kW system for real scale testing. The operation strategy can be considered close to Dead End Anode (DEA) with specific modifications to avoid water and nitrogen accumulation in the cells. The two half-stacks are connected in series to enable each stack to be alternatively fed. Water and nitrogen accumulated can be shifted from one half-stack to the other one according to the alternative feeding frequency. Thanks to the homogenization of water vapor along the stack, water management was improved. The operating conditions obtained at system scale are close to recirculation without the need of a pump or an ejector. In a first part, a performance comparison with the DEA strategy has been performed. At high temperature and low pressure (80°C, 1.2 bar), performance of alternative fuel feeding was higher, and the system efficiency increased. In a second part, in order to highlight the benefits of the architecture on the fuel cell lifetime, two durability tests, lasting up to 1000h, have been conducted. A test on the 5-kW system has been compared to a reference test performed on a test bench with a shorter stack, conducted with well-controlled operating parameters and flow-through hydrogen strategy. The durability test is based upon the Fuel Cell Dynamic Load Cycle (FC-DLC) protocol but adapted to the system limitations: without OCV steps and a maximum current density of 0.4 A/cm². In situ local measurements with a segmented S++® plate performed all along the tests, showed a more homogeneous distribution of the current density with alternative fuel feeding than in flow-through strategy. Tests performed in this work enabled the understanding of this architecture advantages and drawbacks. Alternative fuel feeding architecture appeared to be a promising solution to ensure the humidification function at the anode side with a simplified fuel cell system.

Keywords: automotive conditions, durability, fuel cell system, proton exchange membrane fuel cell, stack architecture

Procedia PDF Downloads 116
351 Effects of Heart Rate Variability Biofeedback to Improve Autonomic Nerve Function, Inflammatory Response and Symptom Distress in Patients with Chronic Kidney Disease: A Randomized Control Trial

Authors: Chia-Pei Chen, Yu-Ju Chen, Yu-Juei Hsu

Abstract:

The prevalence and incidence of end-stage renal disease in Taiwan ranks the highest in the world. According to the statistical survey of the Ministry of Health and Welfare in 2019, kidney disease is the ninth leading cause of death in Taiwan. It leads to autonomic dysfunction, inflammatory response and symptom distress, and further increases the damage to the structure and function of the kidneys, leading to increased demand for renal replacement therapy and risks of cardiovascular disease, which also has medical costs for the society. If we can intervene in a feasible manual to effectively regulate the autonomic nerve function of CKD patients, reduce the inflammatory response and symptom distress. To prolong the progression of the disease, it will be the main goal of caring for CKD patients. This study aims to test the effect of heart rate variability biofeedback (HRVBF) on improving autonomic nerve function (Heart Rate Variability, HRV), inflammatory response (Interleukin-6 [IL-6], C reaction protein [CRP] ), symptom distress (Piper fatigue scale, Pittsburgh Sleep Quality Index [PSQI], and Beck Depression Inventory-II [BDI-II] ) in patients with chronic kidney disease. This study was experimental research, with a convenience sampling. Participants were recruited from the nephrology clinic at a medical center in northern Taiwan. With signed informed consent, participants were randomly assigned to the HRVBF or control group by using the Excel BINOMDIST function. The HRVBF group received four weekly hospital-based HRVBF training, and 8 weeks of home-based self-practice was done with StressEraser. The control group received usual care. We followed all participants for 3 months, in which we repeatedly measured their autonomic nerve function (HRV), inflammatory response (IL-6, CRP), and symptom distress (Piper fatigue scale, PSQI, and BDI-II) on their first day of study participation (baselines), 1 month, and 3 months after the intervention to test the effects of HRVBF. The results were analyzed by SPSS version 23.0 statistical software. The data of demographics, HRV, IL-6, CRP, Piper fatigue scale, PSQI, and BDI-II were analyzed by descriptive statistics. To test for differences between and within groups in all outcome variables, it was used by paired sample t-test, independent sample t-test, Wilcoxon Signed-Rank test and Mann-Whitney U test. Results: Thirty-four patients with chronic kidney disease were enrolled, but three of them were lost to follow-up. The remaining 31 patients completed the study, including 15 in the HRVBF group and 16 in the control group. The characteristics of the two groups were not significantly different. The four-week hospital-based HRVBF training combined with eight-week home-based self-practice can effectively enhance the parasympathetic nerve performance for patients with chronic kidney disease, which may against the disease-related parasympathetic nerve inhibition. In the inflammatory response, IL-6 and CRP in the HRVBF group could not achieve significant improvement when compared with the control group. Self-reported fatigue and depression significantly decreased in the HRVBF group, but they still failed to achieve a significant difference between the two groups. HRVBF has no significant effect on improving the sleep quality for CKD patients.

Keywords: heart rate variability biofeedback, autonomic nerve function, inflammatory response, symptom distress, chronic kidney disease

Procedia PDF Downloads 155
350 Analysis of Waterjet Propulsion System for an Amphibious Vehicle

Authors: Nafsi K. Ashraf, C. V. Vipin, V. Anantha Subramanian

Abstract:

This paper reports the design of a waterjet propulsion system for an amphibious vehicle based on circulation distribution over the camber line for the sections of the impeller and stator. In contrast with the conventional waterjet design, the inlet duct is straight for water entry parallel and in line with the nozzle exit. The extended nozzle after the stator bowl makes the flow more axial further improving thrust delivery. Waterjet works on the principle of volume flow rate through the system and unlike the propeller, it is an internal flow system. The major difference between the propeller and the waterjet occurs at the flow passing the actuator. Though a ducted propeller could constitute the equivalent of waterjet propulsion, in a realistic situation, the nozzle area for the Waterjet would be proportionately larger to the inlet area and propeller disc area. Moreover, the flow rate through impeller disk is controlled by nozzle area. For these reasons the waterjet design is based on pump systems rather than propellers and therefore it is important to bring out the characteristics of the flow from this point of view. The analysis is carried out using computational fluid dynamics. Design of waterjet propulsion is carried out adapting the axial flow pump design and performance analysis was done with three-dimensional computational fluid dynamics (CFD) code. With the varying environmental conditions as well as with the necessity of high discharge and low head along with the space confinement for the given amphibious vehicle, an axial pump design is suitable. The major problem of inlet velocity distribution is the large variation of velocity in the circumferential direction which gives rise to heavy blade loading that varies with time. The cavitation criteria have also been taken into account as per the hydrodynamic pump design. Generally, waterjet propulsion system can be parted into the inlet, the pump, the nozzle and the steering device. The pump further comprises an impeller and a stator. Analytical and numerical approaches such as RANSE solver has been undertaken to understand the performance of designed waterjet propulsion system. Unlike in case of propellers the analysis was based on head flow curve with efficiency and power curves. The modeling of the impeller is performed using rigid body motion approach. The realizable k-ϵ model has been used for turbulence modeling. The appropriate boundary conditions are applied for the domain, domain size and grid dependence studies are carried out.

Keywords: amphibious vehicle, CFD, impeller design, waterjet propulsion

Procedia PDF Downloads 194
349 Factors Controlling Marine Shale Porosity: A Case Study between Lower Cambrian and Lower Silurian of Upper Yangtze Area, South China

Authors: Xin Li, Zhenxue Jiang, Zhuo Li

Abstract:

Generally, shale gas is trapped within shale systems with low porosity and ultralow permeability as free and adsorbing states. Its production is controlled by properties, in terms of occurrence phases, gas contents, and percolation characteristics. These properties are all influenced by porous features. In this paper, porosity differences of marine shales were explored between Lower Cambrian shale and Lower Silurian shale of Sichuan Basin, South China. Both the two shales were marine shales with abundant oil-prone kerogen and rich siliceous minerals. Whereas Lower Cambrian shale (3.56% Ro) possessed a higher thermal degree than that of Lower Silurian shale (2.31% Ro). Samples were measured by a combination of organic-chemistry geology measurement, organic matter (OM) isolation, X-ray diffraction (XRD), N2 adsorption, and focused ion beam milling and scanning electron microscopy (FIB-SEM). Lower Cambrian shale presented relatively low pore properties, with averaging 0.008ml/g pore volume (PV), averaging 7.99m²/g pore surface area (PSA) and averaging 5.94nm average pore diameter (APD). Lower Silurian shale showed as relatively high pore properties, with averaging 0.015ml/g PV, averaging 10.53m²/g PSA and averaging 18.60nm APD. Additionally, fractal analysis indicated that the two shales presented discrepant pore morphologies, mainly caused by differences in the combination of pore types between the two shales. More specifically, OM-hosted pores with pin-hole shape and dissolved pores with dead-end openings were the main types in Lower Cambrian shale, while OM-hosted pore with a cellular structure was the main type in Lower Silurian shale. Moreover, porous characteristics of isolated OM suggested that OM of Lower Silurian shale was more capable than that of Lower Cambrian shale in the aspect of pore contribution. PV of isolated OM in Lower Silurian shale was almost 6.6 times higher than that in Lower Cambrian shale, and PSA of isolated OM in Lower Silurian shale was almost 4.3 times higher than that in Lower Cambrian shale. However, no apparent differences existed among samples with various matrix compositions. At late diagenetic or metamorphic epoch, extensive diagenesis overprints the effects of minerals on pore properties and OM plays the dominant role in pore developments. Hence, differences of porous features between the two marine shales highlight the effect of diagenetic degree on OM-hosted pore development. Consequently, distinctive pore characteristics may be caused by the different degrees of diagenetic evolution, even with similar matrix basics.

Keywords: marine shale, lower Cambrian, lower Silurian, om isolation, pore properties, om-hosted pore

Procedia PDF Downloads 115
348 Development of a Stable RNAi-Based Biological Control for Sheep Blowfly Using Bentonite Polymer Technology

Authors: Yunjia Yang, Peng Li, Gordon Xu, Timothy Mahony, Bing Zhang, Neena Mitter, Karishma Mody

Abstract:

Sheep flystrike is one of the most economically important diseases affecting the Australian sheep and wool industry (>356M/annually). Currently, control of Lucillia cuprina relies almost exclusively on chemicals controls and the parasite has developed resistance to nearly all control chemicals used in the past. It is therefore critical to develop an alternative solution for the sustainable control and management of flystrike. RNA interference (RNAi) technologies have been successfully explored in multiple animal industries for developing parasites controls. This research project aims to develop a RNAi based biological control for sheep blowfly. Double-stranded RNA (dsRNA) has already proven successful against viruses, fungi and insects. However, the environmental instability of dsRNA is a major bottleneck for successful RNAi. Bentonite polymer (BenPol) technology can overcome this problem, as it can be tuned for the controlled release of dsRNA in the gut challenging pH environment of the blowfly larvae, prolonging its exposure time to and uptake by target cells. To investigate the potential of BenPol technology for dsRNA delivery, four different BenPol carriers were tested for their dsRNA loading capabilities, and three of them were found to be capable of affording dsRNA stability under multiple temperatures (4°C, 22°C, 40°C, 55°C) in sheep serum. Based on stability results, dsRNA from potential targeted genes was loaded onto BenPol carriers and tested in larvae feeding assays, three genes resulting in knockdowns. Meanwhile, a primary blowfly embryo cell line (BFEC) derived from L. cuprina embryos was successfully established, aim for an effective insect cell model for testing RNAi efficacy for preliminary assessments and screening. The results of this study establish that the dsRNA is stable when loaded on BenPol particles, unlike naked dsRNA rapidly degraded in sheep serum. The stable nanoparticle delivery system offered by BenPol technology can protect and increase the inherent stability of dsRNA molecules at higher temperatures in a complex biological fluid like serum, providing promise for its future use in enhancing animal protection.

Keywords: flystrike, RNA interference, bentonite polymer technology, Lucillia cuprina

Procedia PDF Downloads 62
347 Developing Curricula for Signaling and Communication Course at Malaysia Railway Academy (MyRA) through Industrial Collaboration Program

Authors: Mohd Fairus Humar, Ibrahim Sulaiman, Pedro Cruz, Hasry Harun

Abstract:

This paper presents the propose knowledge transfer program on railway signaling and communication by Original Equipment Manufacturer (OEM) Thales Portugal. The fundamental issue is that there is no rail related course offered by local universities and colleges in Malaysia which could be an option to pursue student career path. Currently, dedicated trainings related to the rail technology are provided by in-house training academies established by the respective rail operators such as Malaysia Railway Academy (MyRA) and Rapid Rail Training Centre. In this matter, the content of training and facilities need to be strengthened to keep up-to-date with the dynamic evolvement of the rail technology. This is because rail products have evolved to be more sophisticated and embedded with high technology components which no longer exist in the mechanical form alone but combined with electronics, information technology and others. These demand for a workforce imbued with knowledge, multi-skills and competency to deal with specialized technical areas. Talent is needed to support sustainability in Southeast Asia. Keeping the above factors in mind, an Industrial Collaboration Program (ICP) was carried out to transfer knowledge on curricula of railway signaling and communication to a selected railway operators and tertiary educational institution in Malaysia. In order to achieve the aim, a partnership was formed between Technical Depository Agency (TDA), Thales Portugal and MyRA for two years with three main stages of program implementation comprising of: i) training on basic railway signaling and communication for 1 month with Thales in Malaysia; ii) training on advance railway signaling and communication for 4 months with Thales in Portugal and; iii) a series of workshop. Two workshops were convened to develop and harmonize curricula of railway signaling and communication course and were followed by one training for installation equipment of railway signaling and Controlled Train Centre (CTC) system from Thales Portugal. With active involvement from Technical Depository Agency (TDA), railway operators, universities, and colleges, in planning, executing, monitoring, control and closure, the program module of railway signaling and communication course with a lab railway signaling field equipment and CTC simulator were developed. Through this program, contributions from various parties help to build committed societies to engage important issues in relation to railway signaling and communication towards creating a sustainable future.

Keywords: knowledge transfer program, railway signaling and communication, curricula, module and teaching aid simulator

Procedia PDF Downloads 164
346 Exploring the Potential of Bio-Inspired Lattice Structures for Dynamic Applications in Design

Authors: Axel Thallemer, Aleksandar Kostadinov, Abel Fam, Alex Teo

Abstract:

For centuries, the forming processes in nature served as a source of inspiration for both architects and designers. It seems as most human artifacts are based on ideas which stem from the observation of the biological world and its principles of growth. As a fact, in the cultural history of Homo faber, materials have been mostly used in their solid state: From hand axe to computer mouse, the principle of employing matter has not changed ever since the first creation. In the scope of history only recently and by the help of additive-generative fabrication processes through Computer Aided Design (CAD), designers were enabled to deconstruct solid artifacts into an outer skin and an internal lattice structure. The intention behind this approach is to create a new topology which reduces resources and integrates functions into an additively manufactured component. However, looking at the currently employed lattice structures, it is very clear that those lattice structure geometries have not been thoroughly designed, but rather taken out of basic-geometry libraries which are usually provided by the CAD. In the here presented study, a group of 20 industrial design students created new and unique lattice structures using natural paragons as their models. The selected natural models comprise both the animate and inanimate world, with examples ranging from the spiraling of narwhal tusks, off-shooting of mangrove roots, minimal surfaces of soap bubbles, up to the rhythmical arrangement of molecular geometry, like in the case of SiOC (Carbon-Rich Silicon Oxicarbide). This ideation process leads to a design of a geometric cell, which served as a basic module for the lattice structure, whereby the cell was created in visual analogy to its respective natural model. The spatial lattices were fabricated additively in mostly [X]3 by [Y]3 by [Z]3 units’ volumes using selective powder bed melting in polyamide with (z-axis) 50 mm and 100 µm resolution and subdued to mechanical testing of their elastic zone in a biomedical laboratory. The results demonstrate that additively manufactured lattice structures can acquire different properties when they are designed in analogy to natural models. Several of the lattices displayed the ability to store and return kinetic energy, while others revealed a structural failure which can be exploited for purposes where a controlled collapse of a structure is required. This discovery allows for various new applications of functional lattice structures within industrially created objects.

Keywords: bio-inspired, biomimetic, lattice structures, additive manufacturing

Procedia PDF Downloads 126
345 Room Temperature Electron Spin Resonance and Raman Study of Nanocrystalline Zn(1-x)Cu(x)O (0.005 < x < 0.05) Synthesized by Pyrophoric Method

Authors: Jayashree Das, V. V. Srinivasu , D. K. Mishra, A. Maity

Abstract:

Owing to the important potential applications over decades, transition metal (TM: Mn, Fe, Ni, Cu, Cr, V etc.) doped ZnO-based diluted magnetic semiconductors (DMS) always attract research attention for more and newer investigations. One of the interesting aspects of these materials is to study and understand the magnetic property at room temperature properly, which is very crucial to select a material for any related application. In this regard, Electron spin resonance (ESR) study has been proven to be a powerful technique to investigate the spin dynamics of electrons inside the system, which are responsible for the magnetic behaviour of any system. ESR as well as the Raman and Photoluminescence spectroscopy studies are also helpful to study the defects present or created inside the system in the form of oxygen vacancy or cluster instrumental in determining the room temperature ferromagnetic property of transition metal doped ZnO system, which can be controlled through varying dopant concentration, appropriate synthesis technique and sintering of the samples. For our investigation, we synthesised Cu-doped ZnO nanocrystalline samples with composition Zn1-xCux ( 0.005< x < 0.05) by pyrophoric method and sintered at a low temperature of 650 0C. The microwave absorption is studied by the Electron Spin Resonance (ESR) of X-band (9.46 GHz) at room temperature. Systematic analysis of the obtained ESR spectra reveals that all the compositions of Cu-doped ZnO samples exhibit resonance signals of appreciable line widths and g value ~ 2.2, typical characteristic of ferromagnetism in the sample. Raman scattering and the photoluminescence study performed on the samples clearly indicated the presence of pronounced defect related peaks in the respective spectra. Cu doping in ZnO with varying concentration also observed to affect the optical band gap and the respective absorption edges in the UV-Vis spectra. FTIR spectroscopy reveals the Cu doping effect on the stretching bonds of ZnO. To probe into the structural and morphological changes incurred by Cu doping, we have performed XRD, SEM and EDX study, which confirms adequate Cu substitution without any significant impurity phase formation or lattice disorder. With proper explanation, we attempt to correlate the results observed for the structural optical and magnetic behaviour of the Cu-doped ZnO samples. We also claim that our result can be instrumental for appropriate applications of transition metal doped ZnO based DMS in the field of optoelectronics and Spintronics.

Keywords: diluted magnetic semiconductors, electron spin resonance, raman scattering, spintronics.

Procedia PDF Downloads 278
344 Formulation and Characterization of Antimicrobial Herbal Mouthwash from Some Herbal Extracts for Treatment of Periodontal Diseases

Authors: Reenu Yadav, Abhay Asthana, S. K. Yadav

Abstract:

Purpose: The aim of the present work was to develop an oral gel for brushing with an antimicrobial activity which will cure/protect from various periodontal diseases such as periodontitis, gingivitis, and pyorrhea. Methods: Plant materials procured from local suppliers, extracted and standardized. Screening of antimicrobial activity was carried out with the help of disk diffusion method. The gel was formulated by dried extracts of Beautea monosperma and Cordia obliquus. Gels were evaluated on various parameters and standardization of the formulation was performed. The release of drugs was studied in pH 6.8 using a mastication device.Total phenolic and flavonoid contents were estimated by folin-Ciocalteu and aluminium chloride method, and stability studies were performed (40°C and RH 75% ± 5% for 90 days) to assess the effect of temperature and humidity on the concentration of phenolic and flavonoid contents. The results of accelerated stability conditions were compared with that of samples kept at controlled conditions (RT). The control samples were kept at room temperature (25°C, 35% RH for 180 days). Results: Results are encouraging; extracts possess significant antimicrobial activity at very low concentration (15µg/disc, 20µg/disc and 15 µg/ disc) on oral pathogenic bacteria. The formulation has optimal characteristics, as well as has a pleasant appearance, fragrance, texture, and taste, is highly acceptable by the volunteers. The diffusion coefficient values ranged from 0.6655 to 0.9164. Since the R values of korsmayer papas were close to 1, Drug release from formulation follows matrix diffusion kinetics. Hence, diffusion was the mechanism of the drug release. Formulation follows non-Fickian transport mechanism. Most Formulations released 50 % of their contents within 25-30 minutes. Results obtained from the accelerated stability studies are indicative of a slight reduction in flavonoids and phenolic contents with time on long time storage. When measured degradation under ambient conditions, degradation was significantly lower than in accelerated stability study. Conclusion: Plant extracts possess compounds with antimicrobial properties can be used as. Developed formulation will cure/protect from various periodontal diseases. Further development and evaluations oral gel including the isolated compounds on the commercial scale and their clinical and toxicological studies are the future challenges.

Keywords: herbal gel, dental care, ambient conditions, commercial scale

Procedia PDF Downloads 419
343 Building Brand Equity in a Stigmatised Market: A Cannabis Industry Case Study

Authors: Sibongile Masemola

Abstract:

In 2018, South Africa decriminalised recreational cannabis use and private cultivation, since then, cannabis businesses have been established to meet the demand. However, marketing activities remain limited in this industry, and businesses are unable to disseminate promotional messages, however, as a solution, firms can promote their brands and positioning instead of the actual product (Bick, 2015). Branding is essential to create differences among cannabis firms and to attract and keep customers (Abrahamsson, 2014). Building cannabis firms into brands can better position them in the mind of the consumer so that they become and remain competitive. The aim of this study was to explore how South African cannabis retailers can build brand equity in a stigmatised market, despite significant restrictions on marketing efforts. Keller’s (2001) customer-based brand equity (CBBE) model was used as the as the theoretical framework and explored how cannabis firms build their businesses into brands through developing their brand identity, meaning, performance, and relationships, and ultimately creating brand equity. The study employed a qualitative research method, using semi-structured in-depth interviews among 17 participants to gain insights from cannabis owners and marketers in the recreational cannabis environment. Most findings were presented according to the blocks of CBBE model. Furthermore, a conceptual framework named the stigma-based brand equity (SBBE) model was adapted from Keller’s CBBE model to include an additional building block that accounts for industry-specific characteristics unique to stigmatised markets. Findings revealed the pervasiveness of education and its significance to brand building in a stigmatised industry. Results also demonstrated the overall effect stigma has on businesses and their consumers due to the longstanding negative evaluations of cannabis. Hence, through stigma-bonding, brands can develop deep identity-related psychological bonds with their consumers that will potentially lead to strong brand resonance. This study aims to contribute business-relevant knowledge for firms operating in core-stigmatised markets under controlled marketing regulations by exploring how cannabis firms can build brand equity. Practically, this study presents recommendations for retailers in stigmatised markets on how to destigmatise, build brand identity, create brand meaning, elicit desired brand responses, and develop brand relationships – ultimately building brand equity.

Keywords: branding, brand equity, cannabis, organisational stigma

Procedia PDF Downloads 78
342 Population Centralization in Urban Area and Metropolitans in Developing Countries: A Case Study of Urban Centralization in Iran

Authors: Safar Ghaedrahmati, Leila Soltani

Abstract:

Population centralization in urban area and metropolitans, especially in developing countries such as Iran increase metropolitan's problems. For few decades, the population of cities in developing countries, including Iran had a higher growth rate than the total growth rate of countries’ population. While in developed countries, the development of the big cities began decades ago and generally allowed for controlled and planned urban expansion, the opposite is the case in developing countries, where rapid urbanization process is characterized by an unplanned existing urban expansion. The developing metropolitan cities have enormous difficulties in coping both with the natural population growth and the urban physical expansion. Iranian cities are usually the heart of economic and cultural changes that have occurred after the Islamic revolution in 1979. These cities are increasingly having impacts via political–economical arrangement and chiefly by urban management structures. Structural features have led to the population growth of cities and urbanization (in number, population and physical frame) and the main problems in them. On the other hand, the lack of birth control policies and the deceptive attractions of cities, particularly big cities, and the birth rate has shot up, something which has occurred mainly in rural regions and small cities. The population of Iran has increased rapidly since 1956. The 1956 and 1966 decennial censuses counted the population of Iran at 18.9 million and 25.7 million, respectively, with a 3.1% annual growth rate during the 1956–1966 period. The 1976 and 1986 decennial censuses counted Iran’s population at 33.7 and 49.4 million, respectively, a 2.7% and 3.9% annual growth rate during the 1966–1976 and 1976–1986 periods. The 1996 count put Iran’s population at 60 million, a 1.96% annual growth rate from 1986–1996 and the 2006 count put Iran population at 72 million. A recent major policy of urban economic and industrial decentralization is a persistent program of the government. The policy has been identified as a result of the massive growth of Tehran in the recent years, up to 9 million by 2010. Part of the growth of the capitally resulted from the lack of economic opportunities elsewhere and in order to redress the developing primacy of Tehran and the domestic pressures which it is undergoing, the policy of decentralization is to be implemented as quickly as possible. Type of research is applied and method of data collection is documentary and methods of analysis are; population analysis with urban system analysis and urban distribution system

Keywords: population centralization, cities of Iran, urban centralization, urban system

Procedia PDF Downloads 279
341 Surface Modified Core–Shell Type Lipid–Polymer Hybrid Nanoparticles of Trans-Resveratrol, an Anticancer Agent, for Long Circulation and Improved Efficacy against MCF-7 Cells

Authors: M. R. Vijayakumar, K. Priyanka, Ramoji Kosuru, Lakshmi, Sanjay Singh

Abstract:

Trans resveratrol (RES) is a non-flavonoid poly-phenolic compound proved for its therapeutic and preventive effect against various types of cancer. However, the practical application of RES in cancer treatment is limited because of its higher dose (up to 7.5 g/day in humans), low biological half life, rapid metabolism and faster elimination in mammals. PEGylated core-shell type lipid polymer hybrid nanoparticles are the novel drug delivery systems for long circulation and improved anti cancer effect of its therapeutic payloads. Therefore, the main objective of this study is to extend the biological half life (long circulation) and improve the therapeutic efficacy of RES through core shell type of nanoparticles. D-α-tocopheryl polyethylene glycol 1000 succinate (vitamin E TPGS), a novel surfactant is applied for the preparation of PEGylated lipid polymer hybrid nanoparticles. The prepared nanoparticles were evaluated by various state of the art techniques such as dynamic light scattering (DLS) technique for particle size and zeta potential, TEM for shape, differential scanning calorimetry (DSC) for interaction analysis and XRD for crystalline changes of drug. Entrapment efficiency and invitro drug release were determined by ultracentrifugation method and dialysis bag method, respectively. Cancer cell viability studies were performed by MTT assay, respectively. Pharmacokinetic studies after i.v administration were performed in sprague dawley rats. The prepared NPs were found to be spherical in shape with smooth surfaces. Particle size and zeta potential of prepared NPs were found to be in the range of 179.2±7.45 to 266.8±9.61 nm and -0.63 to -48.35 mV, respectively. DSC revealed absence of potential interaction. XRD study revealed presence of amorphous form in nanoparticles. Entrapment efficiency was found to be 83.7 % and drug release was found to be in controlled manner. MTT assay showed low MEC and pharmacokinetic studies showed higher AUC of nanoformulaition than its pristine drug. All these studies revealed that the RES loaded PEG modified core-shell type lipid polymer hybrid nanoparticles can be an alternative tool for chemopreventive and therapeutic application of RES in cancer.

Keywords: trans resveratrol, cancer nanotechnology, long circulating nanoparticles, bioavailability enhancement, core shell nanoparticles, lipid polymer hybrid nanoparticles

Procedia PDF Downloads 448
340 Structure and Tribological Properties of Moisture Insensitivity Si Containing Diamond-Like Carbon Film

Authors: Mingjiang Dai, Qian Shi, Fang Hu, Songsheng Lin, Huijun Hou, Chunbei Wei

Abstract:

A diamond-like carbon (DLC) is considered as a promising protective film since its high hardness and excellent tribological properties. However, DLC films are very sensitive to the environmental condition, its friction coefficient could dramatic change in high humidity, therefore, limited their further application in aerospace, the watch industry, and micro/nano-electromechanical systems. Therefore, most studies focus on the low friction coefficient of DLC films at a high humid environment. However, this is out of satisfied in practical application. An important thing was ignored is that the DLC coated components are usually used in the diversed environment, which means its friction coefficient may evidently change in different humid condition. As a result, the invalidation of DLC coated components or even sometimes disaster occurred. For example, DLC coated minisize gears were used in the watch industry, and the customer may frequently transform their locations with different weather and humidity even in one day. If friction coefficient is not stable in dry and high moisture conditions, the watch will be inaccurate. Thus, it is necessary to investigate the stable tribological behavior of DLC films in various environments. In this study, a-C:H:Si films were deposited by multi-function magnetron sputtering system, containing one ion source device and a pair of SiC dual mid-frequent targets and two direct current Ti/C targets. Hydrogenated carbon layers were manufactured by sputtering the graphite target in argon and methane gasses. The silicon was doped in DLC coatings by sputtering silicon carbide targets and the doping content were adjusted by mid-frequent sputtering current. The microstructure of the film was characterized by Raman spectrometry, X-ray photoelectron spectroscopy, and transmission electron microscopy while its friction behavior under different humidity conditions was studied using a ball-on-disc tribometer. The a-C:H films with Si content from 0 to 17at.% were obtained and the influence of Si content on the structure and tribological properties under the relative humidity of 50% and 85% were investigated. Results show that the a-C:H:Si film has typical diamond-like characteristics, in which Si mainly existed in the form of Si, SiC, and SiO2. As expected, the friction coefficient of a-C:H films can be effectively changed after Si doping, from 0.302 to 0.176 in RH 50%. The further test shows that the friction coefficient value of a-C:H:Si film in RH 85% is first increase and then decrease as a function of Si content. We found that the a-C:H:Si films with a Si content of 3.75 at.% show a stable friction coefficient of 0.13 in different humidity environment. It is suggestion that the sp3/sp2 ratio of a-C:H films with 3.75 at.% Si was higher than others, which tend to form the silica-gel-like sacrificial layers during friction tests. Therefore, the films deliver stable low friction coefficient under controlled RH value of 50 and 85%.

Keywords: diamond-like carbon, Si doping, moisture environment, table low friction coefficient

Procedia PDF Downloads 343
339 Mild Auditory Perception and Cognitive Impairment in mid-Trimester Pregnancy

Authors: Tahamina Begum, Wan Nor Azlen Wan Mohamad, Faruque Reza, Wan Rosilawati Wan Rosli

Abstract:

To assess auditory perception and cognitive function during pregnancy is necessary as the pregnant women need extra effort for attention mainly for their executive function to maintain their quality of life. This study aimed to investigate neural correlates of cognitive and behavioral processing during mid trimester pregnancy. Event-Related Potentials (ERPs) were studied by using 128-sensor net and PAS or COWA (controlled Oral Word Association), WCST (Wisconsin Card Sorting Test), RAVLTIM (Rey Auditory Verbal and Learning Test: immediate or interference recall, delayed recall (RAVLT DR) and total score (RAVLT TS) were tested for neuropsychology assessment. In total 18 subjects were recruited (n= 9 in each group; control and pregnant group). All participants of the pregnant group were within 16-27 (mid trimester) weeks gestation. Age and education matched control healthy subjects were recruited in the control group. Participants were given a standardized test of auditory cognitive function as auditory oddball paradigm during ERP study. In this paradigm, two different auditory stimuli (standard and target stimuli) were used where subjects counted silently only target stimuli with giving attention by ignoring standard stimuli. Mean differences between target and standard stimuli were compared across groups. N100 (auditory sensory ERP component) and P300 (auditory cognitive ERP component) were recorded at T3, T4, T5, T6, Cz and Pz electrode sites. An equal number of electrodes showed non-significantly shorter amplitude of N100 component (except significantly shorter at T3, P= 0.05) and non-significant longer latencies (except significantly longer latency at T5, P= 0.008) of N100 component in pregnant group comparing control. In case of P300 component, maximum electrode sites showed non-significantly higher amplitudes and equal number of sites showed non-significant shorter latencies in pregnant group comparing control. Neuropsychology results revealed the non-significant higher score of PAS, lower score of WCST, lower score of RAVLTIM and RAVLTDR in pregnant group comparing control. The results of N100 component and RAVLT scores concluded that auditory perception is mildly impaired and P300 component proved very mild cognitive dysfunction with good executive functions in second trimester of pregnancy.

Keywords: auditory perception, pregnancy, stimuli, trimester

Procedia PDF Downloads 347
338 Cultural and Natural Heritage Conservation by GIS Tourism Inventory System Project

Authors: Gamze Safak, Umut Arslanoglu

Abstract:

Cultural and tourism conservation and development zones and tourism centers are the boundaries declared for the purpose of protecting, using, and evaluating the sectoral development and planned development in areas where historical and cultural values are heavily involved and/or where tourism potential is high. The most rapidly changing regions in Turkey are tourism areas, especially the coastal areas. Planning these regions is not about only an economic gain but also a natural and physical environment and refers to a complex process. If the tourism sector is not well controlled, excessive use of natural resources and wrong location choices may cause damage to natural areas, historical values, and socio-cultural structure. Since the strategic decisions taken in the environmental order and zoning plans, which are the means of guiding the physical environment of the Ministry of Culture and Tourism, which have the authority to make plans in tourism centers, are transformed into plan decisions that find the spatial expression, comprehensive evaluation of all kinds of data, following the historical development and based on the correct and current data is required. In addition, the authority has a number of competences in tourism promotion as well as the authority to plan, leading to the necessity of taking part in the applications requiring complex analysis such as the management and integration of the country's economic, political, social and cultural resources. For this purpose, Tourism Inventory System (TES) project, which consists of a series of subsystems, has been developed in order to solve complex planning and method problems in the management of site-related information. The scope of the project is based on the integration of numerical and verbal data in the regions within the jurisdiction of the authority, and the monitoring of the historical development of urban planning studies, making the spatial data of the institution easily accessible, shared, questionable and traceable in international standards. A dynamic and continuous system design has been put into practice by utilizing the advantage of the use of Geographical Information Systems in the planning process to play a role in making the right decisions, revealing the tools of social, economic, cultural development, and preservation of natural and cultural values. This paper, which is prepared by the project team members in TES (Tourism Inventory System), will present a study regarding the applicability of GIS in cultural and natural heritage conservation.

Keywords: cultural conservation, GIS, geographic information system, tourism inventory system, urban planning

Procedia PDF Downloads 98
337 Development of a Table-Top Composite Wire Fabrication System for Additive Manufacturing

Authors: Krishna Nand, Mohammad Taufik

Abstract:

Fused Filament Fabrication (FFF) is one of the most popular additive manufacturing (AM) technology. In FFF technology, a wire form material (filament) is fed inside a heated chamber, where it gets converted into semi-solid form and extruded out of a nozzle to be deposited on the build platform to fabricate the part. FFF technology is expanding and covering the market at a very rapid rate, so the need of raw materials for 3D printing is also increasing. The cost of 3D printing is directly affected by filament cost. To make 3D printing more economic, a compact and portable filament/wire extrusion system is needed. Wire extrusion systems to extrude ordinary wire/filament made of a single material are available in the market. However, extrusion system to make a composite wire/filament are not available. Hence, in this study, initial efforts have been made to develop a table-top composite wire extruder. The developed system is consisted of mechanical parts, electronics parts, and a control system. A multiple channel hopper, extrusion screw, melting chamber and nozzle, cooling zone, and spool winder are some mechanical parts. While motors, heater, temperature sensor, cooling fans are some electronics parts, which are used to develop this system. A control board has been used to control the various process parameters like – temperature and speed of motors. For the production of composite wire/filament, two different materials could be fed through two channels of hopper, which will be mixed and carried to the heated zone by extrusion screw. The extrusion screw is rotated by a motor, and the speed of this motor will be controlled by the controller as per the requirement of material extrusion rate. In the heated zone, the material will melt with the help of a heating element and extruded out of the nozzle in the form of wire. The developed system occupies less floor space due to the vertical orientation of its heating chamber. It is capable to extrude ordinary filament as well as composite filament, which are compatible with 3D printers available in the market. Further, the developed system could be employed in the research and development of materials, processing, and characterization for 3D printer. The developed system presented in this study could be a better choice for hobbyists and researchers dealing with the fused filament fabrication process to reduce the 3D printing cost significantly by recycling the waste material into 3D printer feed material. Further, it could also be explored as a better alternative for filament production at the commercial level.

Keywords: additive manufacturing, 3D Printing, filament extrusion, pellet extrusion

Procedia PDF Downloads 148
336 An Adjoint-Based Method to Compute Derivatives with Respect to Bed Boundary Positions in Resistivity Measurements

Authors: Mostafa Shahriari, Theophile Chaumont-Frelet, David Pardo

Abstract:

Resistivity measurements are used to characterize the Earth’s subsurface. They are categorized into two different groups: (a) those acquired on the Earth’s surface, for instance, controlled source electromagnetic (CSEM) and Magnetotellurics (MT), and (b) those recorded with borehole logging instruments such as Logging-While-Drilling (LWD) devices. LWD instruments are mostly used for geo-steering purposes, i.e., to adjust dip and azimuthal angles of a well trajectory to drill along a particular geological target. Modern LWD tools measure all nine components of the magnetic field corresponding to three orthogonal transmitter and receiver orientations. In order to map the Earth’s subsurface and perform geo-steering, we invert measurements using a gradient-based method that utilizes the derivatives of the recorded measurements with respect to the inversion variables. For resistivity measurements, these inversion variables are usually the constant resistivity value of each layer and the bed boundary positions. It is well-known how to compute derivatives with respect to the constant resistivity value of each layer using semi-analytic or numerical methods. However, similar formulas for computing the derivatives with respect to bed boundary positions are unavailable. The main contribution of this work is to provide an adjoint-based formulation for computing derivatives with respect to the bed boundary positions. The key idea to obtain the aforementioned adjoint state formulations for the derivatives is to separate the tangential and normal components of the field and treat them differently. This formulation allows us to compute the derivatives faster and more accurately than with traditional finite differences approximations. In the presentation, we shall first derive a formula for computing the derivatives with respect to the bed boundary positions for the potential equation. Then, we shall extend our formulation to 3D Maxwell’s equations. Finally, by considering a 1D domain and reducing the dimensionality of the problem, which is a common practice in the inversion of resistivity measurements, we shall derive a formulation to compute the derivatives of the measurements with respect to the bed boundary positions using a 1.5D variational formulation. Then, we shall illustrate the accuracy and convergence properties of our formulations by comparing numerical results with the analytical derivatives for the potential equation. For the 1.5D Maxwell’s system, we shall compare our numerical results based on the proposed adjoint-based formulation vs those obtained with a traditional finite difference approach. Numerical results shall show that our proposed adjoint-based technique produces enhanced accuracy solutions while its cost is negligible, as opposed to the finite difference approach that requires the solution of one additional problem per derivative.

Keywords: inverse problem, bed boundary positions, electromagnetism, potential equation

Procedia PDF Downloads 159
335 MARISTEM: A COST Action Focused on Stem Cells of Aquatic Invertebrates

Authors: Arzu Karahan, Loriano Ballarin, Baruch Rinkevich

Abstract:

Marine invertebrates, the highly diverse phyla of multicellular organisms, represent phenomena that are either not found or highly restricted in the vertebrates. These include phenomena like budding, fission, a fusion of ramets, and high regeneration power, such as the ability to create whole new organisms from either tiny parental fragment, many of which are controlled by totipotent, pluripotent, and multipotent stem cells. Thus, there is very much that can be learned from these organisms on the practical and evolutionary levels, further resembling Darwin's words, “It is not the strongest of the species that survives, nor the most intelligent, but the one most responsive to change”. The ‘stem cell’ notion highlights a cell that has the ability to continuously divide and differentiate into various progenitors and daughter cells. In vertebrates, adult stem cells are rare cells defined as lineage-restricted (multipotent at best) with tissue or organ-specific activities that are located in defined niches and further regulate the machinery of homeostasis, repair, and regeneration. They are usually categorized by their morphology, tissue of origin, plasticity, and potency. The above description not always holds when comparing the vertebrates with marine invertebrates’ stem cells that display wider ranges of plasticity and diversity at the taxonomic and the cellular levels. While marine/aquatic invertebrates stem cells (MISC) have recently raised more scientific interest, the know-how is still behind the attraction they deserve. MISC, not only are highly potent but, in many cases, are abundant (e.g., 1/3 of the entire animal cells), do not locate in permanent niches, participates in delayed-aging and whole-body regeneration phenomena, the knowledge of which can be clinically relevant. Moreover, they have massive hidden potential for the discovery of new bioactive molecules that can be used for human health (antitumor, antimicrobial) and biotechnology. The MARISTEM COST action (Stem Cells of Marine/Aquatic Invertebrates: From Basic Research to Innovative Applications) aims to connect the European fragmented MISC community. Under this scientific umbrella, the action conceptualizes the idea for adult stem cells that do not share many properties with the vertebrates’ stem cells, organizes meetings, summer schools, and workshops, stimulating young researchers, supplying technical and adviser support via short-term scientific studies, making new bridges between the MISC community and biomedical disciplines.

Keywords: aquatic/marine invertebrates, adult stem cell, regeneration, cell cultures, bioactive molecules

Procedia PDF Downloads 136
334 An Exploratory Study on the Effect of a Fermented Dairy Product on Self-Reported Gut Complaints in US Recreational Athletes

Authors: Kersch-Counet C., Fransen K. H. S., Broyd M., Nyakayiru J. D. O. A., Schoemaker M. H., Mallee L. F., Bovee-Oudenhoven I. M. J.

Abstract:

Background: Around one third of people, including athletes, suffer from feelings of gut discomfort. Fermentation of dairy is a process that has been associated with products that can improve gut health. However, insight in (potential) health benefits of most fermented foods is limited to chemical analyses and in-vitro models. Objective: The aim of this open-label, single-arm explorative trial was to investigate in a real life setting the effect of consumption of a fermented whey product for 3 weeks on self-perceived physical and mental wellbeing and digestive issues in 150 US recreational athletes (20-50 years of age) with self-reported gut complaints at enrolment. Methods: Participants living at the West-Coast of the US received for 3 weeks a daily powder of 15 g of BiotisTM Fermentis to be mixed in water using a supplied shaker. Weekly questionnaires were conducted by MMR research to study the effect on physical/mental health issues and self-perceived gut complaints. Non-parametric tests (e.g., Friedman test) were used to assess statistical differences over time while the Kruskal-Wallis and Wilcoxon signed-rank tests were used for sub-groups analysis. Results: Bloating, stress and anxiety were the top 3 issues of the US recreational athletes. Satisfaction of physical wellbeing increased significantly throughout the 3-weeks of fermented whey product consumption (p<0.0005). Combined digestive issues decreased significantly after 2- and 3-weeks of product consumption, with bloating showing a significant reduction (p<0.05). There was a trend that self-reported stress levels reduced after 3 weeks and participants said to significantly feel more active, energetic, and vital (p<0.05). Subgroup analysis showed that gender and habitual protein supplement consumption were associated with specific health issues and modulated the response to the fermented dairy product. Conclusion: Daily consumption of the fermented BiotisTM Fermentis product is associated with a reduction in self-perceived gastrointestinal symptoms and improved overall wellbeing and mood state in US recreational athletes. This large nutrition and health consumer study brings valuable insights in self-reported gut complaints of recreational athletes in the US and their response to a fermented dairy product. A controlled clinical trial in a targeted population is recommended to scientifically substantiate the product effect as observed in this explorative study.

Keywords: real-life study, digestive health, fermented whey, sports

Procedia PDF Downloads 222
333 Analysis of Splicing Methods for High Speed Automated Fibre Placement Applications

Authors: Phillip Kearney, Constantina Lekakou, Stephen Belcher, Alessandro Sordon

Abstract:

The focus in the automotive industry is to reduce human operator and machine interaction, so manufacturing becomes more automated and safer. The aim is to lower part cost and construction time as well as defects in the parts, sometimes occurring due to the physical limitations of human operators. A move to automate the layup of reinforcement material in composites manufacturing has resulted in the use of tapes that are placed in position by a robotic deposition head, also described as Automated Fibre Placement (AFP). The process of AFP is limited with respect to the finite amount of material that can be loaded into the machine at any one time. Joining two batches of tape material together involves a splice to secure the ends of the finishing tape to the starting edge of the new tape. The splicing method of choice for the majority of prepreg applications is a hand stich method, and as the name suggests requires human input to achieve. This investigation explores three methods for automated splicing, namely, adhesive, binding and stitching. The adhesive technique uses an additional adhesive placed on the tape ends to be joined. Binding uses the binding agent that is already impregnated onto the tape through the application of heat. The stitching method is used as a baseline to compare the new splicing methods to the traditional technique currently in use. As the methods will be used within a High Speed Automated Fibre Placement (HSAFP) process, this meant the parameters of the splices have to meet certain specifications: (a) the splice must be able to endure a load of 50 N in tension applied at a rate of 1 mm/s; (b) the splice must be created in less than 6 seconds, dictated by the capacity of the tape accumulator within the system. The samples for experimentation were manufactured with controlled overlaps, alignment and splicing parameters, these were then tested in tension using a tensile testing machine. Initial analysis explored the use of the impregnated binding agent present on the tape, as in the binding splicing technique. It analysed the effect of temperature and overlap on the strength of the splice. It was found that the optimum splicing temperature was at the higher end of the activation range of the binding agent, 100 °C. The optimum overlap was found to be 25 mm; it was found that there was no improvement in bond strength from 25 mm to 30 mm overlap. The final analysis compared the different splicing methods to the baseline of a stitched bond. It was found that the addition of an adhesive was the best splicing method, achieving a maximum load of over 500 N compared to the 26 N load achieved by a stitching splice and 94 N by the binding method.

Keywords: analysis, automated fibre placement, high speed, splicing

Procedia PDF Downloads 123
332 How to Empower People to Provide Good Nutrition to Children: Bengkel Gizi Terpadu (Integrated Nutrition Workshop)

Authors: Anggun Yuliana Putri, Melisa Rahmadini

Abstract:

The Ministry of National Development Planning in Indonesia has reported that more than eight million Indonesian children are still malnourished. Based on national statistics, and a recent ranking from NGO Save the Children, Indonesia is one of 15 countries making the fastest gains in cutting child malnutrition among 165 developing countries. According to a United Nations Children’s Fund, at least 7.6 million Indonesian children under the age of 5 or one out of every three suffer from stunted growth, a primary manifestation of malnutrition in early childhood, the report ranked Indonesia as having the fifth largest number of children under 5 suffering from stunted growth worldwide. Addressing the problem of malnutrition in Indonesia, Aksi Cepat Tanggap (ACT) Foundation, a humanitarian organization working with Carrefour, acts as donor and pursues several solutions to the problem, especially of malnourished children and infants in South Tangerang area, Indonesia. The objective of this study was to examine the community empowerment driven by ACT Foundation in order to maintain the good status continuity of child and toddler after the children malnutrition recovered. Research was conducted using qualitative approach through in-depth interview and observation to find out how the Bengkel Gizi Terpadu (Integrated Nutrion Workshop) programs make people empowered. Bengkel Gizi Terpadu (BGT) is divided into 3 sequences of activities, there were: integrated malnutrition rehabilitation; provision of health education to mothers of infants and young children; and family economic empowerment to head of household. Results showed that after empowerment process has been done through training and provision of knowledge to the mothers and families about the important of nutrition and health, there were 30 of 100 mothers who participated actively. Then, there were 45 of 100 heads of household who participated in business training were able to open a business on their own which provided and controlled by ACT as stakeholder in this program. The further findings revealed that BGT programs are able to form community health workers and provide employment opportunities to community. This study believes that integrated nutrition workshop program is the solution to maintain good nutrition among children in South Tangerang, through empowerment of parents and community members, via education and business training program. Both programs prepared parents with economic sustenance and necessary information, a pre-requisite to end malnutrition in children.

Keywords: community, empowerment, malnutrition, training

Procedia PDF Downloads 302
331 Laser Paint Stripping on Large Zones on AA 2024 Based Substrates

Authors: Selen Unaldi, Emmanuel Richaud, Matthieu Gervais, Laurent Berthe

Abstract:

Aircrafts are painted with several layers to guarantee their protection from external attacks. For aluminum AA 2024-T3 (metallic structural part of the plane), a protective primer is applied to ensure its corrosion protection. On top of this layer, the top coat is applied for aesthetic aspects. During the lifetime of an aircraft, top coat stripping has an essential role which should be operated as an average of every four years. However, since conventional stripping processes create hazardous disposals and need long hours of labor work, alternative methods have been investigated. Amongst them, laser stripping appears as one of the most promising techniques not only because of the reasons mentioned above but also its controllable and monitorable aspects. The application of a laser beam from the coated side provides stripping, but the depth of the process should be well controlled in order to prevent damage to a substrate and the anticorrosion primer. Apart from that, thermal effects should be taken into account on the painted layers. As an alternative, we worked on developing a process that includes the usage of shock wave propagation to create the stripping via mechanical effects with the application of the beam from the substrate side (back face) of the samples. Laser stripping was applied on thickness-specified samples with a thickness deviation of 10-20%. First, the stripping threshold is determined as a function of power density which is the first flight off of the top coats. After obtaining threshold values, the same power densities were applied to specimens to create large stripping zones with a spot overlap of 10-40%. Layer characteristics were determined on specimens in terms of physicochemical properties and thickness range both before and after laser stripping in order to validate the substrate material health and coating properties. The substrate health is monitored by measuring the roughness of the laser-impacted zones and free surface energy tests (both before and after laser stripping). Also, Hugoniot Elastic Limit (HEL) is determined from VISAR diagnostic on AA 2024-T3 substrates (for the back face surface deformations). In addition, the coating properties are investigated as a function of adhesion levels and anticorrosion properties (neutral salt spray test). The influence of polyurethane top-coat thickness is studied in order to verify the laser stripping process window for industrial aircraft applications.

Keywords: aircraft coatings, laser stripping, laser adhesion tests, epoxy, polyurethane

Procedia PDF Downloads 52
330 Discrete PID and Discrete State Feedback Control of a Brushed DC Motor

Authors: I. Valdez, J. Perdomo, M. Colindres, N. Castro

Abstract:

Today, digital servo systems are extensively used in industrial manufacturing processes, robotic applications, vehicles and other areas. In such control systems, control action is provided by digital controllers with different compensation algorithms, which are designed to meet specific requirements for a given application. Due to the constant search for optimization in industrial processes, it is of interest to design digital controllers that offer ease of realization, improved computational efficiency, affordable return rates, and ease of tuning that ultimately improve the performance of the controlled actuators. There is a vast range of options of compensation algorithms that could be used, although in the industry, most controllers used are based on a PID structure. This research article compares different types of digital compensators implemented in a servo system for DC motor position control. PID compensation is evaluated on its two most common architectures: PID position form (1 DOF), and PID speed form (2 DOF). State feedback algorithms are also evaluated, testing two modern control theory techniques: discrete state observer for non-measurable variables tracking, and a linear quadratic method which allows a compromise between the theoretical optimal control and the realization that most closely matches it. The compared control systems’ performance is evaluated through simulations in the Simulink platform, in which it is attempted to model accurately each of the system’s hardware components. The criteria by which the control systems are compared are reference tracking and disturbance rejection. In this investigation, it is considered that the accurate tracking of the reference signal for a position control system is particularly important because of the frequency and the suddenness in which the control signal could change in position control applications, while disturbance rejection is considered essential because the torque applied to the motor shaft due to sudden load changes can be modeled as a disturbance that must be rejected, ensuring reference tracking. Results show that 2 DOF PID controllers exhibit high performance in terms of the benchmarks mentioned, as long as they are properly tuned. As for controllers based on state feedback, due to the nature and the advantage which state space provides for modelling MIMO, it is expected that such controllers evince ease of tuning for disturbance rejection, assuming that the designer of such controllers is experienced. An in-depth multi-dimensional analysis of preliminary research results indicate that state feedback control method is more satisfactory, but PID control method exhibits easier implementation in most control applications.

Keywords: control, DC motor, discrete PID, discrete state feedback

Procedia PDF Downloads 235
329 Remote Sensing-Based Prediction of Asymptomatic Rice Blast Disease Using Hyperspectral Spectroradiometry and Spectral Sensitivity Analysis

Authors: Selvaprakash Ramalingam, Rabi N. Sahoo, Dharmendra Saraswat, A. Kumar, Rajeev Ranjan, Joydeep Mukerjee, Viswanathan Chinnasamy, K. K. Chaturvedi, Sanjeev Kumar

Abstract:

Rice is one of the most important staple food crops in the world. Among the various diseases that affect rice crops, rice blast is particularly significant, causing crop yield and economic losses. While the plant has defense mechanisms in place, such as chemical indicators (proteins, salicylic acid, jasmonic acid, ethylene, and azelaic acid) and resistance genes in certain varieties that can protect against diseases, susceptible varieties remain vulnerable to these fungal diseases. Early prediction of rice blast (RB) disease is crucial, but conventional techniques for early prediction are time-consuming and labor-intensive. Hyperspectral remote sensing techniques hold the potential to predict RB disease at its asymptomatic stage. In this study, we aimed to demonstrate the prediction of RB disease at the asymptomatic stage using non-imaging hyperspectral ASD spectroradiometer under controlled laboratory conditions. We applied statistical spectral discrimination theory to identify unknown spectra of M. Oryzae, the fungus responsible for rice blast disease. The infrared (IR) region was found to be significantly affected by RB disease. These changes may result in alterations in the absorption, reflection, or emission of infrared radiation by the affected plant tissues. Our research revealed that the protein spectrum in the IR region is impacted by RB disease. In our study, we identified strong correlations in the region (Amide group - I) around X 1064 nm and Y 1300 nm with the Lambda / Lambda derived spectra methods for protein detection. During the stages when the disease is developing, typically from day 3 to day 5, the plant's defense mechanisms are not as effective. This is especially true for the PB-1 variety of rice, which is highly susceptible to rice blast disease. Consequently, the proteins in the plant are adversely affected during this critical time. The spectral contour plot reveals the highly correlated spectral regions 1064 nm and Y 1300 nm associated with RB disease infection. Based on these spectral sensitivities, we developed new spectral disease indices for predicting different stages of disease emergence. The goal of this research is to lay the foundation for future UAV and satellite-based studies aimed at long-term monitoring of RB disease.

Keywords: rice blast, asymptomatic stage, spectral sensitivity, IR

Procedia PDF Downloads 57
328 Self-Medication with Antibiotics, Evidence of Factors Influencing the Practice in Low and Middle-Income Countries: A Systematic Scoping Review

Authors: Neusa Fernanda Torres, Buyisile Chibi, Lyn E. Middleton, Vernon P. Solomon, Tivani P. Mashamba-Thompson

Abstract:

Background: Self-medication with antibiotics (SMA) is a global concern, with a higher incidence in low and middle-income countries (LMICs). Despite intense world-wide efforts to control and promote the rational use of antibiotics, continuing practices of SMA systematically exposes individuals and communities to the risk of antibiotic resistance and other undesirable antibiotic side effects. Moreover, it increases the health systems costs of acquiring more powerful antibiotics to treat the resistant infection. This review thus maps evidence on the factors influencing self-medication with antibiotics in these settings. Methods: The search strategy for this review involved electronic databases including PubMed, Web of Knowledge, Science Direct, EBSCOhost (PubMed, CINAHL with Full Text, Health Source - Consumer Edition, MEDLINE), Google Scholar, BioMed Central and World Health Organization library, using the search terms:’ Self-Medication’, ‘antibiotics’, ‘factors’ and ‘reasons’. Our search included studies published from 2007 to 2017. Thematic analysis was performed to identify the patterns of evidence on SMA in LMICs. The mixed method quality appraisal tool (MMAT) version 2011 was employed to assess the quality of the included primary studies. Results: Fifteen studies met the inclusion criteria. Studies included population from the rural (46,4%), urban (33,6%) and combined (20%) settings, of the following LMICs: Guatemala (2 studies), India (2), Indonesia (2), Kenya (1), Laos (1), Nepal (1), Nigeria (2), Pakistan (2), Sri Lanka (1), and Yemen (1). The total sample size of all 15 included studies was 7676 participants. The findings of the review show a high prevalence of SMA ranging from 8,1% to 93%. Accessibility, affordability, conditions of health facilities (long waiting, quality of services and workers) as long well as poor health-seeking behavior and lack of information are factors that influence SMA in LMICs. Antibiotics such as amoxicillin, metronidazole, amoxicillin/clavulanic, ampicillin, ciprofloxacin, azithromycin, penicillin, and tetracycline, were the most frequently used for SMA. The major sources of antibiotics included pharmacies, drug stores, leftover drugs, family/friends and old prescription. Sore throat, common cold, cough with mucus, headache, toothache, flu-like symptoms, pain relief, fever, running nose, toothache, upper respiratory tract infections, urinary symptoms, urinary tract infection were the common disease symptoms managed with SMA. Conclusion: Although the information on factors influencing SMA in LMICs is unevenly distributed, the available information revealed the existence of research evidence on antibiotic self-medication in some countries of LMICs. SMA practices are influenced by social-cultural determinants of health and frequently associated with poor dispensing and prescribing practices, deficient health-seeking behavior and consequently with inappropriate drug use. Therefore, there is still a need to conduct further studies (qualitative, quantitative and randomized control trial) on factors and reasons for SMA to correctly address the public health problem in LMICs.

Keywords: antibiotics, factors, reasons, self-medication, low and middle-income countries (LMICs)

Procedia PDF Downloads 189