Search results for: high temperature corrosion
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 24147

Search results for: high temperature corrosion

20997 Simulation of Heat Exchanger Behavior during LOCA Accident in THTL Test Loop

Authors: R. Mahmoodi, A. R. Zolfaghari

Abstract:

In nuclear power plants, loss of coolant from the primary system is the type of reduced removed capacity that is given most attention; such an accident is referred as Loss of Coolant Accident (LOCA). In the current study, investigation of shell and tube THTL heat exchanger behavior during LOCA is implemented by ANSYS CFX simulation software in both steady state and transient mode of turbulent fluid flow according to experimental conditions. Numerical results obtained from ANSYS CFX simulation show good agreement with experimental data of THTL heat exchanger. The results illustrate that in large break LOCA as short term accident, heat exchanger could not fast response to temperature variables but in the long term, the temperature of shell side of heat exchanger will be increase.

Keywords: shell-and-tube heat exchanger, shell-side, CFD, flow and heat transfer, LOCA

Procedia PDF Downloads 428
20996 Research on Pilot Sequence Design Method of Multiple Input Multiple Output Orthogonal Frequency Division Multiplexing System Based on High Power Joint Criterion

Authors: Linyu Wang, Jiahui Ma, Jianhong Xiang, Hanyu Jiang

Abstract:

For the pilot design of the sparse channel estimation model in Multiple Input Multiple Output Orthogonal Frequency Division Multiplexing (MIMO-OFDM) systems, the observation matrix constructed according to the matrix cross-correlation criterion, total correlation criterion and other optimization criteria are not optimal, resulting in inaccurate channel estimation and high bit error rate at the receiver. This paper proposes a pilot design method combining high-power sum and high-power variance criteria, which can more accurately estimate the channel. First, the pilot insertion position is designed according to the high-power variance criterion under the condition of equal power. Then, according to the high power sum criterion, the pilot power allocation is converted into a cone programming problem, and the power allocation is carried out. Finally, the optimal pilot is determined by calculating the weighted sum of the high power sum and the high power variance. Compared with the traditional pilot frequency, under the same conditions, the constructed MIMO-OFDM system uses the optimal pilot frequency for channel estimation, and the communication bit error rate performance obtains a gain of 6~7dB.

Keywords: MIMO-OFDM, pilot optimization, compressed sensing, channel estimation

Procedia PDF Downloads 132
20995 Fast Short-Term Electrical Load Forecasting under High Meteorological Variability with a Multiple Equation Time Series Approach

Authors: Charline David, Alexandre Blondin Massé, Arnaud Zinflou

Abstract:

In 2016, Clements, Hurn, and Li proposed a multiple equation time series approach for the short-term load forecasting, reporting an average mean absolute percentage error (MAPE) of 1.36% on an 11-years dataset for the Queensland region in Australia. We present an adaptation of their model to the electrical power load consumption for the whole Quebec province in Canada. More precisely, we take into account two additional meteorological variables — cloudiness and wind speed — on top of temperature, as well as the use of multiple meteorological measurements taken at different locations on the territory. We also consider other minor improvements. Our final model shows an average MAPE score of 1:79% over an 8-years dataset.

Keywords: short-term load forecasting, special days, time series, multiple equations, parallelization, clustering

Procedia PDF Downloads 83
20994 2D RF ICP Torch Modelling with Fluid Plasma

Authors: Mokhtar Labiod, Nabil Ikhlef, Keltoum Bouherine, Olivier Leroy

Abstract:

A numerical model for the radio-frequency (RF) Argon discharge chamber is developed to simulate the low pressure low temperature inductively coupled plasma. This model will be of fundamental importance in the design of the plasma magnetic control system. Electric and magnetic fields inside the discharge chamber are evaluated by solving a magnetic vector potential equation. To start with, the equations of the ideal magnetohydrodynamics theory will be presented describing the basic behaviour of magnetically confined plasma and equations are discretized with finite element method in cylindrical coordinates. The discharge chamber is assumed to be axially symmetric and the plasma is treated as a compressible gas. Plasma generation due to ionization is added to the continuity equation. Magnetic vector potential equation is solved for the electromagnetic fields. A strong dependence of the plasma properties on the discharge conditions and the gas temperature is obtained.

Keywords: direct-coupled model, magnetohydrodynamic, modelling, plasma torch simulation

Procedia PDF Downloads 418
20993 Modeling of Enthalpy and Heat Capacity of Phase-Change Materials

Authors: Igor Medved, Anton Trnik, Libor Vozar

Abstract:

Phase-change materials (PCMs) are of great interest in the applications where a temperature level needs to be maintained and/or where there is demand for thermal energy storage. Examples are storage of solar energy, cold, and space heating/cooling of buildings. During a phase change, the enthalpy vs. temperature plot of PCMs shows a jump and there is a distinct peak in the heat capacity plot. We present a theoretical description from which these jumps and peaks can be obtained. We apply our theoretical results to fit experimental data with very good accuracy for selected materials and changes between two phases. The development is based on the observation that PCMs are polycrystalline; i.e., composed of many single-crystalline grains. The enthalpy and heat capacity are thus interpreted as averages of the contributions from the individual grains. We also show how to determine the baseline and excess part of the heat capacity and thus the latent heat corresponding to the phase change.

Keywords: averaging, enthalpy jump, heat capacity peak, phase change

Procedia PDF Downloads 443
20992 DC-to-DC Converters for Low-Voltage High-Power Renewable Energy Systems

Authors: Abdar Ali, Rizwan Ullah, Zahid Ullah

Abstract:

This paper focuses on the study of DC-to-DC converters, which are suitable for low-voltage high-power applications. The output voltages generated by renewable energy sources such as photovoltaic arrays and fuel cell stacks are generally low and required to be increased to high voltage levels. Development of DC-to-DC converters, which provide high step-up voltage conversion ratios with high efficiencies and low voltage stresses is one of the main issues in the development of renewable energy systems. A procedure for three converters-conventional DC-to-DC converter, interleaved boost converter, and isolated flyback based converter, is illustrated for a given set of specifications. The selection among the converters for the given application is based on the voltage conversion ratio, efficiency, and voltage stresses.

Keywords: flyback converter, interleaved boost, photovoltaic array, fuel cell, switch stress, voltage conversion ratio, renewable energy

Procedia PDF Downloads 582
20991 A Study on Thermal and Flow Characteristics by Solar Radiation for Single-Span Greenhouse by Computational Fluid Dynamics Simulation

Authors: Jonghyuk Yoon, Hyoungwoon Song

Abstract:

Recently, there are lots of increasing interest in a smart farming that represents application of modern Information and Communication Technologies (ICT) into agriculture since it provides a methodology to optimize production efficiencies by managing growing conditions of crops automatically. In order to obtain high performance and stability for smart greenhouse, it is important to identify the effect of various working parameters such as capacity of ventilation fan, vent opening area and etc. In the present study, a 3-dimensional CFD (Computational Fluid Dynamics) simulation for single-span greenhouse was conducted using the commercial program, Ansys CFX 18.0. The numerical simulation for single-span greenhouse was implemented to figure out the internal thermal and flow characteristics. In order to numerically model solar radiation that spread over a wide range of wavelengths, the multiband model that discretizes the spectrum into finite bands of wavelength based on Wien’s law is applied to the simulation. In addition, absorption coefficient of vinyl varied with the wavelength bands is also applied based on Beer-Lambert Law. To validate the numerical method applied herein, the numerical results of the temperature at specific monitoring points were compared with the experimental data. The average error rates (12.2~14.2%) between them was shown and numerical results of temperature distribution are in good agreement with the experimental data. The results of the present study can be useful information for the design of various greenhouses. This work was supported by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (IPET) through Advanced Production Technology Development Program, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA)(315093-03).

Keywords: single-span greenhouse, CFD (computational fluid dynamics), solar radiation, multiband model, absorption coefficient

Procedia PDF Downloads 121
20990 Optimization of Extraction Conditions for Phenolic Compounds from Deverra Scoparia Coss and Dur

Authors: Roukia Hammoudi, Chabrouk Farid, Dehak Karima, Mahfoud Hadj Mahammed, Mohamed Didi Ouldelhadj

Abstract:

The objective of this study was to optimise the extraction conditions for phenolic compounds from Deverra scoparia Coss and Dur. Apiaceae plant by ultrasound assisted extraction (UAE). The effects of solvent type (acetone, ethanol and methanol), solvent concentration (%), extraction time (mins) and extraction temperature (°C) on total phenolic content (TPC) were determined. The optimum extraction conditions were found to be acetone concentration of 80%, extraction time of 25 min and extraction temperature of 25°C. Under the optimized conditions, the value for TPC was 9.68 ± 1.05 mg GAE/g of extract. The study of the antioxidant power of these oils was performed by the method of DPPH. The results showed that antioxidant activity of the Deverra scoparia essential oil was more effective as compared to ascorbic acid and trolox.

Keywords: Deverra scoparia, phenolic compounds, ultrasound assisted extraction, total phenolic content, antioxidant activity

Procedia PDF Downloads 585
20989 Optimization of Extraction Conditions for Phenolic Compounds from Deverra scoparia Coss. and Dur

Authors: Roukia Hammoudi, Dehak Karima, Chabrouk Farid, Mahfoud Hadj Mahammed, Mohamed Didi Ouldelhadj

Abstract:

The objective of this study was to optimise the extraction conditions for phenolic compounds from Deverra scoparia Coss and Dur. Apiaceae plant by ultrasound assisted extraction (UAE). The effects of solvent type (Acetone, Ethanol and methanol), solvent concentration (%), extraction time (mins) and extraction temperature (°C) on total phenolic content (TPC) were determined. the optimum extraction conditions were found to be acetone concentration of 80%, extraction time of 25 min and extraction temperature of 25°C. Under the optimized conditions, the value for TPC was 9.68 ± 1.05 mg GAE/g of extract. The study of the antioxidant power of these oils was performed by the method of DPPH. The results showed that antioxidant activity of the Deverra scoparia essential oil was more effective as compared to ascorbic acid and trolox.

Keywords: Deverra scoparia, phenolic compounds, ultrasound assisted extraction, total phenolic content, antioxidant activity

Procedia PDF Downloads 580
20988 Production of Pre-Reduction of Iron Ore Nuggets with Lesser Sulphur Intake by Devolatisation of Boiler Grade Coal

Authors: Chanchal Biswas, Anrin Bhattacharyya, Gopes Chandra Das, Mahua Ghosh Chaudhuri, Rajib Dey

Abstract:

Boiler coals with low fixed carbon and higher ash content have always challenged the metallurgists to develop a suitable method for their utilization. In the present study, an attempt is made to establish an energy effective method for the reduction of iron ore fines in the form of nuggets by using ‘Syngas’. By devolatisation (expulsion of volatile matter by applying heat) of boiler coal, gaseous product (enriched with reducing agents like CO, CO2, H2, and CH4 gases) is generated. Iron ore nuggets are reduced by this syngas. For that reason, there is no direct contact between iron ore nuggets and coal ash. It helps to control the minimization of the sulphur intake of the reduced nuggets. A laboratory scale devolatisation furnace designed with reduction facility is evaluated after in-depth studies and exhaustive experimentations including thermo-gravimetric (TG-DTA) analysis to find out the volatile fraction present in boiler grade coal, gas chromatography (GC) to find out syngas composition in different temperature and furnace temperature gradient measurements to minimize the furnace cost by applying one heating coil. The nuggets are reduced in the devolatisation furnace at three different temperatures and three different times. The pre-reduced nuggets are subjected to analytical weight loss calculations to evaluate the extent of reduction. The phase and surface morphology analysis of pre-reduced samples are characterized using X-ray diffractometry (XRD), energy dispersive x-ray spectrometry (EDX), scanning electron microscopy (SEM), carbon sulphur analyzer and chemical analysis method. Degree of metallization of the reduced nuggets is 78.9% by using boiler grade coal. The pre-reduced nuggets with lesser sulphur content could be used in the blast furnace as raw materials or coolant which would reduce the high quality of coke rate of the furnace due to its pre-reduced character. These can be used in Basic Oxygen Furnace (BOF) as coolant also.

Keywords: alternative ironmaking, coal gasification, extent of reduction, nugget making, syngas based DRI, solid state reduction

Procedia PDF Downloads 249
20987 Microwave-Assisted Alginate Extraction from Portuguese Saccorhiza polyschides – Influence of Acid Pretreatment

Authors: Mário Silva, Filipa Gomes, Filipa Oliveira, Simone Morais, Cristina Delerue-Matos

Abstract:

Brown seaweeds are abundant in Portuguese coastline and represent an almost unexploited marine economic resource. One of the most common species, easily available for harvesting in the northwest coast, is Saccorhiza polyschides grows in the lowest shore and costal rocky reefs. It is almost exclusively used by local farmers as natural fertilizer, but contains a substantial amount of valuable compounds, particularly alginates, natural biopolymers of high interest for many industrial applications. Alginates are natural polysaccharides present in cell walls of brown seaweed, highly biocompatible, with particular properties that make them of high interest for the food, biotechnology, cosmetics and pharmaceutical industries. Conventional extraction processes are based on thermal treatment. They are lengthy and consume high amounts of energy and solvents. In recent years, microwave-assisted extraction (MAE) has shown enormous potential to overcome major drawbacks that outcome from conventional plant material extraction (thermal and/or solvent based) techniques, being also successfully applied to the extraction of agar, fucoidans and alginates. In the present study, acid pretreatment of brown seaweed Saccorhiza polyschides for subsequent microwave-assisted extraction (MAE) of alginate was optimized. Seaweeds were collected in Northwest Portuguese coastal waters of the Atlantic Ocean between May and August, 2014. Experimental design was used to assess the effect of temperature and acid pretreatment time in alginate extraction. Response surface methodology allowed the determination of the optimum MAE conditions: 40 mL of HCl 0.1 M per g of dried seaweed with constant stirring at 20ºC during 14h. Optimal acid pretreatment conditions have enhanced significantly MAE of alginates from Saccorhiza polyschides, thus contributing for the development of a viable, more environmental friendly alternative to conventional processes.

Keywords: acid pretreatment, alginate, brown seaweed, microwave-assisted extraction, response surface methodology

Procedia PDF Downloads 356
20986 The Influence of the Vocational Teachers Empowerment toward the Vocational High Schools’ Performance Based on the Education National Standards of Indonesia

Authors: Abdul Haris Setiawan

Abstract:

Teachers empowerment is one of the important factors considered to contribute significantly to the achievement of the national education goals. This study was conducted to determine the influence on the vocational teachers empowerment toward the performance of the vocational high schools based on the Education National Standards of Indonesia. The population of the study was all vocational teachers at the State Vocational High schools in Surakarta, Central Java Province, Indonesia. The sampling technique used proportional random sampling technique. This study used a quantitative descriptive statistical analysis techniques. The data was collected using questionnaires. The data has been collected and then tested using analysis requirements test. Having tested using the requirements analysis and then the data processed using regression analysis between the independent and dependent variables to determine the effect and the regression equation. The results of the study found that the level of vocational high schools’ performance based on the Education National Standards of Indonesia was 74.29%, including in the high category; the level of vocational teachers empowerment was 76.20%, including in the high category; there was a positive influence of vocational teachers empowerment toward the vocational high schools’ performance based on the Education National Standards of Indonesia with a correlation coefficient of 0,886, and a contribution of 78.50% with the regression equation Y = 79.431 +0.534 X.

Keywords: vocational teachers, empowerment, vocational high school, the education national standards

Procedia PDF Downloads 383
20985 Incorporating Ground Sand in Production of Self-Consolidating Concrete to Decrease High Paste Volume and Improve Passing Ability of Self-Consolidating Concrete

Authors: S. K. Ling, A. K. H. Kwan

Abstract:

The production of SCC (self-consolidating concrete) generally requires a fairy high paste volume, ranging from 35% to 40% of the total concrete volume. Such high paste volume would lead to low dimensional stability and high carbon footprint. Direct lowering the paste volume would deteriorate the performance of SCC, especially the passing ability. It is often observed that at narrow gap of congested reinforcements, the paste often flows in the front leaving the coarse aggregate particle behind to block the subsequent flow of concrete. Herein, it is suggested to increase the mortar volume through incorporating ground sand with a mean size of 0.3 mm while keeping the paste volume small. Trial concrete mixes with paste volumes of 30% and 34% and different ground sand contents have been tested to demonstrate how the paste volume can be lowered without sacrificing the passing ability. Overall, the results demonstrated that the addition of ground sand would enable the achievement of high passing ability at a relatively small paste volume.

Keywords: ground sand, mortar volume, paste volume, self-consolidating concrete

Procedia PDF Downloads 265
20984 Voltage Stabilization of Hybrid PV and Battery Systems by Considering Temperature and Irradiance Changes in Standalone Operation

Authors: S. Jalilzadeh, S. M. Mohseni Bonab

Abstract:

Solar and battery energy storage systems are very useful for consumers who live in deprived areas and do not have access to electricity distribution networks. Nowadays one of the problems that photo voltaic systems (PV) have changing of output power in temperature and irradiance variations, which directly affects the load that is connected to photo voltaic systems. In this paper, with considering the fact that the solar array varies with change in temperature and solar power radiation, a voltage stabilizer system of a load connected to photo voltaic array is designed to stabilize the load voltage and to transfer surplus power of the battery. Also, in proposed hybrid system, the needed load power amount is supplemented considering the voltage stabilization in standalone operation for supplying unbalanced AC load. Electrical energy storage system for voltage control and improvement of the performance of PV by a DC/DC converter is connected to the DC bus. The load is also feed by an AC/DC converter. In this paper, when the voltage increases in its reference limit, the battery gets charged by the photo voltaic array and when it decreases in its defined limit, the power gets injected to the DC bus by this battery. The constant of DC bus Voltage is the cause for the reduced harmonics generated by the inverter. In addition, a series of filters are provided in the inverter output in to reduced harmonics. The inverter control circuit is designed that the voltage and frequency of the load remain almost constant at different load conditions. This paper has focused on controlling strategies of converters to improve their performance.

Keywords: photovoltaic array (PV), DC/DC Boost converter, battery converter, inverters control

Procedia PDF Downloads 467
20983 Regional Metamorphism of the Loki Crystalline Massif Allochthonous Complex of the Caucasus

Authors: David Shengelia, Giorgi Chichinadze, Tamara Tsutsunava, Giorgi Beridze, Irakli Javakhishvili

Abstract:

The Loki pre-Alpine crystalline massif crops out within the Caucasus region. The massif basement is represented by the Upper Devonian gneissose quartz-diorites, the Lower-Middle Paleozoic metamorphic allochthonous complex, and different magmatites. Earlier, the metamorphic complex was considered as indivisible set represented by the series of different temperature metamorphits. The degree of metamorphism of separate parts of the complex is due to different formation conditions. This fact according to authors of the abstract was explained by the allochthonous-flaky structure of the complex. It was stated that the complex thrust over the gneissose quartz diorites before the intrusion of Sudetic granites. During the detailed mapping, the authors turned out that the metamorphism issues need to be reviewed and additional researches to be carried out. Investigations were accomplished by using the following methodologies: finding of key sections, a sampling of rocks, microscopic description of the material, analytical determination of elements in the rocks, microprobe analysis of minerals and new interpretation of obtained data. According to the author’s recent data within the massif four tectonic plates: Lower Gorastskali, Sapharlo-Lok-Jandari, Moshevani and “mélange” overthrust sheets have been mapped. They differ from each other by composition, the degree of metamorphism and internal structure. It is confirmed that the initial rocks of the tectonic plates formed in different geodynamic conditions during overthrusting due to tectonic compression form a thick tectonic sheet. Based on the detailed laboratory investigations additional mineral assemblages were established, temperature limits were specified, and a renewed trend of metamorphism facies and subfacies was elaborated. The results are the following: 1. The Lower Gorastskali overthrust sheet is a fragment of ophiolitic association corresponding to the Paleotethys oceanic crust. The main rock-forming minerals are carbonate, chlorite, spinel, epidote, clinoptilolite, plagioclase, hornblende, actinolite, hornblende, albite, serpentine, tremolite, talc, garnet, and prehnite. Regional metamorphism of rocks corresponds to the greenschist facies lowest stage. 2. The Sapharlo-Lok-Jandari overthrust sheet metapelites are represented by chloritoid, chlorite, phengite, muscovite, biotite, garnet, ankerite, carbonate, and quartz. Metabasites containing actinolite, chlorite, plagioclase, calcite, epidote, albite, actinolitic hornblende and hornblende are also present. The degree of metamorphism corresponds to the greenschist high-temperature chlorite, biotite, and low-temperature garnet subfacies. Later the rocks underwent the contact influence of Late Variscan granites. 3. The Moshevani overthrust sheet is represented mainly by metapelites and rarely by metabasites. Main rock-forming minerals of metapelites are muscovite, biotite, chlorite, quartz, andalusite, plagioclase, garnet and cordierite and of metabasites - plagioclase, green and blue-green hornblende, chlorite, epidote, actinolite, albite, and carbonate. Metamorphism level corresponds to staurolite-andalusite subfacies of staurolite facies and partially to facies of biotite muscovite gneisses and hornfelse facies as well. 4. The “mélange” overthrust sheet is built of different size rock fragments and blocks of Moshevani and Lower Gorastskali overthrust sheets. The degree of regional metamorphism of first and second overthrust sheets of the Loki massif corresponds to chlorite, biotite, and low-temperature garnet subfacies, but of the third overthrust sheet – to staurolite-andalusite subfacies of staurolite facies and partially to facies of biotite muscovite gneisses and hornfelse facies.

Keywords: regional metamorphism, crystalline massif, mineral assemblages, the Caucasus

Procedia PDF Downloads 151
20982 BiFeO3-CoFe2O4-PbTiO3 Composites: Structural, Multiferroic and Optical Characteristics

Authors: Nidhi Adhlakha, K. L. Yadav

Abstract:

Three phase magnetoelectric (ME) composites (1-x)(0.7BiFeO3-0.3CoFe2O4)-xPbTiO3 (or equivalently written as (1-x)(0.7BFO-0.3CFO)-xPT) with x variations 0, 0.30, 0.35, 0.40, 0.45 and 1.0 were synthesized using hybrid processing route. The effects of PT addition on structural, multiferroic and optical properties have been subsequently investigated. A detailed Rietveld refinement analysis of X-ray diffraction patterns has been performed, which confirms the presence of structural phases of individual constituents in the composites. Field emission scanning electron microscopy (FESEM) images are taken for microstructural analysis and grain size determination. Transmission electron microscopy (TEM) analysis of 0.3CFO-0.7BFO reveals the average particle size to be lying in the window of 8-10 nm. The temperature dependent dielectric constant at various frequencies (1 kHz, 10 kHz, 50 kHz, 100 kHz and 500 kHz) has been studied and the dielectric study reveals that the increase of dielectric constant and decrease of average dielectric loss of composites with incorporation of PT content. The room temperature ferromagnetic behavior of composites is confirmed through the observation of Magnetization vs. Magnetic field (M-H) hysteresis loops. The variation of magnetization with temperature indicates the presence of spin glass behavior in composites. Magnetoelectric coupling is evidenced in the composites through the observation of the dependence of the dielectric constant on the magnetic field, and magnetodielectric response of 2.05 % is observed for 45 mol% addition of PT content. The fractional change of magnetic field induced dielectric constant can also be expressed as ∆ε_r~γM^2 and the value of γ is found to be ~1.08×10-2 (emu/g)-2 for composite with x=0.40. Fourier transformed infrared (FTIR) spectroscopy of samples is carried out to analyze various bonds formation in the composites.

Keywords: composite, X-ray diffraction, dielectric properties, optical properties

Procedia PDF Downloads 294
20981 Ion Beam Sputtering Deposition of Inorganic-Fluoropolymer Nano-Coatings for Real-Life Applications

Authors: M. Valentini, D. Melisi, M. A. Nitti, R A. Picca, M. C. Sportelli, E. Bonerba, G. Casamassima, N. Cioffi, L. Sabbatini, G. Tantillo, A. Valentini

Abstract:

In recent years antimicrobial coatings are receiving increasing attention due to their high demand in medical applications as well as in healthcare and hygiene. Research and technology are constantly involved to develop advanced finishing which can provide bacteriostatic growth without compromising the other typical properties of a textile as durability and non-toxicity, just to cite a few. Here we report on the antimicrobial coatings obtained, at room temperature and without the use of solvents, by means of the ion beam co-sputtering technique of an Ag target and a polytetrafluoroethylene one. In particular, such method allows to conjugate the well-known antimicrobial action of silver with the anti-stain and water-repellent properties of the fluoropolymer. Moreover, different Ag nanoparticle loadings (φ) were prepared by tuning the material deposition conditions achieving a fine control on film thickness and their antimicrobial/anti-stain properties.

Keywords: antimicrobial, ion beam sputtering, nanocoatings, anti-stain

Procedia PDF Downloads 379
20980 Electro-Hydrodynamic Effects Due to Plasma Bullet Propagation

Authors: Panagiotis Svarnas, Polykarpos Papadopoulos

Abstract:

Atmospheric-pressure cold plasmas continue to gain increasing interest for various applications due to their unique properties, like cost-efficient production, high chemical reactivity, low gas temperature, adaptability, etc. Numerous designs have been proposed for these plasmas production in terms of electrode configuration, driving voltage waveform and working gas(es). However, in order to exploit most of the advantages of these systems, the majority of the designs are based on dielectric-barrier discharges (DBDs) either in filamentary or glow regimes. A special category of the DBD-based atmospheric-pressure cold plasmas refers to the so-called plasma jets, where a carrier noble gas is guided by the dielectric barrier (usually a hollow cylinder) and left to flow up to the atmospheric air where a complicated hydrodynamic interplay takes place. Although it is now well established that these plasmas are generated due to ionizing waves reminding in many ways streamer propagation, they exhibit discrete characteristics which are better mirrored on the terms 'guided streamers' or 'plasma bullets'. These 'bullets' travel with supersonic velocities both inside the dielectric barrier and the channel formed by the noble gas during its penetration into the air. The present work is devoted to the interpretation of the electro-hydrodynamic effects that take place downstream of the dielectric barrier opening, i.e., in the noble gas-air mixing area where plasma bullet propagate under the influence of local electric fields in regions of variable noble gas concentration. Herein, we focus on the role of the local space charge and the residual ionic charge left behind after the bullet propagation in the gas flow field modification. The study communicates both experimental and numerical results, coupled in a comprehensive manner. The plasma bullets are here produced by a custom device having a quartz tube as a dielectric barrier and two external ring-type electrodes driven by sinusoidal high voltage at 10 kHz. Helium gas is fed to the tube and schlieren photography is employed for mapping the flow field downstream of the tube orifice. Mixture mass conservation equation, momentum conservation equation, energy conservation equation in terms of temperature and helium transfer equation are simultaneously solved, leading to the physical mechanisms that govern the experimental results. Namely, we deal with electro-hydrodynamic effects mainly due to momentum transfer from atomic ions to neutrals. The atomic ions are left behind as residual charge after the bullet propagation and gain energy from the locally created electric field. The electro-hydrodynamic force is eventually evaluated.

Keywords: atmospheric-pressure plasmas, dielectric-barrier discharges, schlieren photography, electro-hydrodynamic force

Procedia PDF Downloads 127
20979 Motivations, Perceptions, and Aspirations concerning Teaching as a Career for High School Students from Racially/Ethnically Diverse Backgrounds

Authors: Mi Ok Kang

Abstract:

This study explores the factors that motivate urban high school students from racially/ethnically diverse backgrounds to choose teaching as a future career. It draws on in-depth interviews with high school students of color living in an urban downtown located in an intermountain area in the U.S. Using the factors influencing teaching choice (FIT-Choice) model, this study examines the motivations, mobility experiences, and aspirations of participating high school students who self-identified as Latino/a, Tongan, and Chinese. The study identifies influential factors -both challenges and strengthening effects- that high school students of color experience in their career decision making. The study concludes that self-perceptions of teaching abilities, parental support, social connections, job security, and prior work with children during the internship in K-12 classroom motivated them to be a teacher. Limitations such as financial struggles of parents, the low social status of teaching career, and the low salary and benefit packages in the U.S. are among the factors that cause students to waver in or doubt their career choice.

Keywords: career development, diversifying teaching force, FIT-Choice, high school students of color

Procedia PDF Downloads 264
20978 Effects of Ethylene Scavengering Packaging on the Shelf Life of Edible Mushroom

Authors: Majid Javanmard

Abstract:

Edible mushrooms are those agricultural products which contain high quantity of protein and can have special role in human diet. So search for methods to increase their shelf life is important. One of these strategies can be use of active packaging for absorb the ethylene which has been studied in present study. In this study, initially, production of impregnating zeolite with potassium permanganate has been studied with zeolite clinoptiolite available in iran. After that, these ethylene scavengers were placed in the package of edible mushrooms and then transferred to the refrigerator with temperature 4c for a period of 20 days. Each 5 days, several experiments accomplished on edible mushrooms such as weight loss, moisture content, color, texture, bacterial experiments and sensory evaluation. After production of impregnating zeolite with potassium permanganate (with a concentration of %2.5, %5, %7.5, %10 and %12.5) by zeolite type clinoptiolite (with mesh 35 and 60), samples have been analyzed with gas chromatography and titration with sodium oxalate. The results showed that zeolite by concentration of %5, %7.5 and %10 potassium permanganate and mesh 60 have a higher efficiency. Results from the experiments on edible mushrooms proved that impregnated zeolite with potassium permanganate have a meaningful influence in prevent the weight loss, decrease of moisture content and L-value, increase of a-value and overall color change (ΔE) and decrease of firmness texture of mushrooms. In addition, these absorbents can influence on decrease microbial load (mesophilic bacteria) rather than control. Generally, concluded that the impregnated zeolite with 10% permanganate potassium has a high efficiency on increase the shelf life of fresh edible mushrooms.

Keywords: active packaging, ethylene scavenger, zeolite clinoptiolite, permanganate potassium, shelf life

Procedia PDF Downloads 399
20977 Modelling of Lunar Lander’s Thruster’s Exhaust Plume Impingement in Vacuum

Authors: Mrigank Sahai, R. Sri Raghu

Abstract:

This paper presents the modelling of rocket exhaust plume flow field and exhaust plume impingement in vacuum for the liquid apogee engine and attitude control thrusters of the lunar lander. Analytic formulations for rarefied gas kinetics has been taken as reference for modelling the plume flow field. The plume has been modelled as high speed, collision-less, axi-symmetric gas jet, expanding into vacuum and impinging at a normally set diffusive circular plate. Specular reflections have not been considered for the present study. Different parameters such as number density, temperature, pressure, flow velocity, heat flux etc., have been calculated and have been plotted against and compared to Direct Simulation Monte Carlo results. These analyses have provided important information for the placement of critical optical instruments and design of optimal thermal insulation for the hardware that may come in contact with the thruster exhaust.

Keywords: collision-less gas, lunar lander, plume impingement, rarefied exhaust plume

Procedia PDF Downloads 256
20976 High Performance Methyl Orange Capture on Magnetic Nanoporous MCM-41 Prepared by Incipient Wetness Impregnation Method

Authors: Talib M. Albayati, Omar S. Mahdy, Ghanim M. Alwan

Abstract:

This work is aimed to prepare magnetic nanoporous material Fe/MCM-41 and study its Physical characterization in order to enhance the magnetic properties for study the operating conditions on separation efficiency of methyl orange (MO) from wastewater by adsorption process. The experimental results are analysed to select the best operating conditions for different studied parameters which were obtained for both adsorbents mesoporous material samples MCM-41 and magnetic Fe/MCM-41 as follow: constant temperature (20 ºC), pH: (2) adsorbent dosage (0.03 gm), contact time (10 minute) and concentrations (30 mg/L). The results are demonstrated that the adsorption processes can be well fitted by the Langmuir isotherm model for pure MCM-41 with a higher correlation coefficient (0.999) and fitted by the freundlich isotherm model for magnetic Fe/MCM-41 with a higher correlation coefficient of (0.994).

Keywords: adsorption, nanoporous materials, mcm-41, magnetic material, wastewater, orange, wastewater

Procedia PDF Downloads 380
20975 Sorption of Congo Red from Aqueous Solution by Surfactant-Modified Bentonite: Kinetic and Factorial Design Study

Authors: B. Guezzen, M. A. Didi, B. Medjahed

Abstract:

An organoclay (HDTMA-B) was prepared from sodium bentonite (Na-B). The starting material was modified using the hexadecyltrimethylammonium ion (HDTMA+) in the amounts corresponding to 100 % of the CEC value. Batch experiments were carried out in order to model and optimize the sorption of Congo red dye from aqueous solution. The pseudo-first order and pseudo-second order kinetic models have been developed to predict the rate constant and the sorption capacity at equilibrium with the effect of temperature, the solid/solution ratio and the initial dye concentration. The equilibrium time was reached within 60 min. At room temperature (20 °C), optimum dye sorption of 49.4 mg/g (98.9%) was achieved at pH 6.6, sorbent dosage of 1g/L and initial dye concentration of 50 mg/L, using surfactant modified bentonite. The optimization of adsorption parameters mentioned above on dye removal was carried out using Box-Behnken design. The sorption parameters were analyzed statistically by means of variance analysis by using the Statgraphics Centurion XVI software.

Keywords: adsorption, dye, factorial design, kinetic, organo-bentonite

Procedia PDF Downloads 182
20974 Engineering of Filtration Systems in Egyptian Cement Plants: Industrial Case Study

Authors: Mohamed. A. Saad

Abstract:

The paper represents a case study regarding the conversion of Electro-Static Precipitators (ESP`s) into Fabric Filters (FF). Seven cement production companies were established in Egypt during the period 1927 to 1980 and 6 new companies were established to cope with the increasing cement demand in 1980's. The cement production market shares in Egypt indicate that there are six multinational companies in the local market, they are interested in the environmental conditions improving and so decided to achieve emission reduction project. The experimental work in the present study is divided into two main parts: (I) Measuring Efficiency of Filter Fabrics with detailed description of a designed apparatus. The paper also reveals the factors that should be optimized in order to assist problem diagnosis, solving and increasing the life of bag filters. (II) Methods to mitigate dust emissions in Egyptian cement plants with a special focus on converting the Electrostatic Precipitators (ESP`s) into Fabric Filters (FF) using the same ESP casing, bottom hoppers, dust transportation system, and ESP ductwork. Only the fan system for the higher pressure drop with the fabric filter was replaced. The proper selection of bag material was a prime factor with regard to gas composition, temperature and particle size. Fiberglass with PTFE membrane coated bags was selected. This fabric is rated for a continuous temperature of 250 C and a surge temperature of 280C. The dust emission recorded was less than 20 mg/m3 from the production line fitted with fabric filters which is super compared with the ESP`s working lines stack.

Keywords: Engineering Electrostatic Precipitator, filtration, dust collectors, cement

Procedia PDF Downloads 236
20973 A Xenon Mass Gauging through Heat Transfer Modeling for Electric Propulsion Thrusters

Authors: A. Soria-Salinas, M.-P. Zorzano, J. Martín-Torres, J. Sánchez-García-Casarrubios, J.-L. Pérez-Díaz, A. Vakkada-Ramachandran

Abstract:

The current state-of-the-art methods of mass gauging of Electric Propulsion (EP) propellants in microgravity conditions rely on external measurements that are taken at the surface of the tank. The tanks are operated under a constant thermal duty cycle to store the propellant within a pre-defined temperature and pressure range. We demonstrate using computational fluid dynamics (CFD) simulations that the heat-transfer within the pressurized propellant generates temperature and density anisotropies. This challenges the standard mass gauging methods that rely on the use of time changing skin-temperatures and pressures. We observe that the domes of the tanks are prone to be overheated, and that a long time after the heaters of the thermal cycle are switched off, the system reaches a quasi-equilibrium state with a more uniform density. We propose a new gauging method, which we call the Improved PVT method, based on universal physics and thermodynamics principles, existing TRL-9 technology and telemetry data. This method only uses as inputs the temperature and pressure readings of sensors externally attached to the tank. These sensors can operate during the nominal thermal duty cycle. The improved PVT method shows little sensitivity to the pressure sensor drifts which are critical towards the end-of-life of the missions, as well as little sensitivity to systematic temperature errors. The retrieval method has been validated experimentally with CO2 in gas and fluid state in a chamber that operates up to 82 bar within a nominal thermal cycle of 38 °C to 42 °C. The mass gauging error is shown to be lower than 1% the mass at the beginning of life, assuming an initial tank load at 100 bar. In particular, for a pressure of about 70 bar, just below the critical pressure of CO2, the error of the mass gauging in gas phase goes down to 0.1% and for 77 bar, just above the critical point, the error of the mass gauging of the liquid phase is 0.6% of initial tank load. This gauging method improves by a factor of 8 the accuracy of the standard PVT retrievals using look-up tables with tabulated data from the National Institute of Standards and Technology.

Keywords: electric propulsion, mass gauging, propellant, PVT, xenon

Procedia PDF Downloads 331
20972 Nanoimprinted-Block Copolymer-Based Porous Nanocone Substrate for SERS Enhancement

Authors: Yunha Ryu, Kyoungsik Kim

Abstract:

Raman spectroscopy is one of the most powerful techniques for chemical detection, but the low sensitivity originated from the extremely small cross-section of the Raman scattering limits the practical use of Raman spectroscopy. To overcome this problem, Surface Enhanced Raman Scattering (SERS) has been intensively studied for several decades. Because the SERS effect is mainly induced from strong electromagnetic near-field enhancement as a result of localized surface plasmon resonance of metallic nanostructures, it is important to design the plasmonic structures with high density of electromagnetic hot spots for SERS substrate. One of the useful fabrication methods is using porous nanomaterial as a template for metallic structure. Internal pores on a scale of tens of nanometers can be strong EM hotspots by confining the incident light. Also, porous structures can capture more target molecules than non-porous structures in a same detection spot thanks to the large surface area. Herein we report the facile fabrication method of porous SERS substrate by integrating solvent-assisted nanoimprint lithography and selective etching of block copolymer. We obtained nanostructures with high porosity via simple selective etching of the one microdomain of the diblock copolymer. Furthermore, we imprinted of the nanocone patterns into the spin-coated flat block copolymer film to make three-dimensional SERS substrate for the high density of SERS hot spots as well as large surface area. We used solvent-assisted nanoimprint lithography (SAIL) to reduce the fabrication time and cost for patterning BCP film by taking advantage of a solvent which dissolves both polystyrenre and poly(methyl methacrylate) domain of the block copolymer, and thus block copolymer film was molded under the low temperature and atmospheric pressure in a short time. After Ag deposition, we measured Raman intensity of dye molecules adsorbed on the fabricated structure. Compared to the Raman signals of Ag coated solid nanocone, porous nanocone showed 10 times higher Raman intensity at 1510 cm(-1) band. In conclusion, we fabricated porous metallic nanocone arrays with high density electromagnetic hotspots by templating nanoimprinted diblock copolymer with selective etching and demonstrated its capability as an effective SERS substrate.

Keywords: block copolymer, porous nanostructure, solvent-assisted nanoimprint, surface-enhanced Raman spectroscopy

Procedia PDF Downloads 610
20971 High-pressure Crystallographic Characterization of f-block Element Complexes

Authors: Nicholas B. Beck, Thomas E. Albrecht-Schönzart

Abstract:

High-pressure results in decreases in the bond lengths of metal-ligand bonds, which has proven to be incredibly informative in uncovering differences in bonding between lanthanide and actinide complexes. The degree of f-electron contribution to the metal ligand bonds has been observed to increase under pressure by a far greater degree in the actinides than the lanthanides, as revealed by spectroscopic studies. However, the actual changes in bond lengths have yet to be quantified, although computationally predicted. By using high-pressure crystallographic techniques, crystal structures of lanthanide complexes have been obtained at pressures up to 5 GPa for both hard and soft-donor ligands. These studies have revealed some unpredicted changes in the coordination environment as well as provided experimental support to computational results

Keywords: crystallography, high-pressure, lanthanide, materials

Procedia PDF Downloads 83
20970 Maintaining the Formal Type of West Java's Heritage Language with Sundanese Language Lesson in Senior High School

Authors: Dinda N. Lestari

Abstract:

Sundanese language is one of heritage language in Indonesia that must be maintained especially the formal type of it because teenagers nowadays do not speak Sundanese language formally in their daily lives. To maintain it, Cultural and Education Ministry of Indonesia has input Sundanese language lesson at senior high school in West Java area. The aim of this study was to observe whether the existence of Sundanese language lesson in senior high school in the big town of Karawang, West Java - Indonesia give the contribution to the formal type of Sundanese language maintenance or not. For gathering the data, the researcher interviewed the senior high school students who have learned Sundanese language to observe their acquisition of it. As a result of the interview, the data was presented in qualitative research by using the interviewing method. Then, the finding indicated that the existence of Sundanese language in Senior High School also the educational program which is related to it, for instance, Kemis Nyunda seemed to do not effective enough in maintaining the formal type of Sundanese language. Therefore, West Java government must revise the learning strategy of it, including the role of the Sundanese language teacher.

Keywords: heritage language, language maintenance and shift, senior high school, Sundanese language, Sundanese language lesson

Procedia PDF Downloads 137
20969 Flow Dynamics of Nanofluids in a Horizontal Cylindrical Annulus Using Nonhomogeneous Dynamic Model

Authors: M. J. Uddin, M. M. Rahman

Abstract:

Transient natural convective flow dynamics of nanofluids in a horizontal homocentric annulus using nonhomogeneous dynamic model has been experimented numerically. The simulation is carried out for four different shapes of the inner wall, which is either cylindrical, elliptical, square or triangular. The outer surface of the annulus is maintained at constant low temperature while the inner wall is maintained at a uniform temperature; higher than the outer one. The enclosure is permeated by a uniform magnetic field having variable orientation. The Brownian motion and thermophoretic deposition phenomena of the nanoparticles are taken into account in model construction. The governing nonlinear momentum, energy, and concentration equations are solved numerically using Galerkin weighted residual finite element method. To find the best performer, the local Nusselt number is demonstrated for different shapes of the inner wall. The heat transfer enhancement for different nanofluids for four different shapes of the inner wall is exhibited.

Keywords: nanofluids, annulus, nonhomogeneous dynamic model, heat transfer

Procedia PDF Downloads 153
20968 Study of the Influence of Refractory Nitride Additives on Hydrogen Storage Properties of Ti6Al4V-Based Materials Produced by Spark Plasma Sintering

Authors: John Olorunfemi Abe, Olawale Muhammed Popoola, Abimbola Patricia Idowu Popoola

Abstract:

Hydrogen is an appealing alternative to fossil fuels because of its abundance, low weight, high energy density, and relative lack of contaminants. However, its low density presents a number of storage challenges. Therefore, this work studies the influence of refractory nitride additives consisting of 5 wt. % each of hexagonal boron nitride (h-BN), titanium nitride (TiN), and aluminum nitride (AlN) on hydrogen storage and electrochemical characteristics of Ti6Al4V-based materials produced by spark plasma sintering. The microstructure and phase constituents of the sintered materials were characterized using scanning electron microscopy (in conjunction with energy-dispersive spectroscopy) and X-ray diffraction, respectively. Pressure-composition-temperature (PCT) measurements were used to assess the hydrogen absorption/desorption behavior, kinetics, and storage capacities of the sintered materials, respectively. The pure Ti6Al4V alloy displayed a two-phase (α+β) microstructure, while the modified composites exhibited apparent microstructural modifications with the appearance of nitride-rich secondary phases. It is found that the diffusion process controls the kinetics of the hydrogen absorption. Thus, a faster rate of hydrogen absorption at elevated temperatures ensued. The additives acted as catalysts, lowered the activation energy and accelerated the rate of hydrogen sorption in the composites relative to the monolithic alloy. Ti6Al4V-5 wt. % h-BN appears to be the most promising candidate for hydrogen storage (2.28 wt. %), followed by Ti6Al4V-5 wt. % TiN (2.09 wt. %), whereas Ti6Al4V-5 wt. % AlN shows the least hydrogen storage performance (1.35 wt. %). Accordingly, the developed hydride system (Ti6Al4V-5h-BN) may be competitive for use in applications involving short-range continuous vehicles (~50-100km) as well as stationary applications such as electrochemical devices, large-scale storage cylinders in hydrogen production locations, and hydrogen filling stations.

Keywords: hydrogen storage, Ti6Al4V hydride system, pressure-composition-temperature measurements, refractory nitride additives, spark plasma sintering, Ti6Al4V-based materials

Procedia PDF Downloads 45