Search results for: cold start emission
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3221

Search results for: cold start emission

71 Polycyclic Aromatic Hydrocarbons: Pollution and Ecological Risk Assessment in Surface Soil of the Tezpur Town, on the North Bank of the Brahmaputra River, Assam, India

Authors: Kali Prasad Sarma, Nibedita Baul, Jinu Deka

Abstract:

In the present study, pollution level of polycyclic aromatic hydrocarbon (PAH) in surface soil of historic Tezpur town located in the north bank of the River Brahmaputra were evaluated. In order to determine the seasonal distribution and concentration level of 16 USEPA priority PAHs surface soil samples were collected from 12 different sampling sites with various land use type. The total concentrations of 16 PAHs (∑16 PAHs) varied from 242.68µgkg-1to 7901.89µgkg-1. Concentration of total probable carcinogenic PAH ranged between 7.285µgkg-1 and 479.184 µgkg-1 in different seasons. However, the concentration of BaP, the most carcinogenic PAH, was found in the range of BDL to 50.01 µgkg-1. The composition profiles of PAHs in 3 different seasons were characterized by following two different types of ring: (1) 4-ring PAHs, contributed to highest percentage of total PAHs (43.75%) (2) while in pre- and post- monsoon season 3- ring compounds dominated the PAH profile, contributing 65.58% and 74.41% respectively. A high PAHs concentration with significant seasonality and high abundance of LMWPAHs was observed in Tezpur town. Soil PAHs toxicity was evaluated taking toxic equivalency factors (TEFs), which quantify the carcinogenic potential of other PAHs relative to BaP and estimate benzo[a]pyrene-equivalent concentration (BaPeq). The calculated BaPeq value signifies considerable risk to contact with soil PAHs. We applied cluster analysis and principal component analysis (PCA) with multivariate linear regression (MLR) to apportion sources of polycyclic aromatic hydrocarbons (PAHs) in surface soil of Tezpur town, based on the measured PAH concentrations. The results indicate that petrogenic and pyrogenic sources are the important sources of PAHs. A combination of chemometric and molecular indices were used to identify the sources of PAHs, which could be attributed to vehicle emissions, a mixed source input, natural gas combustion, wood or biomass burning and coal combustion. Source apportionment using absolute principle component scores–multiple linear regression showed that the main sources of PAHs are 22.3% mix sources comprising of diesel and biomass combustion and petroleum spill,13.55% from vehicle emission, 9.15% from diesel and natural gas burning, 38.05% from wood and biomass burning and 16.95% contribute coal combustion. Pyrogenic input was found to dominate source of PAHs origin with more contribution from vehicular exhaust. PAHs have often been found to co-emit with other environmental pollutants like heavy metals due to similar source of origin. A positive correlation was observed between PAH with Cr and Pb (r2 = 0.54 and 0.55 respectively) in monsoon season and PAH with Cd and Pb (r2 = 0.54 and 0.61 respectively) indicating their common source. Strong correlation was observed between PAH and OC during pre- and post- monsoon (r2=0.46 and r2=0.65 respectively) whereas during monsoon season no significant correlation was observed (r2=0.24).

Keywords: polycyclic aromatic hydrocarbon, Tezpur town, chemometric analysis, ecological risk assessment, pollution

Procedia PDF Downloads 213
70 Biological Soil Crust Effects on Dust Control Around the Urmia Lake

Authors: Abbas Ahmadi, Nasser Aliasgharzad, Ali Asghar Jafarzadeh

Abstract:

Nowadays, drying of the Urmia Lake as a largest saline lake in the world and emerging its saline bed from water has caused the risk of salty dune storms, which threats the health of human society and also plants and animal communities living in the region. Biological soil crusts (BSCs) as a dust stabilizer attracted the attention of Soil conservation experts in recent years. Although the presence of water by the impenetrable lake bed and endorheic basin can be an advantage to create BSCs, but the extraordinary of the lake bed salinity is a factor for prevention of its establishment in the region. Therefore, the present research work has been carried out to investigate the effects of inoculating the Cyanobacteria, algae and their combination to create BSCs for dust control. In this study, an algae attributed to Chlamydomonas sp and a cyanobacteria attributed to Anabaena sp isolated from the soils of Urmia Lake margin were used to create BSC in four soil samples which collected from 0-10 cm of the current margin (A), the previous bed (B), affected lands by lake (C) and Quomtappe sand dune (D). The main characteristics of the A, B and C soil samples are their highly salinity (their ECe are 108, 140 and 118 dS/m, respectively) and sodicity. Also, texture class of the soil A was loamy sand, and other two soils had clay textures. Soil D was Non-saline, but it was sodic with a sandy texture class. This study was conducted separately in each soil in a completely randomized design under four inoculation treatments of non-inoculated (T0), Algae (T1), cyanobacteria (T2) and equal mixture of algae and cyanobacteria (T3) with three replications. In the experiment, the soil was placed into wind tunnel trays, and a suspension containing microorganisms mixed with the trays surface soil. During the experiment, water was sprayed to the trays at the morning and evening of every day. After passing the incubation period (30 days), some characteristics of samples such as pH, EC, cold water extractable carbohydrate (CWEC), hot water extractable carbohydrate (HWEC), sulfuric acid extractable carbohydrate (SAEC), organic matter, crust thickness, penetration resistance, wind erosion threshold velocity and soil loss in the wind tunnel were measured, and Correlation between the measured characteristics was obtained through the SPSS software. Analysis of variance and so comparison between the means of treatments were analyzed with MSTATC software. In this research, Chlorophyll, an amount, was used as an indicator of the microorganism's population in the samples. Based on obtained results, the amount of Chlorophyll a in the T2 treatment of soil A and all treatments of soil D was significantly increased in comparison to the control and crust thickness showed increase in all treatments by microorganism’s inoculation. But effect of the treatments was significant in soils A and D. At all treatment’s inoculation of microorganisms in soil A caused to increase %46, %34 and %55 of the wind erosion threshold velocity in T1, T2 and T3 treatments in comparison to the control, respectively, and in soil D all treatments caused wind erosion threshold velocity became two times more than control. However, soil loss in the wind tunnel experiments was significant in T2 and T3 treatments of these soils and T1 treatment had no effect in reducing soil loss. Correlation between Chlorophyll a and salinity shows the important role of salinity in microbial growth prevention and formation of BSCs in the studied samples. In general, according to the obtained results, it can be concluded that salinity reduces the growth of microorganisms in saline soils of the region, and in soils with fine textures, salinity role in prevention of the microbial growth is clear. Also, using the mix of algae and cyanobacteria together caused the synergistic growth of them and consequently, better protection of the soil against wind erosion was provided.

Keywords: wind erosion, algae, cyanobacteria, carbohydrate

Procedia PDF Downloads 65
69 Multi-Criteria Decision Making Network Optimization for Green Supply Chains

Authors: Bandar A. Alkhayyal

Abstract:

Modern supply chains are typically linear, transforming virgin raw materials into products for end consumers, who then discard them after use to landfills or incinerators. Nowadays, there are major efforts underway to create a circular economy to reduce non-renewable resource use and waste. One important aspect of these efforts is the development of Green Supply Chain (GSC) systems which enables a reverse flow of used products from consumers back to manufacturers, where they can be refurbished or remanufactured, to both economic and environmental benefit. This paper develops novel multi-objective optimization models to inform GSC system design at multiple levels: (1) strategic planning of facility location and transportation logistics; (2) tactical planning of optimal pricing; and (3) policy planning to account for potential valuation of GSC emissions. First, physical linear programming was applied to evaluate GSC facility placement by determining the quantities of end-of-life products for transport from candidate collection centers to remanufacturing facilities while satisfying cost and capacity criteria. Second, disassembly and remanufacturing processes have received little attention in industrial engineering and process cost modeling literature. The increasing scale of remanufacturing operations, worth nearly $50 billion annually in the United States alone, have made GSC pricing an important subject of research. A non-linear physical programming model for optimization of pricing policy for remanufactured products that maximizes total profit and minimizes product recovery costs were examined and solved. Finally, a deterministic equilibrium model was used to determine the effects of internalizing a cost of GSC greenhouse gas (GHG) emissions into optimization models. Changes in optimal facility use, transportation logistics, and pricing/profit margins were all investigated against a variable cost of carbon, using case study system created based on actual data from sites in the Boston area. As carbon costs increase, the optimal GSC system undergoes several distinct shifts in topology as it seeks new cost-minimal configurations. A comprehensive study of quantitative evaluation and performance of the model has been done using orthogonal arrays. Results were compared to top-down estimates from economic input-output life cycle assessment (EIO-LCA) models, to contrast remanufacturing GHG emission quantities with those from original equipment manufacturing operations. Introducing a carbon cost of $40/t CO2e increases modeled remanufacturing costs by 2.7% but also increases original equipment costs by 2.3%. The assembled work advances the theoretical modeling of optimal GSC systems and presents a rare case study of remanufactured appliances.

Keywords: circular economy, extended producer responsibility, greenhouse gas emissions, industrial ecology, low carbon logistics, green supply chains

Procedia PDF Downloads 160
68 Use of End-Of-Life Footwear Polymer EVA (Ethylene Vinyl Acetate) and PU (Polyurethane) for Bitumen Modification

Authors: Lucas Nascimento, Ana Rita, Margarida Soares, André Ribeiro, Zlatina Genisheva, Hugo Silva, Joana Carvalho

Abstract:

The footwear industry is an essential fashion industry, focusing on producing various types of footwear, such as shoes, boots, sandals, sneakers, and slippers. Global footwear consumption has doubled every 20 years since the 1950s. It is estimated that in 1950, each person consumed one new pair of shoes yearly; by 2005, over 20 billion pairs of shoes were consumed. To meet global footwear demand, production reached $24.2 billion, equivalent to about $74 per person in the United States. This means three new pairs of shoes per person worldwide. The issue of footwear waste is related to the fact that shoe production can generate a large amount of waste, much of which is difficult to recycle or reuse. This waste includes scraps of leather, fabric, rubber, plastics, toxic chemicals, and other materials. The search for alternative solutions for waste treatment and valorization is increasingly relevant in the current context, mainly when focused on utilizing waste as a source of substitute materials. From the perspective of the new circular economy paradigm, this approach is of utmost importance as it aims to preserve natural resources and minimize the environmental impact associated with sending waste to landfills. In this sense, the incorporation of waste into industrial sectors that allow for the recovery of large volumes, such as road construction, becomes an urgent and necessary solution from an environmental standpoint. This study explores the use of plastic waste from the footwear industry as a substitute for virgin polymers in bitumen modification, a solution that presents a more sustainable future. Replacing conventional polymers with plastic waste in asphalt composition reduces the amount of waste sent to landfills and offers an opportunity to extend the lifespan of road infrastructures. By incorporating waste into construction materials, reducing the consumption of natural resources and the emission of pollutants is possible, promoting a more circular and efficient economy. In the initial phase of this study, waste materials from end-of-life footwear were selected, and plastic waste with the highest potential for application was separated. Based on a literature review, EVA (ethylene vinyl acetate) and PU (polyurethane) were identified as the polymers suitable for modifying 50/70 classification bitumen. Each polymer was analysed at concentrations of 3% and 5%. The production process involved the polymer's fragmentation to a size of 4 millimetres after heating the materials to 180 ºC and mixing for 10 minutes at low speed. After was mixed for 30 minutes in a high-speed mixer. The tests included penetration, softening point, viscosity, and rheological assessments. With the results obtained from the tests, the mixtures with EVA demonstrated better results than those with PU, as EVA had more resistance to temperature, a better viscosity curve and a greater elastic recovery in rheology.

Keywords: footwear waste, hot asphalt pavement, modified bitumen, polymers

Procedia PDF Downloads 18
67 Educational Knowledge Transfer in Indigenous Mexican Areas Using Cloud Computing

Authors: L. R. Valencia Pérez, J. M. Peña Aguilar, A. Lamadrid Álvarez, A. Pastrana Palma, H. F. Valencia Pérez, M. Vivanco Vargas

Abstract:

This work proposes a Cooperation-Competitive (Coopetitive) approach that allows coordinated work among the Secretary of Public Education (SEP), the Autonomous University of Querétaro (UAQ) and government funds from National Council for Science and Technology (CONACYT) or some other international organizations. To work on an overall knowledge transfer strategy with e-learning over the Cloud, where experts in junior high and high school education, working in multidisciplinary teams, perform analysis, evaluation, design, production, validation and knowledge transfer at large scale using a Cloud Computing platform. Allowing teachers and students to have all the information required to ensure a homologated nationally knowledge of topics such as mathematics, statistics, chemistry, history, ethics, civism, etc. This work will start with a pilot test in Spanish and initially in two regional dialects Otomí and Náhuatl. Otomí has more than 285,000 speaking indigenes in Queretaro and Mexico´s central region. Náhuatl is number one indigenous dialect spoken in Mexico with more than 1,550,000 indigenes. The phase one of the project takes into account negotiations with indigenous tribes from different regions, and the Information and Communication technologies to deliver the knowledge to the indigenous schools in their native dialect. The methodology includes the following main milestones: Identification of the indigenous areas where Otomí and Náhuatl are the spoken dialects, research with the SEP the location of actual indigenous schools, analysis and inventory or current schools conditions, negotiation with tribe chiefs, analysis of the technological communication requirements to reach the indigenous communities, identification and inventory of local teachers technology knowledge, selection of a pilot topic, analysis of actual student competence with traditional education system, identification of local translators, design of the e-learning platform, design of the multimedia resources and storage strategy for “Cloud Computing”, translation of the topic to both dialects, Indigenous teachers training, pilot test, course release, project follow up, analysis of student requirements for the new technological platform, definition of a new and improved proposal with greater reach in topics and regions. Importance of phase one of the project is multiple, it includes the proposal of a working technological scheme, focusing in the cultural impact in Mexico so that indigenous tribes can improve their knowledge about new forms of crop improvement, home storage technologies, proven home remedies for common diseases, ways of preparing foods containing major nutrients, disclose strengths and weaknesses of each region, communicating through cloud computing platforms offering regional products and opening communication spaces for inter-indigenous cultural exchange.

Keywords: Mexicans indigenous tribes, education, knowledge transfer, cloud computing, otomi, Náhuatl, language

Procedia PDF Downloads 407
66 Describing Cognitive Decline in Alzheimer's Disease via a Picture Description Writing Task

Authors: Marielle Leijten, Catherine Meulemans, Sven De Maeyer, Luuk Van Waes

Abstract:

For the diagnosis of Alzheimer's disease (AD), a large variety of neuropsychological tests are available. In some of these tests, linguistic processing - both oral and written - is an important factor. Language disturbances might serve as a strong indicator for an underlying neurodegenerative disorder like AD. However, the current diagnostic instruments for language assessment mainly focus on product measures, such as text length or number of errors, ignoring the importance of the process that leads to written or spoken language production. In this study, it is our aim to describe and test differences between cognitive and impaired elderly on the basis of a selection of writing process variables (inter- and intrapersonal characteristics). These process variables are mainly related to pause times, because the number, length, and location of pauses have proven to be an important indicator of the cognitive complexity of a process. Method: Participants that were enrolled in our research were chosen on the basis of a number of basic criteria necessary to collect reliable writing process data. Furthermore, we opted to match the thirteen cognitively impaired patients (8 MCI and 5 AD) with thirteen cognitively healthy elderly. At the start of the experiment, participants were each given a number of tests, such as the Mini-Mental State Examination test (MMSE), the Geriatric Depression Scale (GDS), the forward and backward digit span and the Edinburgh Handedness Inventory (EHI). Also, a questionnaire was used to collect socio-demographic information (age, gender, eduction) of the subjects as well as more details on their level of computer literacy. The tests and questionnaire were followed by two typing tasks and two picture description tasks. For the typing tasks participants had to copy (type) characters, words and sentences from a screen, whereas the picture description tasks each consisted of an image they had to describe in a few sentences. Both the typing and the picture description tasks were logged with Inputlog, a keystroke logging tool that allows us to log and time stamp keystroke activity to reconstruct and describe text production processes. The main rationale behind keystroke logging is that writing fluency and flow reveal traces of the underlying cognitive processes. This explains the analytical focus on pause (length, number, distribution, location, etc.) and revision (number, type, operation, embeddedness, location, etc.) characteristics. As in speech, pause times are seen as indexical of cognitive effort. Results. Preliminary analysis already showed some promising results concerning pause times before, within and after words. For all variables, mixed effects models were used that included participants as a random effect and MMSE scores, GDS scores and word categories (such as determiners and nouns) as a fixed effect. For pause times before and after words cognitively impaired patients paused longer than healthy elderly. These variables did not show an interaction effect between the group participants (cognitively impaired or healthy elderly) belonged to and word categories. However, pause times within words did show an interaction effect, which indicates pause times within certain word categories differ significantly between patients and healthy elderly.

Keywords: Alzheimer's disease, keystroke logging, matching, writing process

Procedia PDF Downloads 366
65 Mechanical Properties of Poly(Propylene)-Based Graphene Nanocomposites

Authors: Luiza Melo De Lima, Tito Trindade, Jose M. Oliveira

Abstract:

The development of thermoplastic-based graphene nanocomposites has been of great interest not only to the scientific community but also to different industrial sectors. Due to the possible improvement of performance and weight reduction, thermoplastic nanocomposites are a great promise as a new class of materials. These nanocomposites are of relevance for the automotive industry, namely because the emission limits of CO2 emissions imposed by the European Commission (EC) regulations can be fulfilled without compromising the car’s performance but by reducing its weight. Thermoplastic polymers have some advantages over thermosetting polymers such as higher productivity, lower density, and recyclability. In the automotive industry, for example, poly(propylene) (PP) is a common thermoplastic polymer, which represents more than half of the polymeric raw material used in automotive parts. Graphene-based materials (GBM) are potential nanofillers that can improve the properties of polymer matrices at very low loading. In comparison to other composites, such as fiber-based composites, weight reduction can positively affect their processing and future applications. However, the properties and performance of GBM/polymer nanocomposites depend on the type of GBM and polymer matrix, the degree of dispersion, and especially the type of interactions between the fillers and the polymer matrix. In order to take advantage of the superior mechanical strength of GBM, strong interfacial strength between GBM and the polymer matrix is required for efficient stress transfer from GBM to the polymer. Thus, chemical compatibilizers and physicochemical modifications have been reported as important tools during the processing of these nanocomposites. In this study, PP-based nanocomposites were obtained by a simple melt blending technique, using a Brabender type mixer machine. Graphene nanoplatelets (GnPs) were applied as structural reinforcement. Two compatibilizers were used to improve the interaction between PP matrix and GnPs: PP graft maleic anhydride (PPgMA) and PPgMA modified with tertiary amine alcohol (PPgDM). The samples for tensile and Charpy impact tests were obtained by injection molding. The results suggested the GnPs presence can increase the mechanical strength of the polymer. However, it was verified that the GnPs presence can promote a decrease of impact resistance, turning the nanocomposites more fragile than neat PP. The compatibilizers’ incorporation increases the impact resistance, suggesting that the compatibilizers can enhance the adhesion between PP and GnPs. Compared to neat PP, Young’s modulus of non-compatibilized nanocomposite increase demonstrated that GnPs incorporation can promote a stiffness improvement of the polymer. This trend can be related to the several physical crosslinking points between the PP matrix and the GnPs. Furthermore, the decrease of strain at a yield of PP/GnPs, together with the enhancement of Young’s modulus, confirms that the GnPs incorporation led to an increase in stiffness but to a decrease in toughness. Moreover, the results demonstrated that incorporation of compatibilizers did not affect Young’s modulus and strain at yield results compared to non-compatibilized nanocomposite. The incorporation of these compatibilizers showed an improvement of nanocomposites’ mechanical properties compared both to those the non-compatibilized nanocomposite and to a PP sample used as reference.

Keywords: graphene nanoplatelets, mechanical properties, melt blending processing, poly(propylene)-based nanocomposites

Procedia PDF Downloads 187
64 The Development of Assessment Criteria Framework for Sustainable Healthcare Buildings in China

Authors: Chenyao Shen, Jie Shen

Abstract:

The rating system provides an effective framework for assessing building environmental performance and integrating sustainable development into building and construction processes; as it can be used as a design tool by developing appropriate sustainable design strategies and determining performance measures to guide the sustainable design and decision-making processes. Healthcare buildings are resource (water, energy, etc.) intensive. To maintain high-cost operations and complex medical facilities, they require a great deal of hazardous and non-hazardous materials, stringent control of environmental parameters, and are responsible for producing polluting emission. Compared with other types of buildings, the impact of healthcare buildings on the full cycle of the environment is particularly large. With broad recognition among designers and operators that energy use can be reduced substantially, many countries have set up their own green rating systems for healthcare buildings. There are four main green healthcare building evaluation systems widely acknowledged in the world - Green Guide for Health Care (GGHC), which was jointly organized by the United States HCWH and CMPBS in 2003; BREEAM Healthcare, issued by the British Academy of Building Research (BRE) in 2008; the Green Star-Healthcare v1 tool, released by the Green Building Council of Australia (GBCA) in 2009; and LEED Healthcare 2009, released by the United States Green Building Council (USGBC) in 2011. In addition, the German Association of Sustainable Building (DGNB) has also been developing the German Sustainable Building Evaluation Criteria (DGNB HC). In China, more and more scholars and policy makers have recognized the importance of assessment of sustainable development, and have adapted some tools and frameworks. China’s first comprehensive assessment standard for green building (the GBTs) was issued in 2006 (lately updated in 2014), promoting sustainability in the built-environment and raise awareness of environmental issues among architects, engineers, contractors as well as the public. However, healthcare building was not involved in the evaluation system of GBTs because of its complex medical procedures, strict requirements of indoor/outdoor environment and energy consumption of various functional rooms. Learn from advanced experience of GGHC, BREEAM, and LEED HC above, China’s first assessment criteria for green hospital/healthcare buildings was finally released in December 2015. Combined with both quantitative and qualitative assessment criteria, the standard highlight the differences between healthcare and other public buildings in meeting the functional needs for medical facilities and special groups. This paper has focused on the assessment criteria framework for sustainable healthcare buildings, for which the comparison of different rating systems is rather essential. Descriptive analysis is conducted together with the cross-matrix analysis to reveal rich information on green assessment criteria in a coherent manner. The research intends to know whether the green elements for healthcare buildings in China are different from those conducted in other countries, and how to improve its assessment criteria framework.

Keywords: assessment criteria framework, green building design, healthcare building, building performance rating tool

Procedia PDF Downloads 147
63 Navigating Rapids And Collecting Medical Insights: A Data Collection Of Athletes Presenting To The Medical Team At The International Canoe Federation Canoe Slalom World Championships 2023

Authors: Grace Scaplehorn, Muhammad Adeel Akhtar, Jane Gibson

Abstract:

Background: Canoe Slalom entails the skilful navigation of a carbon composite canoe or kayak through a series of 18-25 hanging gates, strategically positioned along the course, either upstream or downstream, amidst currents of whitewater rapids in natural and man-made river settings. Athletes compete individually in timed trials, competing for the fastest course time, typically around 80 to 120 seconds. In the new discipline of Kayak Cross, descents of the course are initiated by groups of four athletes freefalling simultaneously from a starting platform situated 3m above the river. Kayak Cross athletes, in contrast to Canoe Slalom, can make physical contact with suspended gates without incurring time penalties and are required to perform a kayak roll half way down the course. The Canoe Slalom World Championships were held at Lee Valley Whitewater Centre, London, from 19th to 24th September 2023. The event comprised 299 international athletes competing for 10 World Championship titles in Canoe/Kayak Slalom events (Olympic Debut Munich 1972), and the new Kayak Cross discipline (Olympic Debut Paris 2024). The inaugural appearance of Kayak Cross at the World Championships occurred in 2017, in Pau, France. There is limited literature surrounding Kayak Cross and the incidence of athlete injuries compared to traditional Canoe Slalom, hence it was felt important to undertake this review to address the perception that the event is dangerous. Aim: The study aimed to quantify and collate data collected from athletes presenting to the event medical centre. Methods: Athletes’ details were collected at initial assessments from the start of the practice period (16th–18th September) and throughout the event. Demographics such as age, sex and nationality were recorded along with presenting complaints, treatment, medication administered and outcome. Specifically, injuries were then sub-classified into body regions. The data does not include athletes who sought medical attention from their own governing body’s medical team. Results: During the 8-day period, there were 11 individual presentations to the medical centre, 3.7% of the athlete population (n=299). The mean age was 23.9 years (n=7), 6 were male (n=10). The most common presentation was minor injury (n=9), with 6 being musculoskeletal and 3 comprising skin damage, followed by insect sting/allergy (n=1) and pain relief requests (n=1). Five presentations were event-related, all being musculoskeletal injuries; 2 shoulder/arm, 1 head/neck, 1 hand/wrist and 1 other (data was not recorded). Of these injuries, the only intervention was 2 cases of 400mg Ibuprofen, which was given to both shoulder/arm injuries. Four of the 11 presentations were pre-existing injuries, which had been exacerbated due to increased intensity of practice. Two patients were advised to return for review, with 100% compliance. There were no unplanned re-presentations, and no emergency transfers to secondary care. Both the Kayak Cross and Canoe Slalom competitions resulted in 1 new event-related athlete presentation each. Conclusion: The event resulted in a negligible incidence of presentations at the medical centre, for both Kayak Cross and Canoe Slalom. This data holds significance in informing risk assessments and medical protocols necessary for the organisation of canoe slalom events.

Keywords: canoe slalom, kayak cross, athlete injuries, event injuries

Procedia PDF Downloads 57
62 Wind Tunnel Tests on Ground-Mounted and Roof-Mounted Photovoltaic Array Systems

Authors: Chao-Yang Huang, Rwey-Hua Cherng, Chung-Lin Fu, Yuan-Lung Lo

Abstract:

Solar energy is one of the replaceable choices to reduce the CO2 emission produced by conventional power plants in the modern society. As an island which is frequently visited by strong typhoons and earthquakes, it is an urgent issue for Taiwan to make an effort in revising the local regulations to strengthen the safety design of photovoltaic systems. Currently, the Taiwanese code for wind resistant design of structures does not have a clear explanation on photovoltaic systems, especially when the systems are arranged in arrayed format. Furthermore, when the arrayed photovoltaic system is mounted on the rooftop, the approaching flow is significantly altered by the building and led to different pressure pattern in the different area of the photovoltaic system. In this study, L-shape arrayed photovoltaic system is mounted on the ground of the wind tunnel and then mounted on the building rooftop. The system is consisted of 60 PV models. Each panel model is equivalent to a full size of 3.0 m in depth and 10.0 m in length. Six pressure taps are installed on the upper surface of the panel model and the other six are on the bottom surface to measure the net pressures. Wind attack angle is varied from 0° to 360° in a 10° interval for the worst concern due to wind direction. The sampling rate of the pressure scanning system is set as high enough to precisely estimate the peak pressure and at least 20 samples are recorded for good ensemble average stability. Each sample is equivalent to 10-minute time length in full scale. All the scale factors, including timescale, length scale, and velocity scale, are properly verified by similarity rules in low wind speed wind tunnel environment. The purpose of L-shape arrayed system is for the understanding the pressure characteristics at the corner area. Extreme value analysis is applied to obtain the design pressure coefficient for each net pressure. The commonly utilized Cook-and-Mayne coefficient, 78%, is set to the target non-exceedance probability for design pressure coefficients under Gumbel distribution. Best linear unbiased estimator method is utilized for the Gumbel parameter identification. Careful time moving averaging method is also concerned in data processing. Results show that when the arrayed photovoltaic system is mounted on the ground, the first row of the panels reveals stronger positive pressure than that mounted on the rooftop. Due to the flow separation occurring at the building edge, the first row of the panels on the rooftop is most in negative pressures; the last row, on the other hand, shows positive pressures because of the flow reattachment. Different areas also have different pressure patterns, which corresponds well to the regulations in ASCE7-16 describing the area division for design values. Several minor observations are found according to parametric studies, such as rooftop edge effect, parapet effect, building aspect effect, row interval effect, and so on. General comments are then made for the proposal of regulation revision in Taiwanese code.

Keywords: aerodynamic force coefficient, ground-mounted, roof-mounted, wind tunnel test, photovoltaic

Procedia PDF Downloads 139
61 A Case of Severe Iatrogenic Cushing’s Syndrome Followed by Adrenal Crisis, Multifocal Pneumonia, Sepsis, Pulmonary Embolism and Prolonged Adrenal Insufficiency

Authors: Jelena Maletkovic

Abstract:

Background: Endogenous Cushing’s syndrome is a rare disease, but iatrogenic or drug related Cushing syndrome from glucocorticoid products is commonly seen in clinical practice. With high dose and long term use of glucocorticoids, patients can develop isolated hypothalamic-pituitary-adrenal (HPA) suppression, or HPA axis suppression can be accompanied by overt iatrogenic Cushing’s syndrome. This is a rare case where severe Cushing’s syndrome developed from an unknown medication and was followed by severe and prolonged adrenal insufficiency and multiple potentially fatal complications. Case: This is a 37-year-old woman who is presented to Emergency Room (ER) with shortness of breath and chest pain. Four months prior to this presentation the patient was a generally healthy woman who was looking for improvement in her appearance and visited local Rejuvenation Clinic. After initial consultation with a nurse, she was contacted by a physician over the phone and was advised to start taking multiple injectable medications that will arrive by mail. Medications without any labels on bottles were delivered and the patient started daily intramuscular injections. Over the next two months, she noticed rounding of her face and swelling around her eyes. She gained 20 pounds, mostly abdominal fat and became extremely fatigued. Her muscles on legs were visibly decreasing in size and she felt significant muscle weakness. Unexplained bruising occurred. She started growing hair on face and developed secondary amenorrhea. New severe back pain started. She developed depression and headaches. Finally, over a few days, a number of red-purple stretch marks that were sensitive and painful appeared over her abdomen, upper part of arms and legs. She then became suspicious that these dramatic symptoms are caused by injectable medication and she discontinued injections. Over the next few days she presented to ER with low blood pressure and oxygen saturation of 75%. Studies revealed extensive pneumonia as well as multiple pulmonary emboli. Her white blood count was elevated with 32 000 and she also had acute kidney failure on admission. She was treated for sepsis and was also given stress dose steroids. Steroids were tapered over 48 hours and discontinued. After being discharged to home, on her first visit to endocrinology clinic she had undetectable ACTH of < 2pg/mL and undetectable 8am cortisol of < 0.2mcg/dL. She did not respond to an intramuscular injection of cosyntropin 250mcg and her repeated cortisol after 60 minutes was only 1mcg/dL. The patient was diagnosed with adrenal insufficiency and was started on hydrocortisone 20mg+10mg. It took close to 2 years of slow tapering for recovery of this patient’s HPA axis and resolve all the sequelae from Cushing’s syndrome. Conclusion: Misuse and abuse of glucocorticoids have been present almost since these medications were discovered. This is a rare case where not only severe Cushing’s syndrome in full clinical picture developed but also the patient suffered multiple potentially fatal complications and prolonged adrenal insufficiency. Visits to herbal, rejuvenation, esthetic, and similar clinics are becoming more and more popular and physicians need to be aware of possible non-benign nature of medications that their patients may be using.

Keywords: iatrogenic, Cushing's syndrome, adrenal crisis, steroid abuse

Procedia PDF Downloads 169
60 Comparison of Titanium and Aluminum Functions as Spoilers for Dose Uniformity Achievement in Abutting Oblique Electron Fields: A Monte Carlo Simulation Study

Authors: Faranak Felfeliyan, Parvaneh Shokrani, Maryam Atarod

Abstract:

Introduction Using electron beam is widespread in radiotherapy. The main criteria in radiation therapy is to irradiate the tumor volume with maximum prescribed dose and minimum dose to vital organs around it. Using abutting fields is common in radiotherapy. The main problem in using abutting fields is dose inhomogeneity in the junction region. Electron beam divergence and lateral scattering may lead to hot and cold spots in the junction region. One solution for this problem is using of a spoiler to broaden the penumbra and uniform dose in the junction region. The goal of this research was to compare titanium and aluminum effects as a spoiler for dose uniformity achievement in the junction region of oblique electron fields with Monte Carlo simulation. Dose uniformity in the junction region depends on density, scattering power, thickness of the spoiler and the angle between two fields. Materials and Methods In this study, Monte Carlo model of Siemens Primus linear accelerator was simulated for a 5 MeV nominal energy electron beam using manufacture provided specifications. BEAMnrc and EGSnrc user code were used to simulate the treatment head in electron mode (simulation of beam model). The resulting phase space file was used as a source for dose calculations for 10×10 cm2 field size at SSD=100 cm in a 30×30×45 cm3 water phantom using DOSXYZnrc user code (dose calculations). An automatic MP3-M water phantom tank, MEPHYSTO mc2 software platform and a Semi-Flex Chamber-31010 with sensitive vol­ume of 0.125 cm3 (PTW, Freiburg, Germany) were used for dose distribution measurements. Moreover, the electron field size was 10×10 cm2 and SSD=100 cm. Validation of devel­oped beam model was done by comparing the measured and calculated depth and lateral dose distributions (verification of electron beam model). Simulation of spoilers (using SLAB compo­nent module) placed at the end of the electron applicator, was done using previously vali­dated phase space file for a 5 MeV nominal energy and 10×10 cm2 field size (simulation of spoiler). An in-house routine was developed in order to calculate the combined isodose curves re­sulting from the two simulated abutting fields (calculation of dose distribution in abutting electron fields). Results Verification of the developed 5.9 MeV elec­tron beam model was done by comparing the calculated and measured dose distributions. The maximum percentage difference between calculated and measured PDD was 1%, except for the build-up region in which the difference was 2%. The difference between calculated and measured profile was 2% at the edges of the field and less than 1% in other regions. The effect of PMMA, aluminum, titanium and chromium in dose uniformity achievement in abutting normal electron fields with equivalent thicknesses to 5mm PMMA was evaluated. Comparing R90 and uniformity index of different materials, aluminum was chosen as the optimum spoiler. Titanium has the maximum surface dose. Thus, aluminum and titanium had been chosen to use for dose uniformity achievement in oblique electron fields. Using the optimum beam spoiler, junction dose decreased from 160% to 110% for 15 degrees, from 180% to 120% for 30 degrees, from 160% to 120% for 45 degrees and from 180% to 100% for 60 degrees oblique abutting fields. Using Titanium spoiler, junction dose decreased from 160% to 120% for 15 degrees, 180% to 120% for 30 degrees, 160% to 120% for 45 degrees and 180% to 110% for 60 degrees. In addition, penumbra width for 15 degrees, without spoiler in the surface was 10 mm and was increased to 15.5 mm with titanium spoiler. For 30 degrees, from 9 mm to 15 mm, for 45 degrees from 4 mm to 6 mm and for 60 degrees, from 5 mm to 8 mm. Conclusion Using spoilers, penumbra width at the surface increased, size and depth of hot spots was decreased and dose homogeneity improved at the junc­tion of abutting electron fields. Dose at the junction region of abutting oblique fields was improved significantly by using spoiler. Maximum dose at the junction region for 15⁰, 30⁰, 45⁰ and 60⁰ was decreased about 40%, 60%, 40% and 70% respectively for Titanium and about 50%, 60%, 40% and 80% for Aluminum. Considering significantly decrease in maximum dose using titanium spoiler, unfortunately, dose distribution in the junction region was not decreased less than 110%.

Keywords: abutting fields, electron beam, radiation therapy, spoilers

Procedia PDF Downloads 176
59 Planning Railway Assets Renewal with a Multiobjective Approach

Authors: João Coutinho-Rodrigues, Nuno Sousa, Luís Alçada-Almeida

Abstract:

Transportation infrastructure systems are fundamental in modern society and economy. However, they need modernizing, maintaining, and reinforcing interventions which require large investments. In many countries, accumulated intervention delays arise from aging and intense use, being magnified by financial constraints of the past. The decision problem of managing the renewal of large backlogs is common to several types of important transportation infrastructures (e.g., railways, roads). This problem requires considering financial aspects as well as operational constraints under a multidimensional framework. The present research introduces a linear programming multiobjective model for managing railway infrastructure asset renewal. The model aims at minimizing three objectives: (i) yearly investment peak, by evenly spreading investment throughout multiple years; (ii) total cost, which includes extra maintenance costs incurred from renewal backlogs; (iii) priority delays related to work start postponements on the higher priority railway sections. Operational constraints ensure that passenger and freight services are not excessively delayed from having railway line sections under intervention. Achieving a balanced annual investment plan, without compromising the total financial effort or excessively postponing the execution of the priority works, was the motivation for pursuing the research which is now presented. The methodology, inspired by a real case study and tested with real data, reflects aspects of the practice of an infrastructure management company and is generalizable to different types of infrastructure (e.g., railways, highways). It was conceived for treating renewal interventions in infrastructure assets, which is a railway network may be rails, ballasts, sleepers, etc.; while a section is under intervention, trains must run at reduced speed, causing delays in services. The model cannot, therefore, allow for an accumulation of works on the same line, which may cause excessively large delays. Similarly, the lines do not all have the same socio-economic importance or service intensity, making it is necessary to prioritize the sections to be renewed. The model takes these issues into account, and its output is an optimized works schedule for the renewal project translatable in Gantt charts The infrastructure management company provided all the data for the first test case study and validated the parameterization. This case consists of several sections to be renewed, over 5 years and belonging to 17 lines. A large instance was also generated, reflecting a problem of a size similar to the USA railway network (considered the largest one in the world), so it is not expected that considerably larger problems appear in real life; an average of 25 years backlog and ten years of project horizon was considered. Despite the very large increase in the number of decision variables (200 times as large), the computational time cost did not increase very significantly. It is thus expectable that just about any real-life problem can be treated in a modern computer, regardless of size. The trade-off analysis shows that if the decision maker allows some increase in max yearly investment (i.e., degradation of objective ii), solutions improve considerably in the remaining two objectives.

Keywords: transport infrastructure, asset renewal, railway maintenance, multiobjective modeling

Procedia PDF Downloads 146
58 Challenges to Developing a Trans-European Programme for Health Professionals to Recognize and Respond to Survivors of Domestic Violence and Abuse

Authors: June Keeling, Christina Athanasiades, Vaiva Hendrixson, Delyth Wyndham

Abstract:

Recognition and education in violence, abuse, and neglect for medical and healthcare practitioners (REVAMP) is a trans-European project aiming to introduce a training programme that has been specifically developed by partners across seven European countries to meet the needs of medical and healthcare practitioners. Amalgamating the knowledge and experience of clinicians, researchers, and educators from interdisciplinary and multi-professional backgrounds, REVAMP has tackled the under-resourced and underdeveloped area of domestic violence and abuse. The team designed an online training programme to support medical and healthcare practitioners to recognise and respond appropriately to survivors of domestic violence and abuse at their point of contact with a health provider. The REVAMP partner countries include Europe: France, Lithuania, Germany, Greece, Iceland, Norway, and the UK. The training is delivered through a series of interactive online modules, adapting evidence-based pedagogical approaches to learning. Capturing and addressing the complexities of the project impacted the methodological decisions and approaches to evaluation. The challenge was to find an evaluation methodology that captured valid data across all partner languages to demonstrate the extent of the change in knowledge and understanding. Co-development by all team members was a lengthy iterative process, challenged by a lack of consistency in terminology. A mixed methods approach enabled both qualitative and quantitative data to be collected, at the start, during, and at the conclusion of the training for the purposes of evaluation. The module content and evaluation instrument were accessible in each partner country's language. Collecting both types of data provided a high-level snapshot of attainment via the quantitative dataset and an in-depth understanding of the impact of the training from the qualitative dataset. The analysis was mixed methods, with integration at multiple interfaces. The primary focus of the analysis was to support the overall project evaluation for the funding agency. A key project outcome was identifying that the trans-European approach posed several challenges. Firstly, the project partners did not share a first language or a legal or professional approach to domestic abuse and neglect. This was negotiated through complex, systematic, and iterative interaction between team members so that consensus could be achieved. Secondly, the context of the data collection in several different cultural, educational, and healthcare systems across Europe challenged the development of a robust evaluation. The participants in the pilot evaluation shared that the training was contemporary, well-designed, and of great relevance to inform practice. Initial results from the evaluation indicated that the participants were drawn from more than eight partner countries due to the online nature of the training. The primary results indicated a high level of engagement with the content and achievement through the online assessment. The main finding was that the participants perceived the impact of domestic abuse and neglect in very different ways in their individual professional contexts. Most significantly, the participants recognised the need for the training and the gap that existed previously. It is notable that a mixed-methods evaluation of a trans-European project is unusual at this scale.

Keywords: domestic violence, e-learning, health professionals, trans-European

Procedia PDF Downloads 85
57 Removal of VOCs from Gas Streams with Double Perovskite-Type Catalyst

Authors: Kuan Lun Pan, Moo Been Chang

Abstract:

Volatile organic compounds (VOCs) are one of major air contaminants, and they can react with nitrogen oxides (NOx) in atmosphere to form ozone (O3) and peroxyacetyl nitrate (PAN) with solar irradiation, leading to environmental hazards. In addition, some VOCs are toxic at low concentration levels and cause adverse effects on human health. How to effectively reduce VOCs emission has become an important issue. Thermal catalysis is regarded as an effective way for VOCs removal because it provides oxidation route to successfully convert VOCs into carbon dioxide (CO2) and water (H2O(g)). Single perovskite-type catalysts are promising for VOC removal, and they are of good potential to replace noble metals due to good activity and high thermal stability. Single perovskites can be generally described as ABO3 or A2BO4, where A-site is often a rare earth element or an alkaline. Typically, the B-site is transition metal cation (Fe, Cu, Ni, Co, or Mn). Catalytic properties of perovskites mainly rely on nature, oxidation states and arrangement of B-site cation. Interestingly, single perovskites could be further synthesized to form double perovskite-type catalysts which can simply be represented by A2B’B”O6. Likewise, A-site stands for an alkaline metal or rare earth element, and the B′ and B′′ are transition metals. Double perovskites possess unique surface properties. In structure, three-dimensional of B-site with ordered arrangement of B’O6 and B”O6 is presented alternately, and they corner-share octahedral along three directions of the crystal lattice, while cations of A-site position between the void of octahedral. It has attracted considerable attention due to specific arrangement of alternating B-site structure. Therefore, double perovskites may have more variations than single perovskites, and this greater variation may promote catalytic performance. It is expected that activity of double perovskites is higher than that of single perovskites toward VOC removal. In this study, double perovskite-type catalyst (La2CoMnO6) is prepared and evaluated for VOC removal. Also, single perovskites including LaCoO3 and LaMnO3 are tested for the comparison purpose. Toluene (C7H8) is one of the important VOCs which are commonly applied in chemical processes. In addition to its wide application, C7H8 has high toxicity at a low concentration. Therefore, C7H8 is selected as the target compound in this study. Experimental results indicate that double perovskite (La2CoMnO6) has better activity if compared with single perovskites. Especially, C7H8 can be completely oxidized to CO2 at 300oC as La2CoMnO6 is applied. Characterization of catalysts indicates that double perovskite has unique surface properties and is of higher amounts of lattice oxygen, leading to higher activity. For durability test, La2CoMnO6 maintains high C7H8 removal efficiency of 100% at 300oC and 30,000 h-1, and it also shows good resistance to CO2 (5%) and H2O(g) (5%) of gas streams tested. For various VOCs including isopropyl alcohol (C3H8O), ethanal (C2H4O), and ethylene (C2H4) tested, as high as 100% efficiency could be achieved with double perovskite-type catalyst operated at 300℃, indicating that double perovskites are promising catalysts for VOCs removal, and possible mechanisms will be elucidated in this paper.

Keywords: volatile organic compounds, Toluene (C7H8), double perovskite-type catalyst, catalysis

Procedia PDF Downloads 166
56 National Accreditation Board for Hospitals and Healthcare Reaccreditation, the Challenges and Advantages: A Qualitative Case Study

Authors: Narottam Puri, Gurvinder Kaur

Abstract:

Background: The National Accreditation Board for Hospitals & Healthcare Providers (NABH) is India’s apex standard setting accrediting body in health care which evaluates and accredits healthcare organizations. NABH requires accredited organizations to become reaccredited every three years. It is often though that once the initial accreditation is complete, the foundation is set and reaccreditation is a much simpler process. Fortis Hospital, Shalimar Bagh, a part of the Fortis Healthcare group is a 262 bed, multi-specialty tertiary care hospital. The hospital was successfully accredited in the year 2012. On completion of its first cycle, the hospital underwent a reaccreditation assessment in the year 2015. This paper aims to gain a better understanding of the challenges that accredited hospitals face when preparing for a renewal of their accreditations. Methods: The study was conducted using a cross-sectional mixed methods approach; semi-structured interviews were conducted with senior leadership team and staff members including doctors and nurses. Documents collated by the QA team while preparing for the re-assessment like the data on quality indicators: the method of collection, analysis, trending, continual incremental improvements made over time, minutes of the meetings, amendments made to the existing policies and new policies drafted was reviewed to understand the challenges. Results: The senior leadership had a concern about the cost of accreditation and its impact on the quality of health care services considering the staff effort and time consumed it. The management was however in favor of continuing with the accreditation since it offered competitive advantage, strengthened community confidence besides better pay rates from the payors. The clinicians regarded it as an increased non-clinical workload. Doctors felt accountable within a professional framework, to themselves, the patient and family, their peers and to their profession; but not to accreditation bodies and raised concerns on how the quality indicators were measured. The departmental leaders had a positive perception of accreditation. They agreed that it ensured high standards of care and improved management of their functional areas. However, they were reluctant in sparing people for the QA activities due to staffing issues. With staff turnover, a lot of work was lost as sticky knowledge and had to be redone. Listing the continual quality improvement initiatives over the last 3 years was a challenge in itself. Conclusion: The success of any quality assurance reaccreditation program depends almost entirely on the commitment and interest of the administrators, nurses, paramedical staff, and clinicians. The leader of the Quality Movement is critical in propelling and building momentum. Leaders need to recognize skepticism and resistance and consider ways in which staff can become positively engaged. Involvement of all the functional owners is the start point towards building ownership and accountability for standards compliance. Creativity plays a very valuable role. Communication by Mail Series, WhatsApp groups, Quizzes, Events, and any and every form helps. Leaders must be able to generate interest and commitment without burdening clinical and administrative staff with an activity they neither understand nor believe in.

Keywords: NABH, reaccreditation, quality assurance, quality indicators

Procedia PDF Downloads 226
55 Upon Poly(2-Hydroxyethyl Methacrylate-Co-3, 9-Divinyl-2, 4, 8, 10-Tetraoxaspiro (5.5) Undecane) as Polymer Matrix Ensuring Intramolecular Strategies for Further Coupling Applications

Authors: Aurica P. Chiriac, Vera Balan, Mihai Asandulesa, Elena Butnaru, Nita Tudorachi, Elena Stoleru, Loredana E. Nita, Iordana Neamtu, Alina Diaconu, Liliana Mititelu-Tartau

Abstract:

The interest for studying ‘smart’ materials is entirely justified and in this context were realized investigations on poly(2-hydroxyethylmethacrylate-co-3, 9-divinyl-2, 4, 8, 10-tetraoxaspiro (5.5) undecane), which is a macromolecular compound with sensibility at pH and temperature, gel formation capacity, binding properties, amphilicity, good oxidative and thermal stability. Physico-chemical characteristics in terms of the molecular weight, temperature-sensitive abilities and thermal stability, as well rheological, dielectric and spectroscopic properties were evaluated in correlation with further coupling capabilities. Differential scanning calorimetry investigation indicated Tg at 36.6 °C and a melting point at Tm=72.8°C, for the studied copolymer, and up to 200oC two exothermic processes (at 99.7°C and 148.8°C) were registered with losing weight of about 4 %, respective 19.27%, which indicate just processes of thermal decomposition (and not phenomena of thermal transition) owing to scission of the functional groups and breakage of the macromolecular chains. At the same time, the rheological studies (rotational tests) confirmed the non-Newtonian shear-thinning fluid behavior of the copolymer solution. The dielectric properties of the copolymer have been evaluated in order to investigate the relaxation processes and two relaxation processes under Tg value were registered and attributed to localized motions of polar groups from side chain macromolecules, or parts of them, without disturbing the main chains. According to literature and confirmed as well by our investigations, β-relaxation is assigned with the rotation of the ester side group and the γ-relaxation corresponds to the rotation of hydroxy- methyl side groups. The fluorescence spectroscopy confirmed the copolymer structure, the spiroacetal moiety getting an axial conformation, more stable, with lower energy, able for specific interactions with molecules from environment, phenomena underlined by different shapes of the emission spectra of the copolymer. Also, the copolymer was used as template for indomethacin incorporation as model drug, and the biocompatible character of the complex was confirmed. The release behavior of the bioactive compound was dependent by the copolymer matrix composition, the increasing of 3, 9-divinyl-2, 4, 8, 10-tetraoxaspiro (5.5) undecane comonomer amount attenuating the drug release. At the same time, the in vivo studies did not show significant differences of leucocyte formula elements, GOT, GPT and LDH levels, nor immune parameters (OC, PC, and BC) between control mice group and groups treated just with copolymer samples, with or without drug, data attesting the biocompatibility of the polymer samples. The investigation of the physico-chemical characteristics of poly(2-hydrxyethyl methacrylate-co-3, 9-divinyl-2, 4, 8, 10-tetraoxaspiro (5.5) undecane) in terms of temperature-sensitive abilities, rheological and dielectrical properties, are bringing useful information for further specific use of this polymeric compound.

Keywords: bioapplications, dielectric and spectroscopic properties, dual sensitivity at pH and temperature, smart materials

Procedia PDF Downloads 282
54 On the Possibility of Real Time Characterisation of Ambient Toxicity Using Multi-Wavelength Photoacoustic Instrument

Authors: Tibor Ajtai, Máté Pintér, Noémi Utry, Gergely Kiss-Albert, Andrea Palágyi, László Manczinger, Csaba Vágvölgyi, Gábor Szabó, Zoltán Bozóki

Abstract:

According to the best knowledge of the authors, here we experimentally demonstrate first, a quantified correlation between the real-time measured optical feature of the ambient and the off-line measured toxicity data. Finally, using these correlations we are presenting a novel methodology for real time characterisation of ambient toxicity based on the multi wavelength aerosol phase photoacoustic measurement. Ambient carbonaceous particulate matter is one of the most intensively studied atmospheric constituent in climate science nowadays. Beyond their climatic impact, atmospheric soot also plays an important role as an air pollutant that harms human health. Moreover, according to the latest scientific assessments ambient soot is the second most important anthropogenic emission source, while in health aspect its being one of the most harmful atmospheric constituents as well. Despite of its importance, generally accepted standard methodology for the quantitative determination of ambient toxicology is not available yet. Dominantly, ambient toxicology measurement is based on the posterior analysis of filter accumulated aerosol with limited time resolution. Most of the toxicological studies are based on operational definitions using different measurement protocols therefore the comprehensive analysis of the existing data set is really limited in many cases. The situation is further complicated by the fact that even during its relatively short residence time the physicochemical features of the aerosol can be masked significantly by the actual ambient factors. Therefore, decreasing the time resolution of the existing methodology and developing real-time methodology for air quality monitoring are really actual issues in the air pollution research. During the last decades many experimental studies have verified that there is a relation between the chemical composition and the absorption feature quantified by Absorption Angström Exponent (AAE) of the carbonaceous particulate matter. Although the scientific community are in the common platform that the PhotoAcoustic Spectroscopy (PAS) is the only methodology that can measure the light absorption by aerosol with accurate and reliable way so far, the multi-wavelength PAS which are able to selectively characterise the wavelength dependency of absorption has become only available in the last decade. In this study, the first results of the intensive measurement campaign focusing the physicochemical and toxicological characterisation of ambient particulate matter are presented. Here we demonstrate the complete microphysical characterisation of winter time urban ambient including optical absorption and scattering as well as size distribution using our recently developed state of the art multi-wavelength photoacoustic instrument (4λ-PAS), integrating nephelometer (Aurora 3000) as well as single mobility particle sizer and optical particle counter (SMPS+C). Beyond this on-line characterisation of the ambient, we also demonstrate the results of the eco-, cyto- and genotoxicity measurements of ambient aerosol based on the posterior analysis of filter accumulated aerosol with 6h time resolution. We demonstrate a diurnal variation of toxicities and AAE data deduced directly from the multi-wavelength absorption measurement results.

Keywords: photoacoustic spectroscopy, absorption Angström exponent, toxicity, Ames-test

Procedia PDF Downloads 304
53 Kinetic Rate Comparison of Methane Catalytic Combustion of Palladium Catalysts Impregnated onto ɤ-Alumina and Bio-Char

Authors: Noor S. Nasri, Eric C. A. Tatt, Usman D. Hamza, Jibril Mohammed, Husna M. Zain

Abstract:

Climate change has becoming a global environmental issue that may trigger irreversible changes in the environment with catastrophic consequences for human, animals and plants on our planet. Methane, carbon dioxide and nitrous oxide are the greenhouse gases (GHG) and as the main factor that significantly contributes to the global warming. Mainly carbon dioxide be produced and released to atmosphere by thermal industrial and power generation sectors. Methane is dominant component of natural gas releases significant of thermal heat, and the gaseous pollutants when homogeneous thermal combustion takes place at high temperature. Heterogeneous catalytic Combustion (HCC) principle is promising technologies towards environmental friendly energy production should be developed to ensure higher yields with lower pollutants gaseous emissions and perform complete combustion oxidation at moderate temperature condition as comparing to homogeneous high thermal combustion. Hence the principle has become a very interesting alternative total oxidation for the treatment of pollutants gaseous emission especially NOX product formation. Noble metals are dispersed on a support-porous HCC such as γ- Al2O3, TiO2 and ThO2 to increase thermal stability of catalyst and to increase to effectiveness of catalytic combustion. Support-porous HCC material to be selected based on factors of the surface area, porosity, thermal stability, thermal conductivity, reactivity with reactants or products, chemical stability, catalytic activity, and catalyst life. γ- Al2O3 with high catalytic activity and can last longer life of catalyst, is commonly used as the support for Pd catalyst at low temperatures. Sustainable and renewable support-material of bio-mass char was derived from agro-industrial waste material and used to compare with those the conventional support-porous material. The abundant of biomass wastes generated in palm oil industries is one potential source to convert the wastes into sustainable material as replacement of support material for catalysts. Objective of this study was to compare the kinetic rate of reaction the combustion of methane on Palladium (Pd) based catalyst with Al2O3 support and bio-char (Bc) support derived from shell kernel. The 2wt% Pd was prepared using incipient wetness impregnation method and the HCC performance was accomplished using tubular quartz reactor with gas mixture ratio of 3% methane and 97% air. Material characterization was determined using TGA, SEM, and BET surface area. The methane porous-HCC conversion was carried out by online gas analyzer connected to the reactor that performed porous-HCC. BET surface area for prepared 2 wt% Pd/Bc is smaller than prepared 2wt% Pd/ Al2O3 due to its low porosity between particles. The order of catalyst activity based on kinetic rate on reaction of catalysts in low temperature is prepared 2wt% Pd/Bc > calcined 2wt% Pd/ Al2O3 > prepared 2wt% Pd/ Al2O3 > calcined 2wt% Pd/Bc. Hence the usage of agro-industrial bio-mass waste material can enhance the sustainability principle.

Keywords: catalytic-combustion, environmental, support-bio-char material, sustainable and renewable material

Procedia PDF Downloads 391
52 Tailoring Structural, Thermal and Luminescent Properties of Solid-State MIL-53(Al) MOF via Fe³⁺ Cation Exchange

Authors: T. Ul Rehman, S. Agnello, F. M. Gelardi, M. M. Calvino, G. Lazzara, G. Buscarino, M. Cannas

Abstract:

Metal-Organic Frameworks (MOFs) have emerged as promising candidates for detecting metal ions owing to their large surface area, customizable porosity, and diverse functionalities. In recent years, there has been a surge in research focused on MOFs with luminescent properties. These frameworks are constructed through coordinated bonding between metal ions and multi-dentate ligands, resulting in inherent fluorescent structures. Their luminescent behavior is influenced by factors like structural composition, surface morphology, pore volume, and interactions with target analytes, particularly metal ions. MOFs exhibit various sensing mechanisms, including photo-induced electron transfer (PET) and charge transfer processes such as ligand-to-metal (LMCT) and metal-to-ligand (MLCT) transitions. Among these, MIL-53(Al) stands out due to its flexibility, stability, and specific affinity towards certain metal ions, making it a promising platform for selective metal ion sensing. This study investigates the structural, thermal, and luminescent properties of MIL-53(Al) metal-organic framework (MOF) upon Fe3+ cation exchange. Two separate sets of samples were prepared to activate the MOF powder at different temperatures. The first set of samples, referred to as MIL-53(Al), activated (120°C), was prepared by activating the raw powder in a glass tube at 120°C for 12 hours and then sealing it. The second set of samples, referred to as MIL-53(Al), activated (300°C), was prepared by activating the MIL-53(Al) powder in a glass tube at 300°C for 70 hours. Additionally, 25 mg of MIL-53(Al) powder was dispersed in 5 mL of Fe3+ solution at various concentrations (0.1-100 mM) for the cation exchange experiment. The suspension was centrifuged for five minutes at 10,000 rpm to extract MIL-53(Al) powder. After three rounds of washing with ultrapure water, MIL-53(Al) powder was heated at 120°C for 12 hours. For PXRD and TGA analyses, a sample of the obtained MIL-53(Al) was used. We also activated the cation-exchanged samples for time-resolved photoluminescence (TRPL) measurements at two distinct temperatures (120 and 300°C) for comparative analysis. Powder X-ray diffraction patterns reveal amorphization in samples with higher Fe3+ concentrations, attributed to alterations in coordination environments and ion exchange dynamics. Thermal decomposition analysis shows reduced weight loss in Fe3+-exchanged MOFs, indicating enhanced stability due to stronger metal-ligand bonds and altered decomposition pathways. Raman spectroscopy demonstrates intensity decrease, shape disruption, and frequency shifts, indicative of structural perturbations induced by cation exchange. Photoluminescence spectra exhibit ligand-based emission (π-π* or n-π*) and ligand-to-metal charge transfer (LMCT), influenced by activation temperature and Fe3+ incorporation. Quenching of luminescence intensity and shorter lifetimes upon Fe3+ exchange result from structural distortions and Fe3+ binding to organic linkers. In a nutshell, this research underscores the complex interplay between composition, structure, and properties in MOFs, offering insights into their potential for diverse applications in catalysis, gas storage, and luminescent devices.

Keywords: Fe³⁺ cation exchange, luminescent metal-organic frameworks (LMOFs), MIL-53(Al), solid-state analysis

Procedia PDF Downloads 66
51 Effect of a Chatbot-Assisted Adoption of Self-Regulated Spaced Practice on Students' Vocabulary Acquisition and Cognitive Load

Authors: Ngoc-Nguyen Nguyen, Hsiu-Ling Chen, Thanh-Truc Lai Huynh

Abstract:

In foreign language learning, vocabulary acquisition has consistently posed challenges to learners, especially for those at lower levels. Conventional approaches often fail to promote vocabulary learning and ensure engaging experiences alike. The emergence of mobile learning, particularly the integration of chatbot systems, has offered alternative ways to facilitate this practice. Chatbots have proven effective in educational contexts by offering interactive learning experiences in a constructivist manner. These tools have caught attention in the field of mobile-assisted language learning (MALL) in recent years. This research is conducted in an English for Specific Purposes (ESP) course at the A2 level of the CEFR, designed for non-English majors. Participants are first-year Vietnamese students aged 18 to 20 at a university. This quasi-experimental study follows a pretest-posttest control group design over five weeks, with two classes randomly assigned as the experimental and control groups. The experimental group engages in chatbot-assisted spaced practice with SRL components, while the control group uses the same spaced practice without SRL. The two classes are taught by the same lecturer. Data are collected through pre- and post-tests, cognitive load surveys, and semi-structured interviews. The combination of self-regulated learning (SRL) and distributed practice, grounded in the spacing effect, forms the basis of the present study. SRL elements, which concern goal setting and strategy planning, are integrated into the system. The spaced practice method, similar to those used in widely recognized learning platforms like Duolingo and Anki flashcards, spreads out learning over multiple sessions. This study’s design features quizzes progressively increasing in difficulty. These quizzes are aimed at targeting both the Recognition-Recall and Comprehension-Use dimensions for a comprehensive acquisition of vocabulary. The mobile-based chatbot system is built using Golang, an open-source programming language developed by Google. It follows a structured flow that guides learners through a series of 4 quizzes in each week of teacher-led learning. The quizzes start with less cognitively demanding tasks, such as multiple-choice questions, before moving on to more complex exercises. The integration of SRL elements allows students to self-evaluate the difficulty level of vocabulary items, predict scores achieved, and choose appropriate strategy. This research is part one of a two-part project. The initial findings will determine the development of an upgraded chatbot system in part two, where adaptive features in response to the integration of SRL components will be introduced. The research objectives are to assess the effectiveness of the chatbot-assisted approach, based on the combination of spaced practice and SRL, in improving vocabulary acquisition and managing cognitive load, as well as to understand students' perceptions of this learning tool. The insights from this study will contribute to the growing body of research on mobile-assisted language learning and offer practical implications for integrating chatbot systems with spaced practice into educational settings to enhance vocabulary learning.

Keywords: mobile learning, mobile-assisted language learning, MALL, chatbots, vocabulary learning, spaced practice, spacing effect, self-regulated learning, SRL, self-regulation, EFL, cognitive load

Procedia PDF Downloads 22
50 Measuring Green Growth Indicators: Implication for Policy

Authors: Hanee Ryu

Abstract:

The former president Lee Myung-bak's administration of Korea presented “green growth” as a catchphrase from 2008. He declared “low-carbon, green growth” the nation's vision for the next decade according to United Nation Framework on Climate Change. The government designed omnidirectional policy for low-carbon and green growth with concentrating all effort of departments. The structural change was expected because this slogan is the identity of the government, which is strongly driven with the whole department. After his administration ends, the purpose of this paper is to quantify the policy effect and to compare with the value of the other OECD countries. The major target values under direct policy objectives were suggested, but it could not capture the entire landscape on which the policy makes changes. This paper figures out the policy impacts through comparing the value of ex-ante between the one of ex-post. Furthermore, each index level of Korea’s low-carbon and green growth comparing with the value of the other OECD countries. To measure the policy effect, indicators international organizations have developed are considered. Environmental Sustainable Index (ESI) and Environmental Performance Index (EPI) have been developed by Yale University’s Center for Environmental Law and Policy and Columbia University’s Center for International Earth Science Information Network in collaboration with the World Economic Forum and Joint Research Center of European Commission. It has been widely used to assess the level of natural resource endowments, pollution level, environmental management efforts and society’s capacity to improve its environmental performance over time. Recently OCED publish the Green Growth Indicator for monitoring progress towards green growth based on internationally comparable data. They build up the conceptual framework and select indicators according to well specified criteria: economic activities, natural asset base, environmental dimension of quality of life and economic opportunities and policy response. It considers the socio-economic context and reflects the characteristic of growth. Some selected indicators are used for measuring the level of changes the green growth policies have induced in this paper. As results, the CO2 productivity and energy productivity show trends of declination. It means that policy intended industry structure shift for achieving carbon emission target affects weakly in the short-term. Increasing green technologies patents might result from the investment of previous period. The increasing of official development aids which can be immediately embarked by political decision with no time lag present only in 2008-2009. It means international collaboration and investment to developing countries via ODA has not succeeded since the initial stage of his administration. The green growth framework makes the public expect structural change, but it shows sporadic effect. It needs organization to manage it in terms of the long-range perspectives. Energy, climate change and green growth are not the issue to be handled in the one period of the administration. The policy mechanism to transfer cost problem to value creation should be developed consistently.

Keywords: comparing ex-ante between ex-post indicator, green growth indicator, implication for green growth policy, measuring policy effect

Procedia PDF Downloads 449
49 Black-Box-Optimization Approach for High Precision Multi-Axes Forward-Feed Design

Authors: Sebastian Kehne, Alexander Epple, Werner Herfs

Abstract:

A new method for optimal selection of components for multi-axes forward-feed drive systems is proposed in which the choice of motors, gear boxes and ball screw drives is optimized. Essential is here the synchronization of electrical and mechanical frequency behavior of all axes because even advanced controls (like H∞-controls) can only control a small part of the mechanical modes – namely only those of observable and controllable states whose value can be derived from the positions of extern linear length measurement systems and/or rotary encoders on the motor or gear box shafts. Further problems are the unknown processing forces like cutting forces in machine tools during normal operation which make the estimation and control via an observer even more difficult. To start with, the open source Modelica Feed Drive Library which was developed at the Laboratory for Machine Tools, and Production Engineering (WZL) is extended from one axis design to the multi axes design. It is capable to simulate the mechanical, electrical and thermal behavior of permanent magnet synchronous machines with inverters, different gear boxes and ball screw drives in a mechanical system. To keep the calculation time down analytical equations are used for field and torque producing equivalent circuit, heat dissipation and mechanical torque at the shaft. As a first step, a small machine tool with a working area of 635 x 315 x 420 mm is taken apart, and the mechanical transfer behavior is measured with an impulse hammer and acceleration sensors. With the frequency transfer functions, a mechanical finite element model is built up which is reduced with substructure coupling to a mass-damper system which models the most important modes of the axes. The model is modelled with Modelica Feed Drive Library and validated by further relative measurements between machine table and spindle holder with a piezo actor and acceleration sensors. In a next step, the choice of possible components in motor catalogues is limited by derived analytical formulas which are based on well-known metrics to gain effective power and torque of the components. The simulation in Modelica is run with different permanent magnet synchronous motors, gear boxes and ball screw drives from different suppliers. To speed up the optimization different black-box optimization methods (Surrogate-based, gradient-based and evolutionary) are tested on the case. The objective that was chosen is to minimize the integral of the deviations if a step is given on the position controls of the different axes. Small values are good measures for a high dynamic axes. In each iteration (evaluation of one set of components) the control variables are adjusted automatically to have an overshoot less than 1%. It is obtained that the order of the components in optimization problem has a deep impact on the speed of the black-box optimization. An approach to do efficient black-box optimization for multi-axes design is presented in the last part. The authors would like to thank the German Research Foundation DFG for financial support of the project “Optimierung des mechatronischen Entwurfs von mehrachsigen Antriebssystemen (HE 5386/14-1 | 6954/4-1)” (English: Optimization of the Mechatronic Design of Multi-Axes Drive Systems).

Keywords: ball screw drive design, discrete optimization, forward feed drives, gear box design, linear drives, machine tools, motor design, multi-axes design

Procedia PDF Downloads 287
48 The Relationship between Fight-Flight-Freeze System, Level of Expressed Emotion in Family, and Emotion Regulation Difficulties of University Students: Comparison Experienced to Inexperienced Non-Suicidal Self-Injury Students (NSSI)

Authors: Hyojung Shin, Munhee Kweon

Abstract:

Non-suicide Self Injuri (NSSI) can be defined as the act of an individual who does not intend to die directly and intentionally damaging his or her body tissues. According to a study conducted by the Korean Ministry of Education in 2018, the NSSI is widely spreading among teenagers, with 7.9 percent of all middle school students and 6.4 percent of high school students reporting experience in NSSI. As such, it is understood that the first time of the NSSI is in adolescence. However, the NSSI may not start and stop at a certain time, but may last longer. However, despite the widespread prevalence of NSSI among teenagers, little is known about the process and maintenance of NSSI college students on a continuous development basis. Korea's NSSI research trends are mainly focused on individual internal vulnerabilities (high levels of painful emotions/awareness, lack of pain tolerance) and interpersonal vulnerabilities (poor communication skills and social problem solving), and little studies have been done on individuals' unique characteristics and environmental factors such as substrate or environmental vulnerability factors. In particular, environmental factors are associated with the occurrence of NSSI by acting as a vulnerability factor that can interfere with the emotional control of individuals, whereas individual factors play a more direct role by contributing to the maintenance of NSSI, so it is more important to consider this for personal environmental involvement in NSSI. This study focused on the Fight-Flight-Freeze System as a factor in the defensive avoidance system of Reward Sensitivity in individual factors. Also, Environmental factors include the level of expressed emotion in family. Wedig and Nock (2007) said that if parents with a self-critical cognitive style take the form of criticizing their children, the experience of NSSI increases. The high level of parental criticism is related to the increasing frequency of NSSI acts as well as to serious levels of NSSI. If the normal coping mechanism fails to control emotions, people want to overcome emotional difficulties even through NSSI, and emotional disturbances experienced by individuals within an unsupported social relationship increase vulnerability to NSSI. Based on these theories, this study is to find ways to prevent NSSI and intervene in counseling effectively by verifying the differences between the characteristics experienced NSSI persons and non-experienced NSSI persons. Therefore, the purpose of this research was to examine the relationship of Fight-Flight-Freeze System (FFFS), level of expressed emotion in family and emotion regulation difficulties, comparing those who experienced Non-Suicidal Self-Injury (NSSI) with those who did not experienced Non-Suicidal Self-Injury (NSSI). The data were collected from university students in Seoul Korea and Gyeonggi-do province. 99 subjects were experienced student of NSSI, while 375 were non- experienced student of NSSI. The results of this study are as follows. First, the result of t-test indicated that NSSI attempters showed a significant difference in fight-flight-freeze system, level of expressed emotion and emotion regulation difficulties, compared with non-attempters. Second, fight-flight-freeze system, level of expressed emotion in family and emotion regulation difficulties of NSSI attempters showed a significant difference in correlation. The correlation was significant only freeze system of fight-flight-freeze system, Level of expressed emotion in family and emotion regulation difficulties. Third, freeze system and level of expressed emotion in family predicted emotion regulation difficulties of NSSI attempters. Fight-freeze system and level of expressed emotion in family predicted emotion regulation difficulties of non-NSSI attempters. Lastly, Practical implications for counselors and limitations of this study are discussed.

Keywords: fight-flight-freeze system, level of expressed emotion in family, emotion regulation difficulty, non-suicidal self injury

Procedia PDF Downloads 110
47 Geochemistry and Tectonic Framework of Malani Igneous Suite and Their Effect on Groundwater Quality of Tosham, India

Authors: Naresh Kumar, Savita Kumari, Naresh Kochhar

Abstract:

The objective of the study was to assess the role of mineralogy and subsurface structure on water quality of Tosham, Malani Igneous Suite (MIS), Western Rajasthan, India. MIS is the largest (55,000 km2) A-type, anorogenic and high heat producing acid magmatism in the peninsular India and owes its origin to hot spot tectonics. Apart from agricultural and industrial wastes, geogenic activities cause fluctuations in quality parameters of water resources. Twenty water samples (20) selected from Tosham and surrounding areas were analyzed for As, Pb, B, Al, Zn, Fe, Ni using Inductive coupled plasma emission and F by Ion Chromatography. The concentration of As, Pb, B, Ni and F was above the stipulated level specified by BIS (Bureau of Indian Standards IS-10500, 2012). The concentration of As and Pb in surrounding areas of Tosham ranged from 1.2 to 4.1 mg/l and from 0.59 to 0.9 mg/l respectively which is higher than limits of 0.05mg/l (As) and 0.01 mg/l (Pb). Excess trace metal accumulation in water is toxic to humans and adversely affects the central nervous system, kidneys, gastrointestinal tract, skin and cause mental confusion. Groundwater quality is defined by nature of rock formation, mineral water reaction, physiography, soils, environment, recharge and discharge conditions of the area. Fluoride content in groundwater is due to the solubility of fluoride-bearing minerals like fluorite, cryolite, topaz, and mica, etc. Tosham is comprised of quartz mica schist, quartzite, schorl, tuff, quartz porphyry and associated granites, thus, fluoride is leached out and dissolved in groundwater. In the study area, Ni concentration ranged from 0.07 to 0.5 mg/l (permissible limit 0.02 mg/l). The primary source of nickel in drinking water is leached out nickel from ore-bearing rocks. Higher concentration of As is found in some igneous rocks specifically containing minerals as arsenopyrite (AsFeS), realgar (AsS) and orpiment (As2S3). MIS consists of granite (hypersolvus and subsolvus), rhyolite, dacite, trachyte, andesite, pyroclasts, basalt, gabbro and dolerite which increased the trace elements concentration in groundwater. Nakora, a part of MIS rocks has high concentration of trace and rare earth elements (Ni, Rb, Pb, Sr, Y, Zr, Th, U, La, Ce, Nd, Eu and Yb) which percolates the Ni and Pb to groundwater by weathering, contacts and joints/fractures in rocks. Additionally, geological setting of MIS also causes dissolution of trace elements in water resources beneath the surface. NE–SW tectonic lineament, radial pattern of dykes and volcanic vent at Nakora created a way for leaching of these elements to groundwater. Rain water quality might be altered by major minerals constituents of host Tosham rocks during its percolation through the rock fracture, joints before becoming the integral part of groundwater aquifer. The weathering process like hydration, hydrolysis and solution might be the cause of change in water chemistry of particular area. These studies suggest that geological relation of soil-water horizon with MIS rocks via mineralogical variations, structures and tectonic setting affects the water quality of the studied area.

Keywords: geochemistry, groundwater, malani igneous suite, tosham

Procedia PDF Downloads 219
46 Environmental Impacts Assessment of Power Generation via Biomass Gasification Systems: Life Cycle Analysis (LCA) Approach for Tars Release

Authors: Grâce Chidikofan, François Pinta, A. Benoist, G. Volle, J. Valette

Abstract:

Statement of the Problem: biomass gasification systems may be relevant for decentralized power generation from recoverable agricultural and wood residues available in rural areas. In recent years, many systems have been implemented in all over the world as especially in Cambodgia, India. Although they have many positive effects, these systems can also affect the environment and human health. Indeed, during the process of biomass gasification, black wastewater containing tars are produced and generally discharged in the local environment either into the rivers or on soil. However, in most environmental assessment studies of biomass gasification systems, the impact of these releases are underestimated, due to the difficulty of identification of their chemical substances. This work deal with the analysis of the environmental impacts of tars from wood gasification in terms of human toxicity cancer effect, human toxicity non-cancer effect, and freshwater ecotoxicity. Methodology: A Life Cycle Assessment (LCA) approach was adopted. The inventory of tars chemicals substances was based on experimental data from a downdraft gasification system. The composition of six samples from two batches of raw materials: one batch made of tree wood species (oak+ plane tree +pine) at 25 % moisture content and the second batch made of oak at 11% moisture content. The tests were carried out for different gasifier load rates, respectively in the range 50-75% and 50-100%. To choose the environmental impacts assessment method, we compared the methods available in SIMAPRO tool (8.2.0) which are taking into account most of the chemical substances. The environmental impacts for 1kg of tars discharged were characterized by ILCD 2011+ method (V.1.08). Findings Experimental results revealed 38 important chemical substances in varying proportion from one test to another. Only 30 are characterized by ILCD 2011+ method, which is one of the best performing methods. The results show that wood species or moisture content have no significant impact on human toxicity noncancer effect (HTNCE) and freshwater ecotoxicity (FWE) for water release. For human toxicity cancer effect (HTCE), a small gap is observed between impact factors of the two batches, either 3.08E-7 CTUh/kg against 6.58E-7 CTUh/kg. On the other hand, it was found that the risk of negative effects is higher in case of tar release into water than on soil for all impact categories. Indeed, considering the set of samples, the average impact factor obtained for HTNCE varies respectively from 1.64 E-7 to 1.60E-8 CTUh/kg. For HTCE, the impact factor varies between 4.83E-07 CTUh/kg and 2.43E-08 CTUh/kg. The variability of those impact factors is relatively low for these two impact categories. Concerning FWE, the variability of impact factor is very high. It is 1.3E+03 CTUe/kg for tars release into water against 2.01E+01 CTUe/kg for tars release on soil. Statement concluding: The results of this study show that the environmental impacts of tars emission of biomass gasification systems can be consequent and it is important to investigate the ways to reduce them. For environmental research, these results represent an important step of a global environmental assessment of the studied systems. It could be used to better manage the wastewater containing tars to reduce as possible the impacts of numerous still running systems all over the world.

Keywords: biomass gasification, life cycle analysis, LCA, environmental impact, tars

Procedia PDF Downloads 281
45 Growth Patterns of Pyrite Crystals Studied by Electron Back Scatter Diffraction (EBSD)

Authors: Kirsten Techmer, Jan-Erik Rybak, Simon Rudolph

Abstract:

Natural formed pyrites (FeS2) are frequent sulfides in sedimentary and metamorphic rocks. Growth textures of idiomorphic pyrite assemblages reflect the conditions during their formation in the geologic sequence, furtheron the local texture analyses of the growth patterns of pyrite assemblages by EBSD reveal the possibility to resolve the growth conditions during the formation of pyrite at the micron scale. The spatial resolution of local texture measurements in the Scanning Electron Microscope used can be in the nanomete scale. Orientation contrasts resulting from domains of smaller misorientations within larger pyrite crystals can be resolved as well. The electron optical studies have been carried out in a Field-Emission Scanning Electron Microscope (FEI Quanta 200) equipped with a CCD camera to study the orientation contrasts along the surfaces of pyrite. Idiomorphic cubic single crystals of pyrite, polycrystalline assemblages of pyrite, spherically grown spheres of pyrite as well as pyrite-bearing ammonites have been studied by EBSD in the Scanning Electron Microscope. Samples were chosen to show no or minor secondary deformation and an idiomorphic 3D crystal habit, so the local textures of pyrite result mainly from growth and minor from deformation. The samples studied derived from Navajun (Spain), Chalchidiki (Greece), Thüringen (Germany) and Unterkliem (Austria). Chemical analyses by EDAX show pyrite with minor inhomogeneities e.g., single crystals of galena and chalcopyrite along the grain boundaries of larger pyrite crystals. Intergrowth between marcasite and pyrite can be detected in one sample. Pyrite may form intense growth twinning lamellae on {011}. Twinning, e.g., contact twinning is abundant within the crystals studied and the individual twinning lamellaes can be resolved by EBSD. The ammonites studied show a replacement of the shale by newly formed pyrite resulting in an intense intergrowth of calcite and pyrite. EBSD measurements indicate a polycrystalline microfabric of both minerals, still reflecting primary surface structures of the ammonites e.g, the Septen. Discs of pyrite (“pyrite dollar”) as well as pyrite framboids show growth patterns comprising a typical microfabric. EBSD studies reveal an equigranular matrix in the inner part of the discs of pyrite and a fiber growth with larger misorientations in the outer regions between the individual segments. This typical microfabric derived from a formation of pyrite crystals starting at a higher nucleation rate and followed by directional crystal growth. EBSD studies show, that the growth texture of pyrite in the samples studied reveals a correlation between nucleation rate and following growth rate of the pyrites, thus leading to the characteristic crystal habits. Preferential directional growth at lower nucleation rates may lead to the formation of 3D framboids of pyrite. Crystallographic misorientations between the individual fibers are similar. In ammonites studied, primary anisotropies of the substrates like e.g., ammonitic sutures, influence the nucleation, crystal growth and habit of the newly formed pyrites along the surfaces.

Keywords: Electron Back Scatter Diffraction (EBSD), growth pattern, Fe-sulfides (pyrite), texture analyses

Procedia PDF Downloads 293
44 Using Low-Calorie Gas to Generate Heat and Electricity

Authors: Аndrey Marchenko, Oleg Linkov, Alexander Osetrov, Sergiy Kravchenko

Abstract:

The low-calorie of gases include biogas, coal gas, coke oven gas, associated petroleum gas, gases sewage, etc. These gases are usually released into the atmosphere or burned on flares, causing substantial damage to the environment. However, with the right approach, low-calorie gas fuel can become a valuable source of energy. Specified determines the relevance of areas related to the development of low-calorific gas utilization technologies. As an example, in the work considered one of way of utilization of coalmine gas, because Ukraine ranks fourth in the world in terms of coal mine gas emission (4.7% of total global emissions, or 1.2 billion m³ per year). Experts estimate that coal mine gas is actively released in the 70-80 percent of existing mines in Ukraine. The main component of coal mine gas is methane (25-60%) Methane in 21 times has a greater impact on the greenhouse effect than carbon dioxide disposal problem has become increasingly important in the context of the increasing need to address the problems of climate, ecology and environmental protection. So marked causes negative effect of both local and global nature. The efforts of the United Nations and the World Bank led to the adoption of the program 'Zero Routine Flaring by 2030' dedicated to the cessation of these gases burn in flares and disposing them with the ability to generate heat and electricity. This study proposes to use coal gas as a fuel for gas engines to generate heat and electricity. Analyzed the physical-chemical properties of low-calorie gas fuels were allowed to choose a suitable engine, as well as estimate the influence of the composition of the fuel at its techno-economic indicators. Most suitable for low-calorie gas is engine with pre-combustion chamber jet ignition. In Ukraine is accumulated extensive experience in exploitation and production of gas engines with capacity of 1100 kW type GD100 (10GDN 207/2 * 254) fueled by natural gas. By using system pre- combustion chamber jet ignition and quality control in the engines type GD100 introduces the concept of burning depleted burn fuel mixtures, which in turn leads to decrease in the concentration of harmful substances of exhaust gases. The main problems of coal mine gas as a fuel for ICE is low calorific value, the presence of components that adversely affect combustion processes and terms of operation of the ICE, the instability of the composition, weak ignition. In some cases, these problems can be solved by adaptation engine design using coal mine gas as fuel (changing compression ratio, fuel injection quantity increases, change ignition time, increase energy plugs, etc.). It is shown that the use of coal mine gas engines with prechamber has not led to significant changes in the indicator parameters (ηi = 0.43 - 0.45). However, this significantly increases the volumetric fuel consumption, which requires increased fuel injection quantity to ensure constant nominal engine power. Thus, the utilization of low-calorie gas fuels in stationary gas engine type-based GD100 will significantly reduce emissions of harmful substances into the atmosphere when the generate cheap electricity and heat.

Keywords: gas engine, low-calorie gas, methane, pre-combustion chamber, utilization

Procedia PDF Downloads 265
43 Generating Biogas from Municipal Kitchen Waste: An Experience from Gaibandha, Bangladesh

Authors: Taif Rocky, Uttam Saha, Mahobul Islam

Abstract:

With a rapid urbanisation in Bangladesh, waste management remains one of the core challenges. Turning municipal waste into biogas for mass usage is a solution that Bangladesh needs to adopt urgently. Practical Action with its commitment to challenging poverty with technological justice has piloted such idea in Gaibandha. The initiative received immense success and drew the attention of policy makers and practitioners. We believe, biogas from waste can highly contribute to meet the growing demand for energy in the country at present and in the future. Practical Action has field based experience in promoting small scale and innovative technologies. We have proven track record in integrated solid waste management. We further utilized this experience to promote waste to biogas at end users’ level. In 2011, we have piloted a project on waste to biogas in Gaibandha, a northern secondary town of Bangladesh. With resource and support from UNICEF and with our own innovative funds we have established a complete chain of utilizing waste to the renewable energy source and organic fertilizer. Biogas is produced from municipal solid waste, which is properly collected, transported and segregated by private entrepreneurs. The project has two major focuses, diversification of biogas end use and establishing a public-private partnership business model. The project benefits include Recycling of Wastes, Improved institutional (municipal) capacity, Livelihood from improved services and Direct Income from the project. Project risks include Change of municipal leadership, Traditional mindset, Access to decision making, Land availability. We have observed several outcomes from the initiative. Up scaling such an initiative will certainly contribute for sustainable cleaner and healthier urban environment and urban poverty reduction. - It reduces the unsafe disposal of wastes which improve the cleanliness and environment of the town. -Make drainage system effective reducing the adverse impact of water logging or flooding. -Improve public health from better management of wastes. -Promotes usage of biogas replacing the use of firewood/coal which creates smoke and indoor air pollution in kitchens which have long term impact on health of women and children. -Reduce the greenhouse gas emission from the anaerobic recycling of wastes and contributes to sustainable urban environment. -Promote the concept of agroecology from the uses of bio slurry/compost which contributes to food security. -Creates green jobs from waste value chain which impacts on poverty alleviation of urban extreme poor. -Improve municipal governance from inclusive waste services and functional partnership with private sectors. -Contribute to the implementation of 3R (Reduce, Reuse, Recycle) Strategy and Employment Creation of extreme poor to achieve the target set in Vision 2021 by Government of Bangladesh.

Keywords: kitchen waste, secondary town, biogas, segregation

Procedia PDF Downloads 225
42 OASIS: An Alternative Access to Potable Water, Renewable Energy and Organic Food

Authors: Julien G. Chenet, Mario A. Hernandez, U. Leonardo Rodriguez

Abstract:

The tropical areas are places where there is scarcity of access to potable water and where renewable energies need further development. They also display high undernourishment levels, even though they are one of the resources-richest areas in the world. In these areas, it is common to count on great extension of soils, high solar radiation and raw water from rain, groundwater, surface water or even saltwater. Even though resources are available, access to them is limited, and the low-density habitat makes central solutions expensive and investments not worthy. In response to this lack of investment, rural inhabitants use fossil fuels and timber as an energy source and import agrochemical for soils fertilization, which increase GHG emissions. The OASIS project brings an answer to this situation. It supplies renewable energy, potable water and organic food. The first step is the determination of the needs of the communities in terms of energy, water quantity and quality, food requirements and soil characteristics. Second step is the determination of the available resources, such as solar energy, raw water and organic residues on site. The pilot OASIS project is located in the Vichada department, Colombia, and ensures the sustainable use of natural resources to meet the community needs. The department has roughly 70% of indigenous people. They live in a very scattered landscape, with no access to clean water and energy. They use polluted surface water for direct consumption and diesel for energy purposes. OASIS pilot will ensure basic needs for a 400-students education center. In this case, OASIS will provide 20 kW of solar energy potential and 40 liters per student per day. Water will be treated form groundwater, with two qualities. A conventional one with chlorine, and as the indigenous people are not used to chlorine for direct consumption, second train is with reverse osmosis to bring conservable safe water without taste. OASIS offers a solution to supply basic needs, shifting from fossil fuels, timber, to a no-GHG-emission solution. This solution is part of the mitigation strategy against Climate Change for the communities in low-density areas of the tropics. OASIS is a learning center to teach how to convert natural resources into utilizable ones. It is also a meeting point for the community with high pedagogic impact that promotes the efficient and sustainable use of resources. OASIS system is adaptable to any tropical area and competes technically and economically with any conventional solution, that needs transport of energy, treated water and food. It is a fully automatic, replicable and sustainable solution to sort out the issue of access to basic needs in rural areas. OASIS is also a solution to undernourishment, ensuring a responsible use of resources, to prevent long-term pollution of soils and groundwater. It promotes the closure of the nutrient cycle, and the optimal use of the land whilst ensuring food security in depressed low-density regions of the tropics. OASIS is under optimization to Vichada conditions, and will be available to any other tropical area in the following months.

Keywords: climate change adaptation and mitigation, rural development, sustainable access to clean and renewable resources, social inclusion

Procedia PDF Downloads 252