Search results for: indigenous learning space
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11273

Search results for: indigenous learning space

8153 Identifying the Hidden Curriculum Components in the Nursing Education

Authors: Alice Khachian, Shoaleh Bigdeli, Azita Shoghie, Leili Borimnejad

Abstract:

Background and aim: The hidden curriculum is crucial in nursing education and can determine professionalism and professional competence. It has a significant effect on their moral performance in relation to patients. The present study was conducted with the aim of identifying the hidden curriculum components in the nursing and midwifery faculty. Methodology: The ethnographic study was conducted over two years using the Spradley method in one of the nursing schools located in Tehran. In this focused ethnographic research, the approach of Lincoln and Goba, i.e., transferability, confirmability, and dependability, was used. To increase the validity of the data, they were collected from different sources, such as participatory observation, formal and informal interviews, and document review. Two hundred days of participatory observation, fifty informal interviews, and fifteen formal interviews from the maximum opportunities and conditions available to obtain multiple and multilateral information added to the validity of the data. Due to the situation of COVID, some interviews were conducted virtually, and the activity of professors and students in the virtual space was also monitored. Findings: The components of the hidden curriculum of the faculty are: the atmosphere (physical environment, organizational structure, rules and regulations, hospital environment), the interaction between activists, and teaching-learning activities, which ultimately lead to “A disconnection between goals, speech, behavior, and result” had revealed. Conclusion: The mutual effects of the atmosphere and various actors and activities on the process of student development, since the students have the most contact with their peers first, which leads to the most learning, and secondly with the teachers. Clinicians who have close and person-to-person contact with students can have very important effects on students. Students who meet capable and satisfied professors on their way become interested in their field and hope for their future by following the mentor of these professors. On the other hand, weak and dissatisfied professors lead students to feel abandoned, and by forming a colony of peers with different backgrounds, they distort the personality of a group of students and move away from family values, which necessitates a change in some cultural practices at the faculty level.

Keywords: hidden curriculum, nursing education, ethnography, nursing

Procedia PDF Downloads 112
8152 Effect of Two Transactional Instructional Strategies on Primary School Pupils’ Achievement in English Language Vocabulary and Reading Comprehension in Ibadan Metropolis, Nigeria

Authors: Eniola Akande

Abstract:

Introduction: English vocabulary and reading comprehension are core to academic achievement in many school subjects. Deficiency in both accounts for dismal performance in internal and external examinations among primary school pupils in Ibadan Metropolis, Nigeria. Previous studies largely focused on factors influencing pupils’ achievement in English vocabulary and reading comprehension. In spite of what literature has shown, the problem still persists, implying the need for other kinds of intervention. This study was therefore carried out to determine the effect of two transactional strategies Picture Walk (PW) and Know-Want to Learn-Learnt (KWL) on primary four pupils’ achievement in English vocabulary and reading comprehension in Ibadan Metropolis. The moderating effects of gender and learning style were also examined. Methodology: The study was anchored on Rosenblatt’s Transactional Reading and Piaget’s Cognitive Development theories; pretest-posttest control group quasi-experimental design with 3x2x3 factorial matrix was adopted. Six public primary schools were purposively selected based on the availability of qualified English language teachers in Primary Education Studies. Six intact classes (one per school) with a total of 101 primary four pupils (48 males and 53 females) participated. The intact classes were randomly assigned to PW (27), KWL (44) and conventional (30) groups. Instruments used were English Vocabulary (r=0.83), Reading Comprehension (r=0.84) achievement tests, Pupils’ Learning Style Preference Scale (r=0.93) and instructional guides. Treatment lasted six weeks. Data were analysed using the Descriptive statistics, Analysis of Covariance and Bonferroni post-hoc test at 0.05 level of significance. The mean age was 8.86±0.84 years. Result: Treatment had a significant main effect on pupils’ reading comprehension (F(2,82)=3.17), but not on English vocabulary. Participants in KWL obtained the highest post achievement means score in reading comprehension (8.93), followed by PW (8.06) and control (7.21) groups. Pupils’ learning style had a significant main effect on pupils’ achievement in reading comprehension (F(2,82)=4.41), but not on English vocabulary. Pupils with preference for tactile learning style had the highest post achievement mean score in reading comprehension (9.40), followed by the auditory (7.43) and the visual learning style (7.37) groups. Gender had no significant main effect on English vocabulary and reading comprehension. There was no significant two-way interaction effect of treatment and gender on pupils’ achievement in English vocabulary and reading comprehension. The two-way interaction effect of treatment and learning style on pupils’ achievement in reading comprehension was significant (F(4,82)=3.37), in favour of pupils with tactile learning style in PW group. There was no significant two-way interaction effect of gender and learning style on pupils’ achievement in English vocabulary and reading comprehension. The three-way interaction effects were not significant on English vocabulary and reading comprehension. Conclusion: Picture Walk and Know-Want to learn-Learnt instructional strategies were effective in enhancing pupils’ achievement in reading comprehension but not on English vocabulary. Learning style contributed considerably to achievement in reading comprehension but not to English vocabulary. Primary school, English language teachers, should put into consideration pupils’ learning style when adopting both strategies in teaching reading comprehension for improved achievement in the subject.

Keywords: comprehension-based intervention, know-want to learn-learnt, learning style, picture walk, primary school pupils

Procedia PDF Downloads 149
8151 The Optimal Order Policy for the Newsvendor Model under Worker Learning

Authors: Sunantha Teyarachakul

Abstract:

We consider the worker-learning Newsvendor Model, under the case of lost-sales for unmet demand, with the research objective of proposing the cost-minimization order policy and lot size, scheduled to arrive at the beginning of the selling-period. In general, the New Vendor Model is used to find the optimal order quantity for the perishable items such as fashionable products or those with seasonal demand or short-life cycles. Technically, it is used when the product demand is stochastic and available for the single selling-season, and when there is only a one time opportunity for the vendor to purchase, with possibly of long ordering lead-times. Our work differs from the classical Newsvendor Model in that we incorporate the human factor (specifically worker learning) and its influence over the costs of processing units into the model. We describe this by using the well-known Wright’s Learning Curve. Most of the assumptions of the classical New Vendor Model are still maintained in our work, such as the constant per-unit cost of leftover and shortage, the zero initial inventory, as well as the continuous time. Our problem is challenging in the way that the best order quantity in the classical model, which is balancing the over-stocking and under-stocking costs, is no longer optimal. Specifically, when adding the cost-saving from worker learning to such expected total cost, the convexity of the cost function will likely not be maintained. This has called for a new way in determining the optimal order policy. In response to such challenges, we found a number of characteristics related to the expected cost function and its derivatives, which we then used in formulating the optimal ordering policy. Examples of such characteristics are; the optimal order quantity exists and is unique if the demand follows a Uniform Distribution; if the demand follows the Beta Distribution with some specific properties of its parameters, the second derivative of the expected cost function has at most two roots; and there exists the specific level of lot size that satisfies the first order condition. Our research results could be helpful for analysis of supply chain coordination and of the periodic review system for similar problems.

Keywords: inventory management, Newsvendor model, order policy, worker learning

Procedia PDF Downloads 419
8150 The Reach of Shopping Center Layout Form on Subway Based on Kernel Density Estimate

Authors: Wen Liu

Abstract:

With the rapid progress of modern cities, the railway construction must be developing quickly in China. As a typical high-density country, shopping center on the subway should be one important factor during the process of urban development. The paper discusses the influence of the layout of shopping center on the subway, and put it in the time and space’s axis of Shanghai urban development. We use the digital technology to establish the database of relevant information. And then get the change role about shopping center on subway in Shanghaiby the Kernel density estimate. The result shows the development of shopping center on subway has a relationship with local economic strength, population size, policy support, and city construction. And the suburbanization trend of shopping center would be increasingly significant. By this case research, we could see the Kernel density estimate is an efficient analysis method on the spatial layout. It could reveal the characters of layout form of shopping center on subway in essence. And it can also be applied to the other research of space form.

Keywords: Shanghai, shopping center on the subway, layout form, Kernel density estimate

Procedia PDF Downloads 319
8149 How can Introducing Omani Literature in Foreign Language Classrooms Influence students' Motivation in Learning the Language?

Authors: Ibtisam Mohammed Al-Quraini

Abstract:

This paper examines how introducing Omani literature in foreign language classrooms can influence the students' motivation in learning the language. The data was collected through the questionnaire which was administered to two samples (A and B) of the participants. Sample A was comprised of 30 female students from English department who are specialist in English literature in college of Arts and Social Science. Sample B in contrast was comprised of 10 female students who their major is English from college of Education. Results show that each genre in literature has different influence on the students' motivation in learning the language which proves that literacy texts are powerful. Generally, Omani English teachers tend to avoid teaching literature because they think that it is a difficult method to use in teaching field. However, the advantages and the influences of teaching poetries, short stories, and plays are discussed. Recommendations for current research and further research are also discussed at the end.

Keywords: education, foreign language, English, Omani literature, poetry, story, play

Procedia PDF Downloads 394
8148 The Politics of Plantation Development and Formation of 'Tribal Settlements': Life and Livelihood of the Mannans in the Cardamom Hills of India

Authors: Anu Krishna

Abstract:

Cardamom Hills geographically falls into the Western Ghat region in the state of Kerala (India). The fame of these hills dates back to antiquity as the abode of various indigenous communities and treasure house of spices like cardamom. With the colonial conquest over the region, the evergreen forests got converted into zones of mono-cropping with commercial crops such as coffee, tea, cardamom etc. on plantation basis; a process which has been further accentuated with the migration of settlers during the post-independent times. Curiously, when Cardamom Hills are better known today as the plantation belt of the country or as one of the most fostering grounds of agrarian capitalism producing the lion share of Indian cardamom, the indigenous communities of the place such as the Mannans got alienated of their ancestral lands, became inter-generational proletariats and got reduced into ‘segmented spaces’ called the settlements. While dispossession of land for plantations has dislocated the economic life of the Mannans, the migration of the settlers has resulted into a complete social, cultural, political and demographic dominion over them. This has not only relegated their existential relations, history, culture and association with the place but also condensed them as the ‘Other’ in their own territories. Therefore inquisitively, violation of rights of the communities like Mannans, encroachment of their lands, negation towards their very existence and distortion of their history gets defined as the ‘Manifest Destiny’ of the people and place whereby its inevitability gets manufactured. This paper is an attempt to elicit the ways in which the formation of Mannan settlements are interconnected to the historical reality and contemporary opulence of the plantation industry in the place. The arguments put forth by this study is based on extensive ethnographic fieldwork conducted in various Mannan settlements in the cardamom hills. The study basically dwells on to the methodological premises of multi-sited ethnography wherein information was gathered from different sites such as settlements, plantations and other interactive spaces wherein the Mannans from the settlements engages in socio-economic, cultural and political relations. Such an attempt was made to understand in depth the associations and interactions that people in the settlements have among themselves and others. The study equally uses the method of oral history to understand the alternative history, the socio-cultural and economic life of the people before the importation of plantations to the place. The paper gauges into the ways in which settlements imprisons generations of Mannans into plantation work and acts as moulds for subservient, hardworking plantation labourers.

Keywords: Cardamom Hills, plantations, labourers, Mannans, segmented spaces, settlements

Procedia PDF Downloads 250
8147 Effect of Urbanization on Basic Environmental Components

Authors: Sehba Saleem

Abstract:

A country with a spread of only 2.4 percent of the total land surface area of the world, India is home to 17.5 percent of the world population. This fact is sufficient enough to delineate as well as simultaneously bringing to fore the paradox which exists between land and human population. It is evident that the relation which exists between both is an unequal one where the latter has the ability to multiply self, but the former remains constant. This unequal relation that exists has very significantly contributed to the depletion in the quality of land. This is because construction of every kind and nature has been forced on the land to assimilate the ever increasing population which has altered the not only the land but the environment which existed on the land. To get behind this alteration, it becomes imperative to delve into concepts like urbanization, ecology and their amalgam viz. urban ecology. The concept of urban ecology does not only involve study of buildings, flora, and fauna which exists in a given land space. It goes further into establishing a relation between construction on land and the consequent harm, which the same is causing to the environmental resources like air, water etc. This paper shall try cerebrating concepts of urbanization, ecology and urban ecology in the light of relation which exists between man and nature.

Keywords: asymmetrical growth, environment, urbanisation, urban space

Procedia PDF Downloads 340
8146 Using iPads and Tablets in Language Teaching and Learning Process

Authors: Ece Sarigul

Abstract:

It is an undeniable fact that, teachers need new strategies to communicate with students of the next generation and to shape enticing educational experiences for them. Many schools have launched iPad/ Tablets initiatives in an effort to enhance student learning. Despite their rapid adoption, the extent to which iPads / Tablets increase student engagement and learning is not well understood. This presentation aims to examine the use of iPads and Tablets in primary and high schools in Turkey as well as in the world to increase academic achievement through promotion of higher order thinking skills. In addition to explaining the ideas of school teachers and students who use the specific iPads or Tablets , various applications in schools and their use will be discussed and demonstrated in this study. The specific” iPads or Tablets” applications discussed in this presentation can be incorporated into the curriculum to assist in developing transformative practices and programs to meet the needs of a diverse student population. In the conclusion section of the presentation, there will be some suggestions for teachers about the effective use of technological devices in the classroom. This study can help educators understand better how students are currently using iPads and Tablets and shape future use.

Keywords: ipads, language teaching, tablets, technology

Procedia PDF Downloads 257
8145 Miller’s Model for Developing Critical Thinking Skill of Pre-Service Teachers at Suan Sunandha Rajabhat University

Authors: Suttipong Boonphadung, Thassanant Unnanantn

Abstract:

The research study aimed to (1) compare the critical thinking of the teacher students of Suan Sunandha Rajabhat University before and after applying Miller’s Model learning activities and (2) investigate the students’ opinions towards Miller’s Model learning activities for improving the critical thinking. The participants of this study were purposively selected. They were 3 groups of teacher students: (1) fourth year 33 student teachers majoring in Early Childhood Education and enrolling in semester 1 of academic year 2013 (2) third year 28 student teachers majoring in English and enrolling in semester 2 of academic year 2013 and (3) third year 22 student teachers majoring in Thai and enrolling in semester 2 of academic year 2013. The research instruments were (1) lesson plans where the learning activities were settled based on Miller’s Model (2) critical thinking assessment criteria and (3) a questionnaire on opinions towards Miller’s Model based learning activities. The statistical treatment was mean, deviation, different scores and T-test. The result unfolded that (1) the critical thinking of the students after the assigned activities was better than before and (2) the students’ opinions towards the critical thinking improvement activities based on Miller’s Model ranged from the level of high to highest.

Keywords: critical thinking, Miller’s model, opinions, pre-service teachers

Procedia PDF Downloads 478
8144 Effect of a Chatbot-Assisted Adoption of Self-Regulated Spaced Practice on Students' Vocabulary Acquisition and Cognitive Load

Authors: Ngoc-Nguyen Nguyen, Hsiu-Ling Chen, Thanh-Truc Lai Huynh

Abstract:

In foreign language learning, vocabulary acquisition has consistently posed challenges to learners, especially for those at lower levels. Conventional approaches often fail to promote vocabulary learning and ensure engaging experiences alike. The emergence of mobile learning, particularly the integration of chatbot systems, has offered alternative ways to facilitate this practice. Chatbots have proven effective in educational contexts by offering interactive learning experiences in a constructivist manner. These tools have caught attention in the field of mobile-assisted language learning (MALL) in recent years. This research is conducted in an English for Specific Purposes (ESP) course at the A2 level of the CEFR, designed for non-English majors. Participants are first-year Vietnamese students aged 18 to 20 at a university. This quasi-experimental study follows a pretest-posttest control group design over five weeks, with two classes randomly assigned as the experimental and control groups. The experimental group engages in chatbot-assisted spaced practice with SRL components, while the control group uses the same spaced practice without SRL. The two classes are taught by the same lecturer. Data are collected through pre- and post-tests, cognitive load surveys, and semi-structured interviews. The combination of self-regulated learning (SRL) and distributed practice, grounded in the spacing effect, forms the basis of the present study. SRL elements, which concern goal setting and strategy planning, are integrated into the system. The spaced practice method, similar to those used in widely recognized learning platforms like Duolingo and Anki flashcards, spreads out learning over multiple sessions. This study’s design features quizzes progressively increasing in difficulty. These quizzes are aimed at targeting both the Recognition-Recall and Comprehension-Use dimensions for a comprehensive acquisition of vocabulary. The mobile-based chatbot system is built using Golang, an open-source programming language developed by Google. It follows a structured flow that guides learners through a series of 4 quizzes in each week of teacher-led learning. The quizzes start with less cognitively demanding tasks, such as multiple-choice questions, before moving on to more complex exercises. The integration of SRL elements allows students to self-evaluate the difficulty level of vocabulary items, predict scores achieved, and choose appropriate strategy. This research is part one of a two-part project. The initial findings will determine the development of an upgraded chatbot system in part two, where adaptive features in response to the integration of SRL components will be introduced. The research objectives are to assess the effectiveness of the chatbot-assisted approach, based on the combination of spaced practice and SRL, in improving vocabulary acquisition and managing cognitive load, as well as to understand students' perceptions of this learning tool. The insights from this study will contribute to the growing body of research on mobile-assisted language learning and offer practical implications for integrating chatbot systems with spaced practice into educational settings to enhance vocabulary learning.

Keywords: mobile learning, mobile-assisted language learning, MALL, chatbots, vocabulary learning, spaced practice, spacing effect, self-regulated learning, SRL, self-regulation, EFL, cognitive load

Procedia PDF Downloads 26
8143 Advancing Urban Sustainability through Data-Driven Machine Learning Solutions

Authors: Nasim Eslamirad, Mahdi Rasoulinezhad, Francesco De Luca, Sadok Ben Yahia, Kimmo Sakari Lylykangas, Francesco Pilla

Abstract:

With the ongoing urbanization, cities face increasing environmental challenges impacting human well-being. To tackle these issues, data-driven approaches in urban analysis have gained prominence, leveraging urban data to promote sustainability. Integrating Machine Learning techniques enables researchers to analyze and predict complex environmental phenomena like Urban Heat Island occurrences in urban areas. This paper demonstrates the implementation of data-driven approach and interpretable Machine Learning algorithms with interpretability techniques to conduct comprehensive data analyses for sustainable urban design. The developed framework and algorithms are demonstrated for Tallinn, Estonia to develop sustainable urban strategies to mitigate urban heat waves. Geospatial data, preprocessed and labeled with UHI levels, are used to train various ML models, with Logistic Regression emerging as the best-performing model based on evaluation metrics to derive a mathematical equation representing the area with UHI or without UHI effects, providing insights into UHI occurrences based on buildings and urban features. The derived formula highlights the importance of building volume, height, area, and shape length to create an urban environment with UHI impact. The data-driven approach and derived equation inform mitigation strategies and sustainable urban development in Tallinn and offer valuable guidance for other locations with varying climates.

Keywords: data-driven approach, machine learning transparent models, interpretable machine learning models, urban heat island effect

Procedia PDF Downloads 44
8142 Motivation and Self-Concept in Language Learning: An Exploratory Study of English Language Learners

Authors: A. van Staden, M. M. Coetzee

Abstract:

Despite numerous efforts to increase the literacy level of South African learners, for example, through the implementation of educational policies such as the Revised National Curriculum statement, advocating mother-tongue instruction (during a child's formative years), in reality, the majority of South African children are still being educated in a second language (in most cases English). Moreover, despite the fact that a significant percentage of our country's budget is spent on the education sector and that both policy makers and educationalists have emphasized the importance of learning English in this globalized world, the poor overall academic performance and English literacy level of a large number of school leavers are still a major concern. As we move forward in an attempt to comprehend the nuances of English language and literacy development in our country, it is imperative to explore both extrinsic and intrinsic factors that contribute or impede the effective development of English as a second language. In the present study, the researchers set out to investigate how intrinsic factors such as motivation and self-concept contribute to or affect English language learning amongst high school learners in South Africa. Emanating from the above the main research question that guided this research is the following: Is there a significant relationship between high school learners' self-concept, motivation, and English second language performances? In order to investigate this hypothesis, this study utilized quantitative research methodology to investigate the interplay of self-concept and motivation in English language learning. For this purpose, we sampled 201 high school learners from various schools in South Africa. Methods of data gathering inter alia included the following: A biographical questionnaire; the Academic Motivational Scale and the Piers-Harris Self-Concept Scale. Pearson Product Moment Correlation Analyses yielded significant correlations between L2 learners' motivation and their English language proficiency, including demonstrating positive correlations between L2 learners' self-concept and their achievements in English. Accordingly, researchers have argued that the learning context, in which students learn English as a second language, has a crucial influence on students' motivational levels. This emphasizes the important role the teacher has to play in creating learning environments that will enhance L2 learners' motivation and improve their self-concepts.

Keywords: motivation, self-concept, language learning, English second language learners (L2)

Procedia PDF Downloads 274
8141 Automatic Lead Qualification with Opinion Mining in Customer Relationship Management Projects

Authors: Victor Radich, Tania Basso, Regina Moraes

Abstract:

Lead qualification is one of the main procedures in Customer Relationship Management (CRM) projects. Its main goal is to identify potential consumers who have the ideal characteristics to establish a profitable and long-term relationship with a certain organization. Social networks can be an important source of data for identifying and qualifying leads since interest in specific products or services can be identified from the users’ expressed feelings of (dis)satisfaction. In this context, this work proposes the use of machine learning techniques and sentiment analysis as an extra step in the lead qualification process in order to improve it. In addition to machine learning models, sentiment analysis or opinion mining can be used to understand the evaluation that the user makes of a particular service, product, or brand. The results obtained so far have shown that it is possible to extract data from social networks and combine the techniques for a more complete classification.

Keywords: lead qualification, sentiment analysis, opinion mining, machine learning, CRM, lead scoring

Procedia PDF Downloads 92
8140 Poster : Incident Signals Estimation Based on a Modified MCA Learning Algorithm

Authors: Rashid Ahmed , John N. Avaritsiotis

Abstract:

Many signal subspace-based approaches have already been proposed for determining the fixed Direction of Arrival (DOA) of plane waves impinging on an array of sensors. Two procedures for DOA estimation based neural networks are presented. First, Principal Component Analysis (PCA) is employed to extract the maximum eigenvalue and eigenvector from signal subspace to estimate DOA. Second, minor component analysis (MCA) is a statistical method of extracting the eigenvector associated with the smallest eigenvalue of the covariance matrix. In this paper, we will modify a Minor Component Analysis (MCA(R)) learning algorithm to enhance the convergence, where a convergence is essential for MCA algorithm towards practical applications. The learning rate parameter is also presented, which ensures fast convergence of the algorithm, because it has direct effect on the convergence of the weight vector and the error level is affected by this value. MCA is performed to determine the estimated DOA. Preliminary results will be furnished to illustrate the convergences results achieved.

Keywords: Direction of Arrival, neural networks, Principle Component Analysis, Minor Component Analysis

Procedia PDF Downloads 455
8139 Effectiveness of Virtual Escape Room in Biomimicry Producing Environmentally Friendly Attitudes and Learning

Authors: Vered Yeflach Wishkerman

Abstract:

This research follows the implementation of a virtual educational escape room (VEER) in Biomimicry for high school students (n=90) in order to expose them to the innovative field of biomimicry. The main idea behind biomimicry is that many of the wondrous solutions found in nature may be imitated by human technology and harnessed to different needs so that naturally occurring processes can become a source of knowledge for sustainable solutions. The escape room was developed by student trainers in order to teach Biomimicry through games. The room includes a variety of riddles, puzzles and movies in order to teach interdisciplinary subjects and different skills required in the 21st. The purpose of the study was to examine the impact of the gaming experience on students' attitudes toward the learning process and their attitudes toward nature as derived from a virtual escape room game centered on the theme of biomimicry. Three instruments were used: (1) a pre-test and a post-test to measure pupils’ increase in knowledge, (2) a survey to collect their opinions (3) an interview with the pupils. The learning experience within the game influenced the pupils in both emotional and cognitive dimensions, thereby enhancing their motivation and competence. From the results, we learned that the players had positive attitudes towards the game and a high sense of flow. We also found evidence that the escape room contributed to the internalization of new knowledge and values, such as respect for nature and the awareness of nature's importance. Furthermore, the players also reported that they developed learning skills. We conclude that virtual escape rooms are a new tool for assembling new knowledge for the players. The room increased curiosity and engagement to learn new content. However, in order to achieve maximum benefit, we need good infrastructure in addition to interesting and challenging tasks.

Keywords: biomimicry, virtual escape room, attitudes, learning

Procedia PDF Downloads 14
8138 Movie Genre Preference Prediction Using Machine Learning for Customer-Based Information

Authors: Haifeng Wang, Haili Zhang

Abstract:

Most movie recommendation systems have been developed for customers to find items of interest. This work introduces a predictive model usable by small and medium-sized enterprises (SMEs) who are in need of a data-based and analytical approach to stock proper movies for local audiences and retain more customers. We used classification models to extract features from thousands of customers’ demographic, behavioral and social information to predict their movie genre preference. In the implementation, a Gaussian kernel support vector machine (SVM) classification model and a logistic regression model were established to extract features from sample data and their test error-in-sample were compared. Comparison of error-out-sample was also made under different Vapnik–Chervonenkis (VC) dimensions in the machine learning algorithm to find and prevent overfitting. Gaussian kernel SVM prediction model can correctly predict movie genre preferences in 85% of positive cases. The accuracy of the algorithm increased to 93% with a smaller VC dimension and less overfitting. These findings advance our understanding of how to use machine learning approach to predict customers’ preferences with a small data set and design prediction tools for these enterprises.

Keywords: computational social science, movie preference, machine learning, SVM

Procedia PDF Downloads 263
8137 An Analysis of the Panel’s Perceptions on Cooking in “Metaverse Kitchen”

Authors: Minsun Kim

Abstract:

This study uses the concepts of augmented reality, virtual reality, mirror world, and lifelogging to describe “Metaverse Kitchen” that can be defined as a space in the virtual world where users can cook the dishes they want using the meal kit regardless of location or time. This study examined expert’s perceptions of cooking and food delivery services using "Metaverse Kitchen." In this study, a consensus opinion on the concept, potential pros, and cons of "Metaverse Kitchen" was derived from 20 culinary experts through the Delphi technique. The three Delphi rounds were conducted for one month, from December 2022 to January 2023. The results are as follows. First, users select and cook food after visiting the "Metaverse Kitchen" in the virtual space. Second, when a user cooks in "Metaverse Kitchen" in AR or VR, the information is transmitted to nearby restaurants. Third, the platform operating the "Metaverse Kitchen" assigns the order to the restaurant that can provide the meal kit cooked by the user in the virtual space first in the same way among these restaurants. Fourth, the user pays for the "Metaverse Kitchen", and the restaurant delivers the cooked meal kit to the user and then receives payment for the user's meal and delivery fee from the platform. Fifth, the platform company that operates the mirror world "Metaverse Kitchen" uses lifelogging to manage customers. They receive commissions from users and affiliated restaurants and operate virtual restaurant businesses using meal kits. Among the selection attributes for meal kits provided in "Metaverse Kitchen", the panelists suggested convenience, quality, and reliability as advantages and predicted relatively high price as a disadvantage. "Metaverse Kitchen" using meal kits is expected to form a new food supply system in the future society. In follow-up studies, an empirical analysis is required targeting producers and consumers.

Keywords: metaverse, meal kits, Delphi technique, Metaverse Kitchen

Procedia PDF Downloads 225
8136 A Study on Puzzle-Based Game to Teach Elementary Students to Code

Authors: Jaisoon Baek, Gyuhwan Oh

Abstract:

In this study, we developed a puzzle game based on coding and a web-based management system to observe the user's learning status in real time and maximize the understanding of the coding of elementary students. We have improved upon and existing coding game which cannot be connected to textual language coding or comprehends learning state. We analyzed the syntax of various coding languages for the curriculum and provided a menu to convert icon into textual coding languages. In addition, the management system includes multiple types of tutoring, real-time analysis of user play data and feedback. Following its application in regular elementary school software classes, students reported positive effects on understanding and interest in coding were shown by students. It is expected that this will contribute to quality improvement in software education by providing contents with proven educational value by breaking away from simple learning-oriented coding games.

Keywords: coding education, serious game, coding, education management system

Procedia PDF Downloads 145
8135 Cultivating Concentration and Flow: Evaluation of a Strategy for Mitigating Digital Distractions in University Education

Authors: Vera G. Dianova, Lori P. Montross, Charles M. Burke

Abstract:

In the digital age, the widespread and frequently excessive use of mobile phones amongst university students is recognized as a significant distractor which interferes with their ability to enter a deep state of concentration during studies and diminishes their prospects of experiencing the enjoyable and instrumental state of flow, as defined and described by psychologist M. Csikszentmihalyi. This study has targeted 50 university students with the aim of teaching them to cultivate their ability to engage in deep work and to attain the state of flow, fostering more effective and enjoyable learning experiences. Prior to the start of the intervention, all participating students completed a comprehensive survey based on a variety of validated scales assessing their inclination toward lifelong learning, frequency of flow experiences during study, frustration tolerance, sense of agency, as well as their love of learning and daily time devoted to non-academic mobile phone activities. Several days after this initial assessment, students received a 90-minute lecture on the principles of flow and deep work, accompanied by a critical discourse on the detrimental effects of excessive mobile phone usage. They were encouraged to practice deep work and strive for frequent flow states throughout the semester. Subsequently, students submitted weekly surveys, including the 10-item CORE Dispositional Flow Scale, a 3-item agency scale and furthermore disclosed their average daily hours spent on non-academic mobile phone usage. As a final step, at the end of the semester students engaged in reflective report writing, sharing their experiences and evaluating the intervention's effectiveness. They considered alterations in their love of learning, reflected on the implications of their mobile phone usage, contemplated improvements in their tolerance for boredom and perseverance in complex tasks, and pondered the concept of lifelong learning. Additionally, students assessed whether they actively took steps towards managing their recreational phone usage and towards improving their commitment to becoming lifelong learners. Employing a mixed-methods approach our study offers insights into the dynamics of concentration, flow, mobile phone usage and attitudes towards learning among undergraduate and graduate university students. The findings of this study aim to promote profound contemplation, on the part of both students and instructors, on the rapidly evolving digital-age higher education environment. In an era defined by digital and AI advancements, the ability to concentrate, to experience the state of flow, and to love learning has never been more crucial. This study underscores the significance of addressing mobile phone distractions and providing strategies for cultivating deep concentration. The insights gained can guide educators in shaping effective learning strategies for the digital age. By nurturing a love for learning and encouraging lifelong learning, educational institutions can better prepare students for a rapidly changing labor market, where adaptability and continuous learning are paramount for success in a dynamic career landscape.

Keywords: deep work, flow, higher education, lifelong learning, love of learning

Procedia PDF Downloads 70
8134 Effects of Mobile Assisted Language Learning on Madrassa Students’ ESL Learning

Authors: Muhammad Mooneeb Ali

Abstract:

Institutions, where religious knowledge is given are known as madrassas. They also give formal education along with religious education. This study will be a pioneer to explore if MALL can be beneficial for madrassa students or not in formal educational situations. For investigation, an experimental study was planned in Punjab where the sample size was 100 students, 10 each from 10 different madrassas of Punjab, who are studying at the intermediate level (i.e., 11th grade). The madrassas were chosen through a convenient sampling method, whereas the learners were chosen by a simple random sampling method. A pretest was conducted, and on the basis of the results, the learners were divided into two equal groups (experimental and controlled). After two months of treatment, a posttest was conducted, and the results of both groups were compared. The results indicated that the performance of the experimental group was significantly better than the control one. This indicates that MALL elevates the performance of Madrassa students.

Keywords: english language learners, madrassa students, formal education, mobile assisted language learning (MALL), Pakistan.

Procedia PDF Downloads 74
8133 A Three-modal Authentication Method for Industrial Robots

Authors: Luo Jiaoyang, Yu Hongyang

Abstract:

In this paper, we explore a method that can be used in the working scene of intelligent industrial robots to confirm the identity information of operators to ensure that the robot executes instructions in a sufficiently safe environment. This approach uses three information modalities, namely visible light, depth, and sound. We explored a variety of fusion modes for the three modalities and finally used the joint feature learning method to improve the performance of the model in the case of noise compared with the single-modal case, making the maximum noise in the experiment. It can also maintain an accuracy rate of more than 90%.

Keywords: multimodal, kinect, machine learning, distance image

Procedia PDF Downloads 82
8132 Learning Materials of Atmospheric Pressure Plasma Process: Application in Wrinkle-Resistant Finishing of Cotton Fabric

Authors: C. W. Kan

Abstract:

Cotton fibre is a commonly-used natural fibre because of its good fibre strength, high moisture absorption behaviour and minimal static problems. However, one of the main drawbacks of cotton fibre is wrinkling after washing, which is recently overcome by wrinkle-resistant treatment. 1,2,3,4-butanetetracarboxylic acid (BTCA) could improve the wrinkle-resistant properties of cotton fibre. Although the BTCA process is an effective method for wrinkle resistant application of cotton fabrics, reduced fabric strength was observed after treatment. Therefore, this paper would explore the use of atmospheric pressure plasma treatment under different discharge powers as a pretreatment process to enhance the application of BTCA process on cotton fabric without generating adverse effect. The aim of this study is to provide learning information to the users to know how the atmospheric pressure plasma treatment can be incorporated in textile finishing process with positive impact.

Keywords: learning materials, atmospheric pressure plasma treatment, cotton, wrinkle-resistant, BTCA

Procedia PDF Downloads 309
8131 New Machine Learning Optimization Approach Based on Input Variables Disposition Applied for Time Series Prediction

Authors: Hervice Roméo Fogno Fotsoa, Germaine Djuidje Kenmoe, Claude Vidal Aloyem Kazé

Abstract:

One of the main applications of machine learning is the prediction of time series. But a more accurate prediction requires a more optimal model of machine learning. Several optimization techniques have been developed, but without considering the input variables disposition of the system. Thus, this work aims to present a new machine learning architecture optimization technique based on their optimal input variables disposition. The validations are done on the prediction of wind time series, using data collected in Cameroon. The number of possible dispositions with four input variables is determined, i.e., twenty-four. Each of the dispositions is used to perform the prediction, with the main criteria being the training and prediction performances. The results obtained from a static architecture and a dynamic architecture of neural networks have shown that these performances are a function of the input variable's disposition, and this is in a different way from the architectures. This analysis revealed that it is necessary to take into account the input variable's disposition for the development of a more optimal neural network model. Thus, a new neural network training algorithm is proposed by introducing the search for the optimal input variables disposition in the traditional back-propagation algorithm. The results of the application of this new optimization approach on the two single neural network architectures are compared with the previously obtained results step by step. Moreover, this proposed approach is validated in a collaborative optimization method with a single objective optimization technique, i.e., genetic algorithm back-propagation neural networks. From these comparisons, it is concluded that each proposed model outperforms its traditional model in terms of training and prediction performance of time series. Thus the proposed optimization approach can be useful in improving the accuracy of time series forecasts. This proves that the proposed optimization approach can be useful in improving the accuracy of time series prediction based on machine learning.

Keywords: input variable disposition, machine learning, optimization, performance, time series prediction

Procedia PDF Downloads 114
8130 A Learning Automata Based Clustering Approach for Underwater ‎Sensor Networks to Reduce Energy Consumption

Authors: Motahareh Fadaei

Abstract:

Wireless sensor networks that are used to monitor a special environment, are formed from a large number of sensor nodes. The role of these sensors is to sense special parameters from ambient and to make connection. In these networks, the most important challenge is the management of energy usage. Clustering is one of the methods that are broadly used to face this challenge. In this paper, a distributed clustering protocol based on learning automata is proposed for underwater wireless sensor networks. The proposed algorithm that is called LA-Clustering forms clusters in the same energy level, based on the energy level of nodes and the connection radius regardless of size and the structure of sensor network. The proposed approach is simulated and is compared with some other protocols with considering some metrics such as network lifetime, number of alive nodes, and number of transmitted data. The simulation results demonstrate the efficiency of the proposed approach.

Keywords: clustering, energy consumption‎, learning automata, underwater sensor networks

Procedia PDF Downloads 320
8129 House Extension Strategy in High-Density Informal Settlement: A Case Study in Kampung Cikini, Jakarta, Indonesia

Authors: Meidesta Pitria, Akiko Okabe

Abstract:

In high-density informal settlement, extension area at the outside of the houses could primarily happen as a spatial modification response. House extension in high-density informal settlement is not only becoming a physical spatial modification that makes a blur zone between private and public but also supporting the growth and existence of informal economy and other daily activities in both individuals and communities. This research took a case study in an informal settlement named Kampung Cikini, a densely populated area in Central Jakarta. The aim of this study is to identify and clarify house extension as a strategy in dealing with urbanization in an informal settlement. By using the perspective and information from housewives, the analysis is based on the assumption that land ownership transformation and the activities in house extension area influence the different kinds of house extension’s spatial modification and local planning policy in relation with the implementation of house extension strategy. The data collection was done in four sites, two sites are located in outer-wide alley and another two sites are located in inner-narrow alley. In this research, data of 104 housewives in 86 houses were collected through representatives of housewives and local leader of each sites. The research was started from participatory mapping process, deep interview with local leader, and initiated collaboration with housewives community in having a celebration as communal event to cultivate together the issue. This study shows that land ownership, activities, and alley are indispensable in the decision of extension space making. The more permanency status of land ownership the more permanent and various extension could be implemented. However, in some blocks, the existence of origin house or first land owner also has a significant role in coordination and agreement in using and modifying extension space. In outer-wide alley, the existence of more various activities in front area of the houses is significantly related with the chance given by having wider alley, particularly for informal income generating activities. In the inner-narrow alley, limited space in front of the houses affects more negotiations in the community for having more shared spaces, even inside their private space.

Keywords: house extension, housewives, informal settlement, kampung, high density

Procedia PDF Downloads 210
8128 Use of Concept Maps as a Tool for Evaluating Students' Understanding of Science

Authors: Aregamalage Sujeewa Vijayanthi Polgampala, Fang Huang

Abstract:

This study explores the genesis and development of concept mapping as a useful tool for science education and its effectiveness as technique for teaching and learning and evaluation for secondary science in schools and the role played by National College of Education science teachers. Concept maps, when carefully employed and executed serves as an integral part of teaching method and measure of effectiveness of teaching and tool for evaluation. Research has shown that science concept maps can have positive influence on student learning and motivation. The success of concept maps played in an instruction class depends on the type of theme selected, the development of learning outcomes, and the flexibility of instruction in providing library unit that is equipped with multimedia equipment where learners can interact. The study was restricted to 6 male and 9 female respondents' teachers in third-year internship pre service science teachers in Gampaha district Sri Lanka. Data were collected through 15 item questionnaire provided to learners and in depth interviews and class observations of 18 science classes. The two generated hypotheses for the study were rejected, while the results revealed that significant difference exists between factors influencing teachers' choice of concept maps, its usefulness and problems hindering the effectiveness of concept maps for teaching and learning process of secondary science in schools. It was examined that concept maps can be used as an effective measure to evaluate students understanding of concepts and misconceptions. Even the teacher trainees could not identify, key concept is on top, and subordinate concepts fall below. It is recommended that pre service science teacher trainees should be provided a thorough training using it as an evaluation instrument.

Keywords: concept maps, evaluation, learning science, misconceptions

Procedia PDF Downloads 280
8127 Improvements in Double Q-Learning for Anomalous Radiation Source Searching

Authors: Bo-Bin Xiaoa, Chia-Yi Liua

Abstract:

In the task of searching for anomalous radiation sources, personnel holding radiation detectors to search for radiation sources may be exposed to unnecessary radiation risk, and automated search using machines becomes a required project. The research uses various sophisticated algorithms, which are double Q learning, dueling network, and NoisyNet, of deep reinforcement learning to search for radiation sources. The simulation environment, which is a 10*10 grid and one shielding wall setting in it, improves the development of the AI model by training 1 million episodes. In each episode of training, the radiation source position, the radiation source intensity, agent position, shielding wall position, and shielding wall length are all set randomly. The three algorithms are applied to run AI model training in four environments where the training shielding wall is a full-shielding wall, a lead wall, a concrete wall, and a lead wall or a concrete wall appearing randomly. The 12 best performance AI models are selected by observing the reward value during the training period and are evaluated by comparing these AI models with the gradient search algorithm. The results show that the performance of the AI model, no matter which one algorithm, is far better than the gradient search algorithm. In addition, the simulation environment becomes more complex, the AI model which applied Double DQN combined Dueling and NosiyNet algorithm performs better.

Keywords: double Q learning, dueling network, NoisyNet, source searching

Procedia PDF Downloads 116
8126 Deep Reinforcement Learning for Optimal Decision-Making in Supply Chains

Authors: Nitin Singh, Meng Ling, Talha Ahmed, Tianxia Zhao, Reinier van de Pol

Abstract:

We propose the use of reinforcement learning (RL) as a viable alternative for optimizing supply chain management, particularly in scenarios with stochasticity in product demands. RL’s adaptability to changing conditions and its demonstrated success in diverse fields of sequential decision-making makes it a promising candidate for addressing supply chain problems. We investigate the impact of demand fluctuations in a multi-product supply chain system and develop RL agents with learned generalizable policies. We provide experimentation details for training RL agents and statistical analysis of the results. We study the generalization ability of RL agents for different demand uncertainty scenarios and observe superior performance compared to the agents trained with fixed demand curves. The proposed methodology has the potential to lead to cost reduction and increased profit for companies dealing with frequent inventory movement between supply and demand nodes.

Keywords: inventory management, reinforcement learning, supply chain optimization, uncertainty

Procedia PDF Downloads 112
8125 Global Stability Analysis of a Coupled Model for Healthy and Cancerous Cells Dynamics in Acute Myeloid Leukemia

Authors: Abdelhafid Zenati, Mohamed Tadjine

Abstract:

The mathematical formulation of biomedical problems is an important phase to understand and predict the dynamic of the controlled population. In this paper we perform a stability analysis of a coupled model for healthy and cancerous cells dynamics in Acute Myeloid Leukemia, this represents our first aim. Second, we illustrate the effect of the interconnection between healthy and cancer cells. The PDE-based model is transformed to a nonlinear distributed state space model (delay system). For an equilibrium point of interest, necessary and sufficient conditions of global asymptotic stability are given. Thus, we came up to give necessary and sufficient conditions of global asymptotic stability of the origin and the healthy situation and control of the dynamics of normal hematopoietic stem cells and cancerous during myelode Acute leukemia. Simulation studies are given to illustrate the developed results.

Keywords: distributed delay, global stability, modelling, nonlinear models, PDE, state space

Procedia PDF Downloads 253
8124 Research on the Public Governance of Urban Public Green Spaces from the Perspective of Institutional Economics

Authors: Zhang Xue

Abstract:

Urban public green spaces have evolved from classical private gardens and have expanded into multi-dimensional space value attributes such as scale and property rights. Among them, ecological, environmental value, social interaction value, and commercial, economic value have become consensual value characteristics. From the perspective of institutional economics, urban public green spaces, as a type of non-exclusive and non-competitive public good, express the social connotation of spatial "publicness" and multiple values are its important attributes. However, due to the positive externality characteristics of public green spaces, the cost-benefit functions between subjects are inconsistent, leading to issues such as the "anti-commons tragedy" of transitional management, lack of public sense of space responsibility, and weakened public nature. It is necessary to enhance the "publicness" of urban public green spaces through effective institutional arrangements, inclusive planning participation, and humane management measures, promoting urban public openness and the enhancement of multiple values.

Keywords: public green spaces, publicness, governance, institutional economics

Procedia PDF Downloads 61