Search results for: estimation purposes
411 Estimation of Morbidity Level of Industrial Labour Conditions at Zestafoni Ferroalloy Plant
Authors: M. Turmanauli, T. Todua, O. Gvaberidze, R. Javakhadze, N. Chkhaidze, N. Khatiashvili
Abstract:
Background: Mining process has the significant influence on human health and quality of life. In recent years the events in Georgia were reflected on the industry working process, especially minimal requirements of labor safety, hygiene standards of workplace and the regime of work and rest are not observed. This situation is often caused by the lack of responsibility, awareness, and knowledge both of workers and employers. The control of working conditions and its protection has been worsened in many of industries. Materials and Methods: For evaluation of the current situation the prospective epidemiological study by face to face interview method was conducted at Georgian “Manganese Zestafoni Ferroalloy Plant” in 2011-2013. 65.7% of employees (1428 bulletin) were surveyed and the incidence rates of temporary disability days were studied. Results: The average length of a temporary disability single accident was studied taking into consideration as sex groups as well as the whole cohort. According to the classes of harmfulness the following results were received: Class 2.0-10.3%; 3.1-12.4%; 3.2-35.1%; 3.3-12.1%; 3.4-17.6%; 4.0-12.5%. Among the employees 47.5% and 83.1% were tobacco and alcohol consumers respectively. According to the age groups and years of work on the base of previous experience ≥50 ages and ≥21 years of work data prevalence respectively. The obtained data revealed increased morbidity rate according to age and years of work. It was found that the bone and articulate system and connective tissue diseases, aggravation of chronic respiratory diseases, ischemic heart diseases, hypertension and cerebral blood discirculation were the leading among the other diseases. High prevalence of morbidity observed in the workplace with not satisfactory labor conditions from the hygienic point of view. Conclusion: According to received data the causes of morbidity are the followings: unsafety labor conditions; incomplete of preventive medical examinations (preliminary and periodic); lack of access to appropriate health care services; derangement of gathering, recording, and analysis of morbidity data. This epidemiological study was conducted at the JSC “Manganese Ferro Alloy Plant” according to State program “ Prevention of Occupational Diseases” (Program code is 35 03 02 05).Keywords: occupational health, mining process, morbidity level, cerebral blood discirculation
Procedia PDF Downloads 428410 Measuring the Economic Impact of Cultural Heritage: Comparative Analysis of the Multiplier Approach and the Value Chain Approach
Authors: Nina Ponikvar, Katja Zajc Kejžar
Abstract:
While the positive impacts of heritage on a broad societal spectrum have long been recognized and measured, the economic effects of the heritage sector are often less visible and frequently underestimated. At macro level, economic effects are usually studied based on one of the two mainstream approach, i.e. either the multiplier approach or the value chain approach. Consequently, there is limited comparability of the empirical results due to the use of different methodological approach in the literature. Furthermore, it is also not clear on which criteria the used approach was selected. Our aim is to bring the attention to the difference in the scope of effects that are encompassed by the two most frequent methodological approaches to valuation of economic effects of cultural heritage on macroeconomic level, i.e. the multiplier approach and the value chain approach. We show that while the multiplier approach provides a systematic, theory-based view of economic impacts but requires more data and analysis, the value chain approach has less solid theoretical foundations and depends on the availability of appropriate data to identify the contribution of cultural heritage to other sectors. We conclude that the multiplier approach underestimates the economic impact of cultural heritage, mainly due to the narrow definition of cultural heritage in the statistical classification and the inability to identify part of the contribution of cultural heritage that is hidden in other sectors. Yet it is not possible to clearly determine whether the value chain method overestimates or underestimates the actual economic impact of cultural heritage since there is a risk that the direct effects are overestimated and double counted, but not all indirect and induced effects are considered. Accordingly, these two approaches are not substitutes but rather complementary. Consequently, a direct comparison of the estimated impacts is not possible and should not be done due to the different scope. To illustrate the difference of the impact assessment of the cultural heritage, we apply both approaches to the case of Slovenia in the 2015-2022 period and measure the economic impact of cultural heritage sector in terms of turnover, gross value added and employment. The empirical results clearly show that the estimation of the economic impact of a sector using the multiplier approach is more conservative, while the estimates based on value added capture a much broader range of impacts. According to the multiplier approach, each euro in cultural heritage sector generates an additional 0.14 euros in indirect effects and an additional 0.44 euros in induced effects. Based on the value-added approach, the indirect economic effect of the “narrow” heritage sectors is amplified by the impact of cultural heritage activities on other sectors. Accordingly, every euro of sales and every euro of gross value added in the cultural heritage sector generates approximately 6 euros of sales and 4 to 5 euros of value added in other sectors. In addition, each employee in the cultural heritage sector is linked to 4 to 5 jobs in other sectors.Keywords: economic value of cultural heritage, multiplier approach, value chain approach, indirect effects, slovenia
Procedia PDF Downloads 75409 Predicting Costs in Construction Projects with Machine Learning: A Detailed Study Based on Activity-Level Data
Authors: Soheila Sadeghi
Abstract:
Construction projects are complex and often subject to significant cost overruns due to the multifaceted nature of the activities involved. Accurate cost estimation is crucial for effective budget planning and resource allocation. Traditional methods for predicting overruns often rely on expert judgment or analysis of historical data, which can be time-consuming, subjective, and may fail to consider important factors. However, with the increasing availability of data from construction projects, machine learning techniques can be leveraged to improve the accuracy of overrun predictions. This study applied machine learning algorithms to enhance the prediction of cost overruns in a case study of a construction project. The methodology involved the development and evaluation of two machine learning models: Random Forest and Neural Networks. Random Forest can handle high-dimensional data, capture complex relationships, and provide feature importance estimates. Neural Networks, particularly Deep Neural Networks (DNNs), are capable of automatically learning and modeling complex, non-linear relationships between input features and the target variable. These models can adapt to new data, reduce human bias, and uncover hidden patterns in the dataset. The findings of this study demonstrate that both Random Forest and Neural Networks can significantly improve the accuracy of cost overrun predictions compared to traditional methods. The Random Forest model also identified key cost drivers and risk factors, such as changes in the scope of work and delays in material delivery, which can inform better project risk management. However, the study acknowledges several limitations. First, the findings are based on a single construction project, which may limit the generalizability of the results to other projects or contexts. Second, the dataset, although comprehensive, may not capture all relevant factors influencing cost overruns, such as external economic conditions or political factors. Third, the study focuses primarily on cost overruns, while schedule overruns are not explicitly addressed. Future research should explore the application of machine learning techniques to a broader range of projects, incorporate additional data sources, and investigate the prediction of both cost and schedule overruns simultaneously.Keywords: cost prediction, machine learning, project management, random forest, neural networks
Procedia PDF Downloads 54408 Hydrodynamic Analysis of Payload Bay Berthing of an Underwater Vehicle With Vertically Actuated Thrusters
Authors: Zachary Cooper-Baldock, Paulo E. Santos, Russell S. A. Brinkworth, Karl Sammut
Abstract:
- In recent years, large unmanned underwater vehicles such as the Boeing Voyager and Anduril Ghost Shark have been developed. These vessels can be structured to contain onboard internal payload bays. These payload bays can serve a variety of purposes – including the launch and recovery (LAR) of smaller underwater vehicles. The LAR of smaller vessels is extremely important, as it enables transportation over greater distances, increased time on station, data transmission and operational safety. The larger vessel and its payload bay structure complicate the LAR of UUVs in contrast to static docks that are affixed to the seafloor, as they actively impact the local flow field. These flow field impacts require analysis to determine if UUV vessels can be safely launched and recovered inside the motherships. This research seeks to determine the hydrodynamic forces exerted on a vertically over-actuated, small, unmanned underwater vehicle (OUUV) during an internal LAR manoeuvre and compare this to an under-actuated vessel (UUUV). In this manoeuvre, the OUUV is navigated through the stern wake region of the larger vessel to a set point within the internal payload bay. The manoeuvre is simulated using ANSYS Fluent computational fluid dynamics models, covering the entire recovery of the OUUV and UUUV. The analysis of the OUUV is compared against the UUUV to determine the differences in the exerted forces. Of particular interest are the drag, pressure, turbulence and flow field effects exerted as the OUUV is driven inside the payload bay of the larger vessel. The hydrodynamic forces and flow field disturbances are used to determine the feasibility of making such an approach. From the simulations, it was determined that there was no significant detrimental physical forces, particularly with regard to turbulence. The flow field effects exerted by the OUUV are significant. The vertical thrusters exert significant wake structures, but their orientation ensures the wake effects are exerted below the UUV, minimising the impact. It was also seen that OUUV experiences higher drag forces compared to the UUUV, which will correlate to an increased energy expenditure. This investigation found no key indicators that recovery via a mothership payload bay was not feasible. The turbulence, drag and pressure phenomenon were of a similar magnitude to existing static and towed dock structures.Keywords: underwater vehicles, submarine, autonomous underwater vehicles, auv, computational fluid dynamics, flow fields, pressure, turbulence, drag
Procedia PDF Downloads 78407 Ribotaxa: Combined Approaches for Taxonomic Resolution Down to the Species Level from Metagenomics Data Revealing Novelties
Authors: Oshma Chakoory, Sophie Comtet-Marre, Pierre Peyret
Abstract:
Metagenomic classifiers are widely used for the taxonomic profiling of metagenomic data and estimation of taxa relative abundance. Small subunit rRNA genes are nowadays a gold standard for the phylogenetic resolution of complex microbial communities, although the power of this marker comes down to its use as full-length. We benchmarked the performance and accuracy of rRNA-specialized versus general-purpose read mappers, reference-targeted assemblers and taxonomic classifiers. We then built a pipeline called RiboTaxa to generate a highly sensitive and specific metataxonomic approach. Using metagenomics data, RiboTaxa gave the best results compared to other tools (Kraken2, Centrifuge (1), METAXA2 (2), PhyloFlash (3)) with precise taxonomic identification and relative abundance description, giving no false positive detection. Using real datasets from various environments (ocean, soil, human gut) and from different approaches (metagenomics and gene capture by hybridization), RiboTaxa revealed microbial novelties not seen by current bioinformatics analysis opening new biological perspectives in human and environmental health. In a study focused on corals’ health involving 20 metagenomic samples (4), an affiliation of prokaryotes was limited to the family level with Endozoicomonadaceae characterising healthy octocoral tissue. RiboTaxa highlighted 2 species of uncultured Endozoicomonas which were dominant in the healthy tissue. Both species belonged to a genus not yet described, opening new research perspectives on corals’ health. Applied to metagenomics data from a study on human gut and extreme longevity (5), RiboTaxa detected the presence of an uncultured archaeon in semi-supercentenarians (aged 105 to 109 years) highlighting an archaeal genus, not yet described, and 3 uncultured species belonging to the Enorma genus that could be species of interest participating in the longevity process. RiboTaxa is user-friendly, rapid, allowing microbiota structure description from any environment and the results can be easily interpreted. This software is freely available at https://github.com/oschakoory/RiboTaxa under the GNU Affero General Public License 3.0.Keywords: metagenomics profiling, microbial diversity, SSU rRNA genes, full-length phylogenetic marker
Procedia PDF Downloads 120406 Through Additive Manufacturing. A New Perspective for the Mass Production of Made in Italy Products
Authors: Elisabetta Cianfanelli, Paolo Pupparo, Maria Claudia Coppola
Abstract:
The recent evolutions in the innovation processes and in the intrinsic tendencies of the product development process, lead to new considerations on the design flow. The instability and complexity that contemporary life describes, defines new problems in the production of products, stimulating at the same time the adoption of new solutions across the entire design process. The advent of Additive Manufacturing, but also of IOT and AI technologies, continuously puts us in front of new paradigms regarding design as a social activity. The totality of these technologies from the point of view of application describes a whole series of problems and considerations immanent to design thinking. Addressing these problems may require some initial intuition and the use of some provisional set of rules or plausible strategies, i.e., heuristic reasoning. At the same time, however, the evolution of digital technology and the computational speed of new design tools describe a new and contrary design framework in which to operate. It is therefore interesting to understand the opportunities and boundaries of the new man-algorithm relationship. The contribution investigates the man-algorithm relationship starting from the state of the art of the Made in Italy model, the most known fields of application are described and then focus on specific cases in which the mutual relationship between man and AI becomes a new driving force of innovation for entire production chains. On the other hand, the use of algorithms could engulf many design phases, such as the definition of shape, dimensions, proportions, materials, static verifications, and simulations. Operating in this context, therefore, becomes a strategic action, capable of defining fundamental choices for the design of product systems in the near future. If there is a human-algorithm combination within a new integrated system, quantitative values can be controlled in relation to qualitative and material values. The trajectory that is described therefore becomes a new design horizon in which to operate, where it is interesting to highlight the good practices that already exist. In this context, the designer developing new forms can experiment with ways still unexpressed in the project and can define a new synthesis and simplification of algorithms, so that each artifact has a signature in order to define in all its parts, emotional and structural. This signature of the designer, a combination of values and design culture, will be internal to the algorithms and able to relate to digital technologies, creating a generative dialogue for design purposes. The result that is envisaged indicates a new vision of digital technologies, no longer understood only as of the custodians of vast quantities of information, but also as a valid integrated tool in close relationship with the design culture.Keywords: decision making, design euristics, product design, product design process, design paradigms
Procedia PDF Downloads 119405 Using Arellano-Bover/Blundell-Bond Estimator in Dynamic Panel Data Analysis – Case of Finnish Housing Price Dynamics
Authors: Janne Engblom, Elias Oikarinen
Abstract:
A panel dataset is one that follows a given sample of individuals over time, and thus provides multiple observations on each individual in the sample. Panel data models include a variety of fixed and random effects models which form a wide range of linear models. A special case of panel data models are dynamic in nature. A complication regarding a dynamic panel data model that includes the lagged dependent variable is endogeneity bias of estimates. Several approaches have been developed to account for this problem. In this paper, the panel models were estimated using the Arellano-Bover/Blundell-Bond Generalized method of moments (GMM) estimator which is an extension of the Arellano-Bond model where past values and different transformations of past values of the potentially problematic independent variable are used as instruments together with other instrumental variables. The Arellano–Bover/Blundell–Bond estimator augments Arellano–Bond by making an additional assumption that first differences of instrument variables are uncorrelated with the fixed effects. This allows the introduction of more instruments and can dramatically improve efficiency. It builds a system of two equations—the original equation and the transformed one—and is also known as system GMM. In this study, Finnish housing price dynamics were examined empirically by using the Arellano–Bover/Blundell–Bond estimation technique together with ordinary OLS. The aim of the analysis was to provide a comparison between conventional fixed-effects panel data models and dynamic panel data models. The Arellano–Bover/Blundell–Bond estimator is suitable for this analysis for a number of reasons: It is a general estimator designed for situations with 1) a linear functional relationship; 2) one left-hand-side variable that is dynamic, depending on its own past realizations; 3) independent variables that are not strictly exogenous, meaning they are correlated with past and possibly current realizations of the error; 4) fixed individual effects; and 5) heteroskedasticity and autocorrelation within individuals but not across them. Based on data of 14 Finnish cities over 1988-2012 differences of short-run housing price dynamics estimates were considerable when different models and instrumenting were used. Especially, the use of different instrumental variables caused variation of model estimates together with their statistical significance. This was particularly clear when comparing estimates of OLS with different dynamic panel data models. Estimates provided by dynamic panel data models were more in line with theory of housing price dynamics.Keywords: dynamic model, fixed effects, panel data, price dynamics
Procedia PDF Downloads 1507404 Modeling Landscape Performance: Evaluating the Performance Benefits of the Olmsted Brothers’ Proposed Parkway Designs for Los Angeles
Authors: Aaron Liggett
Abstract:
This research focuses on the visionary proposal made by the Olmsted Brothers Landscape Architecture firm in the 1920s for a network of interconnected parkways in Los Angeles. Their envisioned parkways aimed to address environmental and cultural strains by providing green space for recreation, wildlife habitat, and stormwater management while serving as multimodal transportation routes. Although the parkways were never constructed, through an evidence-based approach, this research presents a framework for evaluating the potential functionality and success of the parkways by modeling and visualizing their quantitative and qualitative landscape performance and benefits. Historical documents and innovative digital modeling tools produce detailed analysis, modeling, and visualization of the parkway designs. A set of 1928 construction documents are used to analyze and interpret the design intent of the parkways. Grading plans are digitized in CAD and modeled in Sketchup to produce 3D visualizations of the parkway. Drainage plans are digitized to model stormwater performance. Planting plans are analyzed to model urban forestry and biodiversity. The EPA's Storm Water Management Model (SWMM) predicts runoff quantity and quality. The USDA Forests Service tools evaluate carbon sequestration and air quality. Spatial and overlay analysis techniques are employed to assess urban connectivity and the spatial impacts of the parkway designs. The study reveals how the integration of blue infrastructure, green infrastructure, and transportation infrastructure within the parkway design creates a multifunctional landscape capable of offering alternative spatial and temporal uses. The analysis demonstrates the potential for multiple functional, ecological, aesthetic, and social benefits to be derived from the proposed parkways. The analysis of the Olmsted Brothers' proposed Los Angeles parkways, which predated contemporary ecological design and resiliency practices, demonstrates the potential for providing multiple functional, ecological, aesthetic, and social benefits within urban designs. The findings highlight the importance of integrated blue, green, and transportation infrastructure in creating a multifunctional landscape that simultaneously serves multiple purposes. The research contributes new methods for modeling and visualizing landscape performance benefits, providing insights and techniques for informing future designs and sustainable development strategies.Keywords: landscape architecture, ecological urban design, greenway, landscape performance
Procedia PDF Downloads 130403 Sizing Residential Solar Power Systems Based on Site-Specific Energy Statistics
Authors: Maria Arechavaleta, Mark Halpin
Abstract:
In the United States, costs of solar energy systems have declined to the point that they are viable options for most consumers. However, there are no consistent procedures for specifying sufficient systems. The factors that must be considered are energy consumption, potential solar energy production, and cost. The traditional method of specifying solar energy systems is based on assumed daily levels of available solar energy and average amounts of daily energy consumption. The mismatches between energy production and consumption are usually mitigated using battery energy storage systems, and energy use is curtailed when necessary. The main consumer decision question that drives the total system cost is how much unserved (or curtailed) energy is acceptable? Of course additional solar conversion equipment can be installed to provide greater peak energy production and extra energy storage capability can be added to mitigate longer lasting low solar energy production periods. Each option increases total cost and provides a benefit which is difficult to quantify accurately. An approach to quantify the cost-benefit of adding additional resources, either production or storage or both, based on the statistical concepts of loss-of-energy probability and expected unserved energy, is presented in this paper. Relatively simple calculations, based on site-specific energy availability and consumption data, can be used to show the value of each additional increment of production or storage. With this incremental benefit-cost information, consumers can select the best overall performance combination for their application at a cost they are comfortable paying. The approach is based on a statistical analysis of energy consumption and production characteristics over time. The characteristics are in the forms of curves with each point on the curve representing an energy consumption or production value over a period of time; a one-minute period is used for the work in this paper. These curves are measured at the consumer location under the conditions that exist at the site and the duration of the measurements is a minimum of one week. While greater accuracy could be obtained with longer recording periods, the examples in this paper are based on a single week for demonstration purposes. The weekly consumption and production curves are overlaid on each other and the mismatches are used to size the battery energy storage system. Loss-of-energy probability and expected unserved energy indices are calculated in addition to the total system cost. These indices allow the consumer to recognize and quantify the benefit (probably a reduction in energy consumption curtailment) available for a given increase in cost. Consumers can then make informed decisions that are accurate for their location and conditions and which are consistent with their available funds.Keywords: battery energy storage systems, loss of load probability, residential renewable energy, solar energy systems
Procedia PDF Downloads 234402 Trafficking of Women in Assam: The Untold Violation of Women's Human Rights
Authors: Mridula Devi
Abstract:
Trafficking of women is a slur on human dignity and a shameful act to human civilization and development. Trafficking of women is one of worst brazen abuses which violate the women’s human rights. In India, more particularly in Assam, human trafficking and infringement of human rights of individual includes mainly the women and girl child of the State. Trafficking in North East region of India, more particularly in Assam occurs in two different ways – one is the internal trafficking of women and girl child from conflict affected rural areas of Assam for domestic work and prostitution. Secondly, there is trafficking of women to other south-East Asiatic countries like Bangladesh, Bhutan, Bangkok, Myanmar (Burma) for various purposes such as drug trafficking, labor, bar girl and prostitution.Historically, trafficking in human beings is associated with slavery and bonded or forced labor. Since the period of Roman Civilization, there was the practice of traffic in persons in the form of slave trade among the nations. With the rise of new imperialism, slavery had become an integral part of the colonial system of European Countries. With time, it almost became synonymous with prostitution or commercial sexual exploitation. Finally, the United Nation adopted the Convention for the Suppression of the Traffic in Persons and of the Prostitution of others, 1949 by the G.A.Res.No.-317(iv). The Convention totally denounces the traffic in persons for the purpose of prostitution. However, it is important to note that, now a days trafficking is not confined to commercial sexual exploitation of women and children alone. It has myriad forms and the number of victims has been steadily on the rise over the past few decades. In Assam, it takes place through and for marriage, sexual exploitation, begging, organ trading, militancy conflicts, drug padding and smuggling, labour, adoption, entertainment, and sports. In this paper, empirical methodology has been used. The study is based on primary and secondary sources. Data’s are collected from different books, publications, newspaper, journals etc. For empirical analysis, some random samples are collected and systematized for better result. India suffers from the ignominy of being one of the biggest hubs of women trafficking in the world. Over the years, Assam: the north east part of India has been bearing the brunt of the rapidly rising evil of trafficking of women which threaten the life, dignity and human rights of women. Though different laws are adopted at international and national level to restore trafficking, still the menace of trafficking of women in Assam is not decreased, rather it increased. This causes a serious violation of women’s human right in Assam. Human trafficking or women’s trafficking is a serious crime against society. To curb this in Assam it is required to take some effective and dedicated measure at state level as well as national and international level.Keywords: Assam, human trafficking, sexual exploitation, India
Procedia PDF Downloads 515401 A Machine Learning Approach for Efficient Resource Management in Construction Projects
Authors: Soheila Sadeghi
Abstract:
Construction projects are complex and often subject to significant cost overruns due to the multifaceted nature of the activities involved. Accurate cost estimation is crucial for effective budget planning and resource allocation. Traditional methods for predicting overruns often rely on expert judgment or analysis of historical data, which can be time-consuming, subjective, and may fail to consider important factors. However, with the increasing availability of data from construction projects, machine learning techniques can be leveraged to improve the accuracy of overrun predictions. This study applied machine learning algorithms to enhance the prediction of cost overruns in a case study of a construction project. The methodology involved the development and evaluation of two machine learning models: Random Forest and Neural Networks. Random Forest can handle high-dimensional data, capture complex relationships, and provide feature importance estimates. Neural Networks, particularly Deep Neural Networks (DNNs), are capable of automatically learning and modeling complex, non-linear relationships between input features and the target variable. These models can adapt to new data, reduce human bias, and uncover hidden patterns in the dataset. The findings of this study demonstrate that both Random Forest and Neural Networks can significantly improve the accuracy of cost overrun predictions compared to traditional methods. The Random Forest model also identified key cost drivers and risk factors, such as changes in the scope of work and delays in material delivery, which can inform better project risk management. However, the study acknowledges several limitations. First, the findings are based on a single construction project, which may limit the generalizability of the results to other projects or contexts. Second, the dataset, although comprehensive, may not capture all relevant factors influencing cost overruns, such as external economic conditions or political factors. Third, the study focuses primarily on cost overruns, while schedule overruns are not explicitly addressed. Future research should explore the application of machine learning techniques to a broader range of projects, incorporate additional data sources, and investigate the prediction of both cost and schedule overruns simultaneously.Keywords: resource allocation, machine learning, optimization, data-driven decision-making, project management
Procedia PDF Downloads 38400 Ethical Artificial Intelligence: An Exploratory Study of Guidelines
Authors: Ahmad Haidar
Abstract:
The rapid adoption of Artificial Intelligence (AI) technology holds unforeseen risks like privacy violation, unemployment, and algorithmic bias, triggering research institutions, governments, and companies to develop principles of AI ethics. The extensive and diverse literature on AI lacks an analysis of the evolution of principles developed in recent years. There are two fundamental purposes of this paper. The first is to provide insights into how the principles of AI ethics have been changed recently, including concepts like risk management and public participation. In doing so, a NOISE (Needs, Opportunities, Improvements, Strengths, & Exceptions) analysis will be presented. Second, offering a framework for building Ethical AI linked to sustainability. This research adopts an explorative approach, more specifically, an inductive approach to address the theoretical gap. Consequently, this paper tracks the different efforts to have “trustworthy AI” and “ethical AI,” concluding a list of 12 documents released from 2017 to 2022. The analysis of this list unifies the different approaches toward trustworthy AI in two steps. First, splitting the principles into two categories, technical and net benefit, and second, testing the frequency of each principle, providing the different technical principles that may be useful for stakeholders considering the lifecycle of AI, or what is known as sustainable AI. Sustainable AI is the third wave of AI ethics and a movement to drive change throughout the entire lifecycle of AI products (i.e., idea generation, training, re-tuning, implementation, and governance) in the direction of greater ecological integrity and social fairness. In this vein, results suggest transparency, privacy, fairness, safety, autonomy, and accountability as recommended technical principles to include in the lifecycle of AI. Another contribution is to capture the different basis that aid the process of AI for sustainability (e.g., towards sustainable development goals). The results indicate data governance, do no harm, human well-being, and risk management as crucial AI for sustainability principles. This study’s last contribution clarifies how the principles evolved. To illustrate, in 2018, the Montreal declaration mentioned eight principles well-being, autonomy, privacy, solidarity, democratic participation, equity, and diversity. In 2021, notions emerged from the European Commission proposal, including public trust, public participation, scientific integrity, risk assessment, flexibility, benefit and cost, and interagency coordination. The study design will strengthen the validity of previous studies. Yet, we advance knowledge in trustworthy AI by considering recent documents, linking principles with sustainable AI and AI for sustainability, and shedding light on the evolution of guidelines over time.Keywords: artificial intelligence, AI for sustainability, declarations, framework, regulations, risks, sustainable AI
Procedia PDF Downloads 93399 Efficient Estimation of Maximum Theoretical Productivity from Batch Cultures via Dynamic Optimization of Flux Balance Models
Authors: Peter C. St. John, Michael F. Crowley, Yannick J. Bomble
Abstract:
Production of chemicals from engineered organisms in a batch culture typically involves a trade-off between productivity, yield, and titer. However, strategies for strain design typically involve designing mutations to achieve the highest yield possible while maintaining growth viability. Such approaches tend to follow the principle of designing static networks with minimum metabolic functionality to achieve desired yields. While these methods are computationally tractable, optimum productivity is likely achieved by a dynamic strategy, in which intracellular fluxes change their distribution over time. One can use multi-stage fermentations to increase either productivity or yield. Such strategies would range from simple manipulations (aerobic growth phase, anaerobic production phase), to more complex genetic toggle switches. Additionally, some computational methods can also be developed to aid in optimizing two-stage fermentation systems. One can assume an initial control strategy (i.e., a single reaction target) in maximizing productivity - but it is unclear how close this productivity would come to a global optimum. The calculation of maximum theoretical yield in metabolic engineering can help guide strain and pathway selection for static strain design efforts. Here, we present a method for the calculation of a maximum theoretical productivity of a batch culture system. This method follows the traditional assumptions of dynamic flux balance analysis: that internal metabolite fluxes are governed by a pseudo-steady state and external metabolite fluxes are represented by dynamic system including Michealis-Menten or hill-type regulation. The productivity optimization is achieved via dynamic programming, and accounts explicitly for an arbitrary number of fermentation stages and flux variable changes. We have applied our method to succinate production in two common microbial hosts: E. coli and A. succinogenes. The method can be further extended to calculate the complete productivity versus yield Pareto surface. Our results demonstrate that nearly optimal yields and productivities can indeed be achieved with only two discrete flux stages.Keywords: A. succinogenes, E. coli, metabolic engineering, metabolite fluxes, multi-stage fermentations, succinate
Procedia PDF Downloads 215398 Neuropharmacological and Neurochemical Evaluation of Methanolic Extract of Elaeocarpus sphaericus (Gaertn.) Stem Bark by Using Multiple Behaviour Models of Mice
Authors: Jaspreet Kaur, Parminder Nain, Vipin Saini, Sumitra Dahiya
Abstract:
Elaeocarpus sphaericus has been traditionally used in the Indian traditional medicine system for the treatment of stress, anxiety, depression, palpitation, epilepsy, migraine and lack of concentration. The study was investigated to evaluate the neurological potential such as anxiolytic, muscle relaxant and sedative activity of methanolic extract of Elaeocarpus sphaericus stem bark (MEESSB) in mice. Preliminary phytochemical screening and acute oral toxicity of MEESSB was carried out by using standard methods. The anxiety was induced by employing Elevated Plus-Maze (EPM), Light and Dark Test (LDT), Open Field Test (OFT) and Social Interaction test (SIT). The motor coordination and sedative effect was also observed by using actophotometer, rota-rod apparatus and ketamine-induced sleeping time, respectively. Animals were treated with different doses of MEESSB (i.e.100, 200, 400 and 800 mg/kg orally) and diazepam (2 mg/kg i.p) for 21 days. Brain neurotransmitters like dopamine, serotonin and nor-epinephrine level were estimated by validated methods. Preliminary phytochemical analysis of the extract revealed the presence of tannins, phytosterols, steroids and alkaloids. In the acute toxicity studies, MEESSB was found to be non-toxic and with no mortality. In anxiolytic studies, the different doses of MEESSB showed a significant (p<0.05) effect on EPM and LDT. In OFT and SIT, a significant (p<0.05) increase in ambulation, rearing and social interaction time was observed. In the case of motor coordination activity, the MEESSB does not cause any significant effect on the latency to fall off from the rotarod bar as compared to the control group. Moreover, no significant effects on ketamine-induced sleep latency and total sleeping time induced by ketamine were observed. Results of neurotransmitter estimation revealed the increased concentration of dopamine, whereas the level of serotonin and nor-epinephrine was found to be decreased in the mice brain, with MEESSB at dose 800 mg/kg only. The study has validated the folkloric use of the plant as an anxiolytic in Indian traditional medicine while also suggesting potential usefulness in the treatment of stress and anxiety without causing sedation.Keywords: anxiolytic, behavior experiments, brain neurotransmitters, elaeocarpus sphaericus
Procedia PDF Downloads 177397 Industrial Hemp Agronomy and Fibre Value Chain in Pakistan: Current Progress, Challenges, and Prospects
Authors: Saddam Hussain, Ghadeer Mohsen Albadrani
Abstract:
Pakistan is one of the most vulnerable countries to climate change. Being a country where 23% of the country’s GDP relies on agriculture, this is a serious cause of concern. Introducing industrial hemp in Pakistan can help build climate resilience in the agricultural sector of the country, as hemp has recently emerged as a sustainable, eco-friendly, resource-efficient, and climate-resilient crop globally. Hemp has the potential to absorb huge amounts of CO₂, nourish the soil, and be used to create various biodegradable and eco-friendly products. Hemp is twice as effective as trees at absorbing and locking up carbon, with 1 hectare (2.5 acres) of hemp reckoned to absorb 8 to 22 tonnes of CO₂ a year, more than any woodland. Along with its high carbon-sequestration ability, it produces higher biomass and can be successfully grown as a cover crop. Hemp can grow in almost all soil conditions and does not require pesticides. It has fast-growing qualities and needs only 120 days to be ready for harvest. Compared with cotton, hemp requires 50% less water to grow and can produce three times higher fiber yield with a lower ecological footprint. Recently, the Government of Pakistan has allowed the cultivation of industrial hemp for industrial and medicinal purposes, making it possible for hemp to be reinserted into the country’s economy. Pakistan’s agro-climatic and edaphic conditions are well-suitable to produce industrial hemp, and its cultivation can bring economic benefits to the country. Pakistan can enter global markets as a new exporter of hemp products. The production of hemp in Pakistan can be most exciting to the workforce, especially for farmers participating in hemp markets. The minimum production cost of hemp makes it affordable to small holding farmers, especially those who need their cropping system to be as highly sustainable as possible. Dr. Saddam Hussain is leading the first pilot project of Industrial Hemp in Pakistan. In the past three years, he has been able to recruit high-impact research grants on industrial hemp as Principal Investigator. He has already screened the non-toxic hemp genotypes, tested the adaptability of exotic material in various agroecological conditions, formulated the production agronomy, and successfully developed the complete value chain. He has developed prototypes (fabric, denim, knitwear) using hemp fibre in collaboration with industrial partners and has optimized the indigenous fibre processing techniques. In this lecture, Dr. Hussain will talk on hemp agronomy and its complete fibre value chain. He will discuss the current progress, and will highlight the major challenges and future research direction on hemp research.Keywords: industrial hemp, agricultural sustainability, agronomic evaluation, hemp value chain
Procedia PDF Downloads 80396 Driving Environmental Quality through Fuel Subsidy Reform in Nigeria
Authors: O. E. Akinyemi, P. O. Alege, O. O. Ajayi, L. A. Amaghionyediwe, A. A. Ogundipe
Abstract:
Nigeria as an oil-producing developing country in Africa is one of the many countries that had been subsidizing consumption of fossil fuel. Despite the numerous advantage of this policy ranging from increased energy access, fostering economic and industrial development, protecting the poor households from oil price shocks, political considerations, among others; they have been found to impose economic cost, wasteful, inefficient, create price distortions discourage investment in the energy sector and contribute to environmental pollution. These negative consequences coupled with the fact that the policy had not been very successful at achieving some of its stated objectives, led to a number of organisations and countries such as the Group of 7 (G7), World Bank, International Monetary Fund (IMF), International Energy Agency (IEA), Organisation for Economic Co-operation and Development (OECD), among others call for global effort towards reforming fossil fuel subsidies. This call became necessary in view of seeking ways to harmonise certain existing policies which may by design hamper current effort at tackling environmental concerns such as climate change. This is in addition to driving a green growth strategy and low carbon development in achieving sustainable development. The energy sector is identified to play a vital role. This study thus investigates the prospects of using fuel subsidy reform as a viable tool in driving an economy that de-emphasizes carbon growth in Nigeria. The method used is the Johansen and Engle-Granger two-step Co-integration procedure in order to investigate the existence or otherwise of a long-run equilibrium relationship for the period 1971 to 2011. Its theoretical framework is rooted in the Environmental Kuznet Curve (EKC) hypothesis. In developing three case scenarios (case of subsidy payment, no subsidy payment and effective subsidy), findings from the study supported evidence of a long run sustainable equilibrium model. Also, estimation results reflected that the first and the second scenario do not significantly influence the indicator of environmental quality. The implication of this is that in reforming fuel subsidy to drive environmental quality for an economy like Nigeria, strong and effective regulatory framework (measure that was interacted with fuel subsidy to yield effective subsidy) is essential.Keywords: environmental quality, fuel subsidy, green growth, low carbon growth strategy
Procedia PDF Downloads 325395 Intensive Neurophysiological Rehabilitation System: New Approach for Treatment of Children with Autism
Authors: V. I. Kozyavkin, L. F. Shestopalova, T. B. Voloshyn
Abstract:
Introduction: Rehabilitation of children with Autism is the issue of the day in psychiatry and neurology. It is attributed to constantly increasing quantity of autistic children - Autistic Spectrum Disorders (ASD) Existing rehabilitation approaches in treatment of children with Autism improve their medico- social and social- psychological adjustment. Experience of treatment for different kinds of Autistic disorders in International Clinic of Rehabilitation (ICR) reveals the necessity of complex intensive approach for healing this malady and wider implementation of a Kozyavkin method for treatment of children with ASD. Methods: 19 children aged from 3 to 14 years were examined. They were diagnosed ‘Autism’ (F84.0) with comorbid neurological pathology (from pyramidal insufficiency to para- and tetraplegia). All patients underwent rehabilitation in ICR during two weeks, where INRS approach was used. INRS included methods like biomechanical correction of the spine, massage, physical therapy, joint mobilization, wax-paraffin applications. They were supplemented by art- therapy, ergotherapy, rhythmical group exercises, computer game therapy, team Olympic games and other methods for improvement of motivation and social integration of the child. Estimation of efficacy was conducted using parent’s questioning and done twice- on the onset of INRS rehabilitation course and two weeks afterward. For efficacy assessment of rehabilitation of autistic children in ICR standardized tool was used, namely Autism Treatment Evaluation Checklist (ATEC). This scale was selected because any rehabilitation approaches for the child with Autism can be assessed using it. Results: Before the onset of INRS treatment mean score according to ATEC scale was 64,75±9,23, it reveals occurrence in examined children severe communication, speech, socialization and behavioral impairments. After the end of the rehabilitation course, the mean score was 56,5±6,7, what indicates positive dynamics in comparison to the onset of rehabilitation. Generally, improvement of psychoemotional state occurred in 90% of cases. Most significant changes occurred in the scope of speech (16,5 before and 14,5 after the treatment), socialization (15.1 before and 12,5 after) and behavior (20,1 before and 17.4 after). Conclusion: As a result of INRS rehabilitation course reduction of autistic symptoms was noted. Particularly improvements in speech were observed (children began to spell out new syllables, words), there was some decrease in signs of destructiveness, quality of contact with the surrounding people improved, new skills of self-service appeared. The prospect of the study is further, according to evidence- based medicine standards, deeper examination of INRS and assessment of its usefulness in treatment for Autism and ASD.Keywords: intensive neurophysiological rehabilitation system (INRS), international clinic od rehabilitation, ASD, rehabilitation
Procedia PDF Downloads 169394 Digital Image Correlation: Metrological Characterization in Mechanical Analysis
Authors: D. Signore, M. Ferraiuolo, P. Caramuta, O. Petrella, C. Toscano
Abstract:
The Digital Image Correlation (DIC) is a newly developed optical technique that is spreading in all engineering sectors because it allows the non-destructive estimation of the entire surface deformation without any contact with the component under analysis. These characteristics make the DIC very appealing in all the cases the global deformation state is to be known without using strain gages, which are the most used measuring device. The DIC is applicable to any material subjected to distortion caused by either thermal or mechanical load, allowing to obtain high-definition mapping of displacements and deformations. That is why in the civil and the transportation industry, DIC is very useful for studying the behavior of metallic materials as well as of composite materials. DIC is also used in the medical field for the characterization of the local strain field of the vascular tissues surface subjected to uniaxial tensile loading. DIC can be carried out in the two dimension mode (2D DIC) if a single camera is used or in a three dimension mode (3D DIC) if two cameras are involved. Each point of the test surface framed by the cameras can be associated with a specific pixel of the image, and the coordinates of each point are calculated knowing the relative distance between the two cameras together with their orientation. In both arrangements, when a component is subjected to a load, several images related to different deformation states can be are acquired through the cameras. A specific software analyzes the images via the mutual correlation between the reference image (obtained without any applied load) and those acquired during the deformation giving the relative displacements. In this paper, a metrological characterization of the digital image correlation is performed on aluminum and composite targets both in static and dynamic loading conditions by comparison between DIC and strain gauges measures. In the static test, interesting results have been obtained thanks to an excellent agreement between the two measuring techniques. In addition, the deformation detected by the DIC is compliant with the result of a FEM simulation. In the dynamic test, the DIC was able to follow with a good accuracy the periodic deformation of the specimen giving results coherent with the ones given by FEM simulation. In both situations, it was seen that the DIC measurement accuracy depends on several parameters such as the optical focusing, the parameters chosen to perform the mutual correlation between the images and, finally, the reference points on image to be analyzed. In the future, the influence of these parameters will be studied, and a method to increase the accuracy of the measurements will be developed in accordance with the requirements of the industries especially of the aerospace one.Keywords: accuracy, deformation, image correlation, mechanical analysis
Procedia PDF Downloads 311393 Preliminary Analysis on the Distribution of Elements in Cannabis
Authors: E. Zafeiraki, P. Nisianakis, K. Machera
Abstract:
Cannabis plant contains 113 cannabinoids and it is commonly known for its psychoactive substance tetrahydrocannabinol or as a source of narcotic substances. The recent years’ cannabis cultivation also increases due to its wide use both for medical and industrial purposes as well as for uses as para-pharmaceuticals, cosmetics and food commodities. Depending on the final product, different parts of the plant are utilized, with the leaves and bud (seeds) being the most frequently used. Cannabis can accumulate various contaminants, including heavy metals, both from the soil and the water in which the plant grows. More specifically, metals may occur naturally in the soil and water, or they can enter into the environment through fertilizers, pesticides and fungicides that are commonly applied to crops. The high probability of metals accumulation in cannabis, combined with the latter growing use, raise concerns about the potential health effects in humans and consequently lead to the need for the implementation of safety measures for cannabis products, such as guidelines for regulating contaminants, including metals, and especially the ones characterized by high toxicity in cannabis. Acknowledging the above, the aim of the current study was first to investigate metals contamination in cannabis samples collected from Greece, and secondly to examine potential differences in metals accumulation among the different parts of the plant. To our best knowledge, this is the first study presenting information on elements in cannabis cultivated in Greece, and also on the distribution pattern of the former in the plant body. To this end, the leaves and the seeds of all the samples were initially separated and dried and then digested with Nitric acid (HNO₃) and Hydrochloric acid (HCl). For the analysis of these samples, an Inductive Coupled Plasma-Mass Spectrometry (ICP-MS) method was developed, able to quantify 28 elements. Internal standards were added at a constant rate and concentration to all calibration standards and unknown samples, while two certified reference materials were analyzed in every batch to ensure the accuracy of the measurements. The repeatability of the method and the background contamination were controlled by the analysis of quality control (QC) standards and blank samples in every sequence, respectively. According to the results, essential metals, such as Ca, Zn and Mg, were detected at high levels. On the contrary, the concentration of high toxicity metals, like As (average: 0.10ppm), Pb (average: 0.36ppm), Cd (average: 0.04ppm), and Hg (average: 0.012ppm) were very low in all the samples, indicating that no harmful effects on human health can be caused by the analyzed samples. Moreover, it appears that the pattern of contamination of metals is very similar in all the analyzed samples, which could be attributed to the same origin of the analyzed cannabis, i.e., the common soil composition, use of fertilizers, pesticides, etc. Finally, as far as the distribution pattern between the different parts of the plant is concerned, it was revealed that leaves present a higher concentration in comparison to seeds for all metals examined.Keywords: cannabis, heavy metals, ICP-MS, leaves and seeds, elements
Procedia PDF Downloads 99392 A Delphi Study to Build Consensus for Tuberculosis Control Guideline to Achieve Who End Tb 2035 Strategy
Authors: Pui Hong Chung, Cyrus Leung, Jun Li, Kin On Kwok, Ek Yeoh
Abstract:
Introduction: Studies for TB control in intermediate tuberculosis burden countries (IBCs) comprise a relatively small proportion in TB control literature, as compared to the effort put in high and low burden counterparts. It currently lacks of consensus in the optimal weapons and strategies we can use to combat TB in IBCs; guidelines of TB control are inadequate and thus posing a great obstacle in eliminating TB in these countries. To fill-in the research and services gap, we need to summarize the findings of the effort in this regard and to seek consensus in terms of policy making for TB control, we have devised a series of scoping and Delphi studies for these purposes. Method: The scoping and Delphi studies are conducted in parallel to feed information for each other. Before the Delphi iterations, we have invited three local experts in TB control in Hong Kong to participate in the pre-assessment round of the Delphi study to comments on the validity, relevance, and clarity of the Delphi questionnaire. Result: Two scoping studies, regarding LTBI control in health care workers in IBCs and TB control in elderly of IBCs respectively, have been conducted. The result of these two studies is used as the foundation for developing the Delphi questionnaire, which tapped on seven areas of question, namely: characteristics of IBCs, adequacy of research and services in LTBI control in IBCs, importance and feasibility of interventions for TB control and prevention in hospital, screening and treatment of LTBI in community, reasons of refusal to/ default from LTBI treatment, medical adherence of LTBI treatment, and importance and feasibility of interventions for TB control and prevention in elderly in IBCs. The local experts also commented on the two scoping studies conducted, thus act as the sixth phase of expert consultation in Arksey and O’Malley framework of scoping studies, to either nourish the scope and strategies used in these studies or to supplement ideas for further scoping or systematic review studies. In the subsequent stage, an international expert panel, comprised of 15 to 20 experts from IBCs in Western Pacific Region, will be recruited to join the two-round anonymous Delphi iterations. Four categories of TB control experts, namely clinicians, policy makers, microbiologists/ laboratory personnel, and public health clinicians will be our target groups. A consensus level of 80% is used to determine the achievement of consensus on particular issues. Key messages: 1. Scoping review and Delphi method are useful to identify gaps and then achieve consensus in research. 2. Lots of resources are put in the high burden countries now. However, the usually neglected intermediate-burden countries with TB is an indispensable part for achieving the ambitious WHO End TB 2035 target.Keywords: dephi questionnaire, tuberculosis, WHO, latent TB infection
Procedia PDF Downloads 300391 The Rise in Popularity of Online Islamic Fashion In Indonesia: An Economic, Political, and Socio-Anthropological Perspective
Authors: Cazadira Fediva Tamzil, Agung Sulthonaulia Utama
Abstract:
The rise in popularity of Indonesian Islamic fashion displayed and sold through social networking sites, especially Instagram, might seem at first glance like a commonplace and localized phenomenon. However, when analyzed critically, it actually reveals the relations between the global and local Indonesian economy, as well as a deep socio-anthropological dimension relating to religion, culture, class, work, identity. Conducted using a qualitative methodology, data collection technique of literature review, and observation of various social networking sites, this research finds four things that lead to the aforementioned conclusion. First, the rise of online Islamic fashion retailers was triggered by the shift in the structure of global and national Indonesian economy as well as the free access of information made possible by democratization in Indonesia and worldwide advances in terms of technology. All of those factors combined together gave birth to a large amount of middle-class Indonesians with high consumer culture and entrepreneurial flair. Second, online Islamic fashion retailers are the new cultural trendsetters in society. All these show how Indonesians are becoming increasingly pious, no longer only adhere to Western conception of luxury and that many are increasingly exploiting Islam commercial and status-acquiring purposes. Third, the online Islamic fashion retailers actually reveal a shift in the conception of ‘work’ – social media has made work no longer only confined to the toiling activities inside factories, but instead something that can be done from any location only through posting online words or pictures that can increase a fashion product’s capital value. Without realizing it, many celebrities and online retailers who promote Islamic fashion through social media on a daily basis are now also ‘semi-free immaterial labors’ – a slight reconceptualization to Tiziana Terranova’s concept of ‘free labor’ and Maurizio Lazzarato’s ‘immaterial labor’, which basically refer to people who create economic value and thus help out capitals from producing immaterial things with only little compensation in return. Fourth, this research also shows that the diversity of Islamic fashion styles being sold on Instagram reflects the polarized identity of Islam in Indonesia. In stark contrast with the theory which states that globalization always leads to the strengthening and unification of identity, this research shows how polarized the Islamic identity in Indonesia really is – even in the face of globalization.Keywords: global economy, Indonesian online Islamic fashion, political relations, socio-anthropology
Procedia PDF Downloads 345390 Exploration and Evaluation of the Effect of Multiple Countermeasures on Road Safety
Authors: Atheer Al-Nuaimi, Harry Evdorides
Abstract:
Every day many people die or get disabled or injured on roads around the world, which necessitates more specific treatments for transportation safety issues. International road assessment program (iRAP) model is one of the comprehensive road safety models which accounting for many factors that affect road safety in a cost-effective way in low and middle income countries. In iRAP model road safety has been divided into five star ratings from 1 star (the lowest level) to 5 star (the highest level). These star ratings are based on star rating score which is calculated by iRAP methodology depending on road attributes, traffic volumes and operating speeds. The outcome of iRAP methodology are the treatments that can be used to improve road safety and reduce fatalities and serious injuries (FSI) numbers. These countermeasures can be used separately as a single countermeasure or mix as multiple countermeasures for a location. There is general agreement that the adequacy of a countermeasure is liable to consistent losses when it is utilized as a part of mix with different countermeasures. That is, accident diminishment appraisals of individual countermeasures cannot be easily added together. The iRAP model philosophy makes utilization of a multiple countermeasure adjustment factors to predict diminishments in the effectiveness of road safety countermeasures when more than one countermeasure is chosen. A multiple countermeasure correction factors are figured for every 100-meter segment and for every accident type. However, restrictions of this methodology incorporate a presumable over-estimation in the predicted crash reduction. This study aims to adjust this correction factor by developing new models to calculate the effect of using multiple countermeasures on the number of fatalities for a location or an entire road. Regression models have been used to establish relationships between crash frequencies and the factors that affect their rates. Multiple linear regression, negative binomial regression, and Poisson regression techniques were used to develop models that can address the effectiveness of using multiple countermeasures. Analyses are conducted using The R Project for Statistical Computing showed that a model developed by negative binomial regression technique could give more reliable results of the predicted number of fatalities after the implementation of road safety multiple countermeasures than the results from iRAP model. The results also showed that the negative binomial regression approach gives more precise results in comparison with multiple linear and Poisson regression techniques because of the overdispersion and standard error issues.Keywords: international road assessment program, negative binomial, road multiple countermeasures, road safety
Procedia PDF Downloads 240389 Multi-Labeled Aromatic Medicinal Plant Image Classification Using Deep Learning
Authors: Tsega Asresa, Getahun Tigistu, Melaku Bayih
Abstract:
Computer vision is a subfield of artificial intelligence that allows computers and systems to extract meaning from digital images and video. It is used in a wide range of fields of study, including self-driving cars, video surveillance, medical diagnosis, manufacturing, law, agriculture, quality control, health care, facial recognition, and military applications. Aromatic medicinal plants are botanical raw materials used in cosmetics, medicines, health foods, essential oils, decoration, cleaning, and other natural health products for therapeutic and Aromatic culinary purposes. These plants and their products not only serve as a valuable source of income for farmers and entrepreneurs but also going to export for valuable foreign currency exchange. In Ethiopia, there is a lack of technologies for the classification and identification of Aromatic medicinal plant parts and disease type cured by aromatic medicinal plants. Farmers, industry personnel, academicians, and pharmacists find it difficult to identify plant parts and disease types cured by plants before ingredient extraction in the laboratory. Manual plant identification is a time-consuming, labor-intensive, and lengthy process. To alleviate these challenges, few studies have been conducted in the area to address these issues. One way to overcome these problems is to develop a deep learning model for efficient identification of Aromatic medicinal plant parts with their corresponding disease type. The objective of the proposed study is to identify the aromatic medicinal plant parts and their disease type classification using computer vision technology. Therefore, this research initiated a model for the classification of aromatic medicinal plant parts and their disease type by exploring computer vision technology. Morphological characteristics are still the most important tools for the identification of plants. Leaves are the most widely used parts of plants besides roots, flowers, fruits, and latex. For this study, the researcher used RGB leaf images with a size of 128x128 x3. In this study, the researchers trained five cutting-edge models: convolutional neural network, Inception V3, Residual Neural Network, Mobile Network, and Visual Geometry Group. Those models were chosen after a comprehensive review of the best-performing models. The 80/20 percentage split is used to evaluate the model, and classification metrics are used to compare models. The pre-trained Inception V3 model outperforms well, with training and validation accuracy of 99.8% and 98.7%, respectively.Keywords: aromatic medicinal plant, computer vision, convolutional neural network, deep learning, plant classification, residual neural network
Procedia PDF Downloads 186388 Mathematical Modelling of Biogas Dehumidification by Using of Counterflow Heat Exchanger
Authors: Staņislavs Gendelis, Andris Jakovičs, Jānis Ratnieks, Aigars Laizāns, Dāvids Vardanjans
Abstract:
Dehumidification of biogas at the biomass plants is very important to provide the energy efficient burning of biomethane at the outlet. A few methods are widely used to reduce the water content in biogas, e.g. chiller/heat exchanger based cooling, usage of different adsorbents like PSA, or the combination of such approaches. A quite different method of biogas dehumidification is offered and analyzed in this paper. The main idea is to direct the flow of biogas from the plant around it downwards; thus, creating additional insulation layer. As the temperature in gas shell layer around the plant will decrease from ~ 38°C to 20°C in the summer or even to 0°C in the winter, condensation of water vapor occurs. The water from the bottom of the gas shell can be collected and drain away. In addition, another upward shell layer is created after the condensate drainage place on the outer side to further reducing heat losses. Thus, counterflow biogas heat exchanger is created around the biogas plant. This research work deals with the numerical modelling of biogas flow, taking into account heat exchange and condensation on cold surfaces. Different kinds of boundary conditions (air and ground temperatures in summer/winter) and various physical properties of constructions (insulation between layers, wall thickness) are included in the model to make it more general and useful for different biogas flow conditions. The complexity of this problem is fact, that the temperatures in both channels are conjugated in case of low thermal resistance between layers. MATLAB programming language is used for multiphysical model development, numerical calculations and result visualization. Experimental installation of a biogas plant’s vertical wall with an additional 2 layers of polycarbonate sheets with the controlled gas flow was set up to verify the modelling results. Gas flow at inlet/outlet, temperatures between the layers and humidity were controlled and measured during a number of experiments. Good correlation with modelling results for vertical wall section allows using of developed numerical model for an estimation of parameters for the whole biogas dehumidification system. Numerical modelling of biogas counterflow heat exchanger system placed on the plant’s wall for various cases allows optimizing of thickness for gas layers and insulation layer to ensure necessary dehumidification of the gas under different climatic conditions. Modelling of system’s defined configuration with known conditions helps to predict the temperature and humidity content of the biogas at the outlet.Keywords: biogas dehumidification, numerical modelling, condensation, biogas plant experimental model
Procedia PDF Downloads 548387 Food Security in Germany: Inclusion of the Private Sector through Law Reform Faces Challenges
Authors: Agnetha Schuchardt, Jennifer Hartmann, Laura Schulte, Roman Peperhove, Lars Gerhold
Abstract:
If critical infrastructures fail, even for a short period of time, it can have significant negative consequences for the affected population. This is especially true for the food sector that is strongly interlinked with other sectors like the power supply. A blackout could lead to several cities being without food supply for numerous days, simply because cash register systems do no longer work properly. Following the public opinion, securing the food supply in emergencies is considered a task of the state, however, in the German context, the key players are private enterprises and private households. Both are not aware of their responsibility and both cannot be forced to take any preventive measures prior to an emergency. This problem became evident to officials and politicians so that the law covering food security was revised in order to include private stakeholders into mitigation processes. The paper will present a scientific review of governmental and regulatory literature. The focus is the inclusion of the food industry through a law reform and the challenges that still exist. Together with legal experts, an analysis of regulations will be presented that explains the development of the law reform concerning food security and emergency storage in Germany. The main findings are that the existing public food emergency storage is out-dated, insufficient and too expensive. The state is required to protect food as a critical infrastructure but does not have the capacities to live up to this role. Through a law reform in 2017, new structures should to established. The innovation was to include the private sector into the civil defense concept since it has the required knowledge and experience. But the food industry is still reluctant. Preventive measures do not serve economic purposes – on the contrary, they cost money. The paper will discuss respective examples like equipping supermarkets with emergency power supply or self-sufficient cash register systems and why the state is not willing to cover the costs of these measures, but neither is the economy. The biggest problem with the new law is that private enterprises can only be forced to support food security if the state of emergency has occurred already and not one minute earlier. The paper will cover two main results: the literature review and an expert workshop that will be conducted in summer 2018 with stakeholders from different parts of the food supply chain as well as officials of the public food emergency concept. The results from this participative process will be presented and recommendations will be offered that show how the private economy could be better included into a modern food emergency concept (e. g. tax reductions for stockpiling).Keywords: critical infrastructure, disaster control, emergency food storage, food security, private economy, resilience
Procedia PDF Downloads 185386 Exploring Male and Female Consumers’ Perceptions of Clothing Retailers’ CSR Initiatives in South Africa
Authors: Gerhard D. Muller, Nadine C. Sonnenberg, Suné Donoghue
Abstract:
This study delves into the intricacies of male and female consumers’ perceptions of Corporate Social Responsibility (CSR) in the South African clothing retail sector, a sector experiencing increasing consumption, yet facing significant environmental and social challenges. The aim is to discern between male and female consumers’ perceptions of clothing retailers’ CSR initiatives based on the Triple Bottom Line (TBL) framework, which evaluates organizational sustainability across social, environmental, and economic domains. Methodologically, the study is embedded in a quantitative research paradigm adopting a cross-sectional survey design. A purposive sampling strategy was used to recruit male and female respondents from a diverse South African demographic background. A structured questionnaire was developed and included established consumer CSR perception scales that were adapted for the purposes of this study. The questionnaire was distributed via online platforms. The data collected from the online survey, were split by gender to allow for comparison between male and female consumers’ perceptions of clothing retailers’ CSR initiatives. Exploratory Factor Analysis (EFA) was conducted on each of the datasets. The EFA for females revealed a five-factor solution, whereas the male EFA presented a six-factor solution, with the notable addition of an Economic Performance dimension. Results indicate subtle differences in the gender groups’ CSR perceptions. While both genders seem to value clothing retailers’ focus on quality services, females seem to have more pronounced perceptions surrounding clothing retailers’ contributions to social and environmental causes. Males, on the other hand, seem to be more discerning in their perceptions surrounding clothing retailers’ support of social and environmental causes. Ethical stakeholder relationships emerged as a shared concern across genders. Still, males presented a distinct factor, Economic Performance, highlighting a gendered divergence in the weighting of economic success and financial performance in CSR evaluation. The implications of these results are multifaceted. Theoretically, the study enriches the discourse on CSR by integrating gender insights into the TBL framework, offering a greater understanding of consumers’ CSR perceptions in the South African clothing retail context. Practically, it provides actionable insights for clothing retailers, suggesting that CSR initiatives should be gender-sensitive and communicate the TBL's elements effectively to resonate with the pertinent concerns of each segment. Additionally, the findings advocate for a contextualized approach to CSR in emerging markets that aligns with local cultural and social differences.Keywords: consumer perceptions, corporate Social responsibility, gender differentiation, triple bottom line
Procedia PDF Downloads 66385 Capacity of Cold-Formed Steel Warping-Restrained Members Subjected to Combined Axial Compressive Load and Bending
Authors: Maryam Hasanali, Syed Mohammad Mojtabaei, Iman Hajirasouliha, G. Charles Clifton, James B. P. Lim
Abstract:
Cold-formed steel (CFS) elements are increasingly being used as main load-bearing components in the modern construction industry, including low- to mid-rise buildings. In typical multi-storey buildings, CFS structural members act as beam-column elements since they are exposed to combined axial compression and bending actions, both in moment-resisting frames and stud wall systems. Current design specifications, including the American Iron and Steel Institute (AISI S100) and the Australian/New Zealand Standard (AS/NZS 4600), neglect the beneficial effects of warping-restrained boundary conditions in the design of beam-column elements. Furthermore, while a non-linear relationship governs the interaction of axial compression and bending, the combined effect of these actions is taken into account through a simplified linear expression combining pure axial and flexural strengths. This paper aims to evaluate the reliability of the well-known Direct Strength Method (DSM) as well as design proposals found in the literature to provide a better understanding of the efficiency of the code-prescribed linear interaction equation in the strength predictions of CFS beam columns and the effects of warping-restrained boundary conditions on their behavior. To this end, the experimentally validated finite element (FE) models of CFS elements under compression and bending were developed in ABAQUS software, which accounts for both non-linear material properties and geometric imperfections. The validated models were then used for a comprehensive parametric study containing 270 FE models, covering a wide range of key design parameters, such as length (i.e., 0.5, 1.5, and 3 m), thickness (i.e., 1, 2, and 4 mm) and cross-sectional dimensions under ten different load eccentricity levels. The results of this parametric study demonstrated that using the DSM led to the most conservative strength predictions for beam-column members by up to 55%, depending on the element’s length and thickness. This can be sourced by the errors associated with (i) the absence of warping-restrained boundary condition effects, (ii) equations for the calculations of buckling loads, and (iii) the linear interaction equation. While the influence of warping restraint is generally less than 6%, the code suggested interaction equation led to an average error of 4% to 22%, based on the element lengths. This paper highlights the need to provide more reliable design solutions for CFS beam-column elements for practical design purposes.Keywords: beam-columns, cold-formed steel, finite element model, interaction equation, warping-restrained boundary conditions
Procedia PDF Downloads 104384 Signaling Theory: An Investigation on the Informativeness of Dividends and Earnings Announcements
Authors: Faustina Masocha, Vusani Moyo
Abstract:
For decades, dividend announcements have been presumed to contain important signals about the future prospects of companies. Similarly, the same has been presumed about management earnings announcements. Despite both dividend and earnings announcements being considered informative, a number of researchers questioned their credibility and found both to contain short-term signals. Pertaining to dividend announcements, some authors argued that although they might contain important information that can result in changes in share prices, which consequently results in the accumulation of abnormal returns, their degree of informativeness is less compared to other signaling tools such as earnings announcements. Yet, this claim in favor has been refuted by other researchers who found the effect of earnings to be transitory and of little value to shareholders as indicated by the little abnormal returns earned during the period surrounding earnings announcements. Considering the above, it is apparent that both dividends and earnings have been hypothesized to have a signaling impact. This prompts one to question which between these two signaling tools is more informative. To answer this question, two follow-up questions were asked. The first question sought to determine the event which results in the most effect on share prices, while the second question focused on the event that influenced trading volume the most. To answer the first question and evaluate the effect that each of these events had on share prices, an event study methodology was employed on a sample made up of the top 10 JSE-listed companies for data collected from 2012 to 2019 to determine if shareholders gained abnormal returns (ARs) during announcement dates. The event that resulted in the most persistent and highest amount of ARs was considered to be more informative. Looking at the second follow-up question, an investigation was conducted to determine if either dividends or earnings announcements influenced trading patterns, resulting in abnormal trading volumes (ATV) around announcement time. The event that resulted in the most ATV was considered more informative. Using an estimation period of 20 days and an event window of 21 days, and hypothesis testing, it was found that announcements pertaining to the increase of earnings resulted in the most ARs, Cumulative Abnormal Returns (CARs) and had a lasting effect in comparison to dividend announcements whose effect lasted until day +3. This solidifies some empirical arguments that the signaling effect of dividends has become diminishing. It was also found that when reported earnings declined in comparison to the previous period, there was an increase in trading volume, resulting in ATV. Although dividend announcements did result in abnormal returns, they were lesser than those acquired during earnings announcements which refutes a number of theoretical and empirical arguments that found dividends to be more informative than earnings announcements.Keywords: dividend signaling, event study methodology, information content of earnings, signaling theory
Procedia PDF Downloads 172383 Human Creativity through Dooyeweerd's Philosophy: The Case of Creative Diagramming
Authors: Kamaran Fathulla
Abstract:
Human creativity knows no bounds. More than a millennia ago humans have expressed their knowledge on cave walls and on clay artefacts. Using visuals such as diagrams and paintings have always provided us with a natural and intuitive medium for expressing such creativity. Making sense of human generated visualisation has been influenced by western scientific philosophies which are often reductionist in their nature. Theoretical frameworks such as those delivered by Peirce dominated our views of how to make sense of visualisation where a visual is seen as an emergent property of our thoughts. Others have reduced the richness of human-generated visuals to mere shapes drawn on a piece of paper or on a screen. This paper introduces an alternate framework where the centrality of human functioning is given explicit and richer consideration through the multi aspectual philosophical works of Herman Dooyeweerd. Dooyeweerd's framework of understanding reality was based on fifteen aspects of reality, each having a distinct core meaning. The totality of the aspects formed a ‘rainbow’ like spectrum of meaning. The thesis of this approach is that meaningful human functioning in most cases involves the diversity of all aspects working in synergy and harmony. Illustration of the foundations and applicability of this approach is underpinned in the case of humans use of diagramming for creative purposes, particularly within an educational context. Diagrams play an important role in education. Students and lecturers use diagrams as a powerful tool to aid their thinking. However, research into the role of diagrams used in education continues to reveal difficulties students encounter during both processes of interpretation and construction of diagrams. Their main problems shape up students difficulties with diagrams. The ever-increasing diversity of diagrams' types coupled with the fact that most real-world diagrams often contain a mix of these different types of diagrams such as boxes and lines, bar charts, surfaces, routes, shapes dotted around the drawing area, and so on with each type having its own distinct set of static and dynamic semantics. We argue that the persistence of these problems is grounded in our existing ways of understanding diagrams that are often reductionist in their underpinnings driven by a single perspective or formalism. In this paper, we demonstrate the limitations of these approaches in dealing with the three problems. Consequently, we propose, discuss, and demonstrate the potential of a nonreductionist framework for understanding diagrams based on Symbolic and Spatial Mappings (SySpM) underpinned by Dooyeweerd philosophy. The potential of the framework to account for the meaning of diagrams is demonstrated by applying it to a real-world case study physics diagram.Keywords: SySpM, drawing style, mapping
Procedia PDF Downloads 237382 Deep Learning for Qualitative and Quantitative Grain Quality Analysis Using Hyperspectral Imaging
Authors: Ole-Christian Galbo Engstrøm, Erik Schou Dreier, Birthe Møller Jespersen, Kim Steenstrup Pedersen
Abstract:
Grain quality analysis is a multi-parameterized problem that includes a variety of qualitative and quantitative parameters such as grain type classification, damage type classification, and nutrient regression. Currently, these parameters require human inspection, a multitude of instruments employing a variety of sensor technologies, and predictive model types or destructive and slow chemical analysis. This paper investigates the feasibility of applying near-infrared hyperspectral imaging (NIR-HSI) to grain quality analysis. For this study two datasets of NIR hyperspectral images in the wavelength range of 900 nm - 1700 nm have been used. Both datasets contain images of sparsely and densely packed grain kernels. The first dataset contains ~87,000 image crops of bulk wheat samples from 63 harvests where protein value has been determined by the FOSS Infratec NOVA which is the golden industry standard for protein content estimation in bulk samples of cereal grain. The second dataset consists of ~28,000 image crops of bulk grain kernels from seven different wheat varieties and a single rye variety. In the first dataset, protein regression analysis is the problem to solve while variety classification analysis is the problem to solve in the second dataset. Deep convolutional neural networks (CNNs) have the potential to utilize spatio-spectral correlations within a hyperspectral image to simultaneously estimate the qualitative and quantitative parameters. CNNs can autonomously derive meaningful representations of the input data reducing the need for advanced preprocessing techniques required for classical chemometric model types such as artificial neural networks (ANNs) and partial least-squares regression (PLS-R). A comparison between different CNN architectures utilizing 2D and 3D convolution is conducted. These results are compared to the performance of ANNs and PLS-R. Additionally, a variety of preprocessing techniques from image analysis and chemometrics are tested. These include centering, scaling, standard normal variate (SNV), Savitzky-Golay (SG) filtering, and detrending. The results indicate that the combination of NIR-HSI and CNNs has the potential to be the foundation for an automatic system unifying qualitative and quantitative grain quality analysis within a single sensor technology and predictive model type.Keywords: deep learning, grain analysis, hyperspectral imaging, preprocessing techniques
Procedia PDF Downloads 99