Search results for: open queueing network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7635

Search results for: open queueing network

4545 Economic Stability in a Small Open Economy with Income Effect on Leisure Demand

Authors: Yu-Shan Hsu

Abstract:

This paper studies a two-sector growth model with a technology of social constant returns and with a utility that features either a zero or a positive income effect on the demand for leisure. The purpose is to investigate how the existence of aggregate instability or equilibrium indeterminacy depends on both the intensity of the income effect on the demand for leisure and the value of the labor supply elasticity. The main finding is that when there is a factor intensity reversal between the private perspective and the social perspective, indeterminacy arises even if the utility has a positive income effect on leisure demand. Moreover, we find that a smaller value of the labor supply elasticity increases the range of the income effect on leisure demand and thus increases the possibility of equilibrium indeterminacy. JEL classification: E3; O41

Keywords: indeterminacy, non-separable preferences, income effect, labor supply elasticity

Procedia PDF Downloads 182
4544 Simulation-Based Unmanned Surface Vehicle Design Using PX4 and Robot Operating System With Kubernetes and Cloud-Native Tooling

Authors: Norbert Szulc, Jakub Wilk, Franciszek Górski

Abstract:

This paper presents an approach for simulating and testing robotic systems based on PX4, using a local Kubernetes cluster. The approach leverages modern cloud-native tools and runs on single-board computers. Additionally, this solution enables the creation of datasets for computer vision and the evaluation of control system algorithms in an end-to-end manner. This paper compares this approach to method commonly used Docker based approach. This approach was used to develop simulation environment for an unmanned surface vehicle (USV) for RoboBoat 2023 by running a containerized configuration of the PX4 Open-source Autopilot connected to ROS and the Gazebo simulation environment.

Keywords: cloud computing, Kubernetes, single board computers, simulation, ROS

Procedia PDF Downloads 82
4543 GAILoc: Improving Fingerprinting-Based Localization System Using Generative Artificial Intelligence

Authors: Getaneh Berie Tarekegn

Abstract:

A precise localization system is crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. The most common method for providing continuous positioning services in outdoor environments is by using a global navigation satellite system (GNSS). Due to nonline-of-sight, multipath, and weather conditions, GNSS systems do not perform well in dense urban, urban, and suburban areas.This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a novel semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 39 cm, and more than 90% of the errors are less than 82 cm. That is, numerical results proved that, in comparison to traditional methods, the proposed SRCLoc method can significantly improve positioning performance and reduce radio map construction costs.

Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine

Procedia PDF Downloads 80
4542 Intrusion Detection in SCADA Systems

Authors: Leandros A. Maglaras, Jianmin Jiang

Abstract:

The protection of the national infrastructures from cyberattacks is one of the main issues for national and international security. The funded European Framework-7 (FP7) research project CockpitCI introduces intelligent intrusion detection, analysis and protection techniques for Critical Infrastructures (CI). The paradox is that CIs massively rely on the newest interconnected and vulnerable Information and Communication Technology (ICT), whilst the control equipment, legacy software/hardware, is typically old. Such a combination of factors may lead to very dangerous situations, exposing systems to a wide variety of attacks. To overcome such threats, the CockpitCI project combines machine learning techniques with ICT technologies to produce advanced intrusion detection, analysis and reaction tools to provide intelligence to field equipment. This will allow the field equipment to perform local decisions in order to self-identify and self-react to abnormal situations introduced by cyberattacks. In this paper, an intrusion detection module capable of detecting malicious network traffic in a Supervisory Control and Data Acquisition (SCADA) system is presented. Malicious data in a SCADA system disrupt its correct functioning and tamper with its normal operation. OCSVM is an intrusion detection mechanism that does not need any labeled data for training or any information about the kind of anomaly is expecting for the detection process. This feature makes it ideal for processing SCADA environment data and automates SCADA performance monitoring. The OCSVM module developed is trained by network traces off line and detects anomalies in the system real time. The module is part of an IDS (intrusion detection system) developed under CockpitCI project and communicates with the other parts of the system by the exchange of IDMEF messages that carry information about the source of the incident, the time and a classification of the alarm.

Keywords: cyber-security, SCADA systems, OCSVM, intrusion detection

Procedia PDF Downloads 559
4541 Implementation of Deep Neural Networks for Pavement Condition Index Prediction

Authors: M. Sirhan, S. Bekhor, A. Sidess

Abstract:

In-service pavements deteriorate with time due to traffic wheel loads, environment, and climate conditions. Pavement deterioration leads to a reduction in their serviceability and structural behavior. Consequently, proper maintenance and rehabilitation (M&R) are necessary actions to keep the in-service pavement network at the desired level of serviceability. Due to resource and financial constraints, the pavement management system (PMS) prioritizes roads most in need of maintenance and rehabilitation action. It recommends a suitable action for each pavement based on the performance and surface condition of each road in the network. The pavement performance and condition are usually quantified and evaluated by different types of roughness-based and stress-based indices. Examples of such indices are Pavement Serviceability Index (PSI), Pavement Serviceability Ratio (PSR), Mean Panel Rating (MPR), Pavement Condition Rating (PCR), Ride Number (RN), Profile Index (PI), International Roughness Index (IRI), and Pavement Condition Index (PCI). PCI is commonly used in PMS as an indicator of the extent of the distresses on the pavement surface. PCI values range between 0 and 100; where 0 and 100 represent a highly deteriorated pavement and a newly constructed pavement, respectively. The PCI value is a function of distress type, severity, and density (measured as a percentage of the total pavement area). PCI is usually calculated iteratively using the 'Paver' program developed by the US Army Corps. The use of soft computing techniques, especially Artificial Neural Network (ANN), has become increasingly popular in the modeling of engineering problems. ANN techniques have successfully modeled the performance of the in-service pavements, due to its efficiency in predicting and solving non-linear relationships and dealing with an uncertain large amount of data. Typical regression models, which require a pre-defined relationship, can be replaced by ANN, which was found to be an appropriate tool for predicting the different pavement performance indices versus different factors as well. Subsequently, the objective of the presented study is to develop and train an ANN model that predicts the PCI values. The model’s input consists of percentage areas of 11 different damage types; alligator cracking, swelling, rutting, block cracking, longitudinal/transverse cracking, edge cracking, shoving, raveling, potholes, patching, and lane drop off, at three severity levels (low, medium, high) for each. The developed model was trained using 536,000 samples and tested on 134,000 samples. The samples were collected and prepared by The National Transport Infrastructure Company. The predicted results yielded satisfactory compliance with field measurements. The proposed model predicted PCI values with relatively low standard deviations, suggesting that it could be incorporated into the PMS for PCI determination. It is worth mentioning that the most influencing variables for PCI prediction are damages related to alligator cracking, swelling, rutting, and potholes.

Keywords: artificial neural networks, computer programming, pavement condition index, pavement management, performance prediction

Procedia PDF Downloads 141
4540 Advantages of Neural Network Based Air Data Estimation for Unmanned Aerial Vehicles

Authors: Angelo Lerro, Manuela Battipede, Piero Gili, Alberto Brandl

Abstract:

Redundancy requirements for UAV (Unmanned Aerial Vehicle) are hardly faced due to the generally restricted amount of available space and allowable weight for the aircraft systems, limiting their exploitation. Essential equipment as the Air Data, Attitude and Heading Reference Systems (ADAHRS) require several external probes to measure significant data as the Angle of Attack or the Sideslip Angle. Previous research focused on the analysis of a patented technology named Smart-ADAHRS (Smart Air Data, Attitude and Heading Reference System) as an alternative method to obtain reliable and accurate estimates of the aerodynamic angles. This solution is based on an innovative sensor fusion algorithm implementing soft computing techniques and it allows to obtain a simplified inertial and air data system reducing external devices. In fact, only one external source of dynamic and static pressures is needed. This paper focuses on the benefits which would be gained by the implementation of this system in UAV applications. A simplification of the entire ADAHRS architecture will bring to reduce the overall cost together with improved safety performance. Smart-ADAHRS has currently reached Technology Readiness Level (TRL) 6. Real flight tests took place on ultralight aircraft equipped with a suitable Flight Test Instrumentation (FTI). The output of the algorithm using the flight test measurements demonstrates the capability for this fusion algorithm to embed in a single device multiple physical and virtual sensors. Any source of dynamic and static pressure can be integrated with this system gaining a significant improvement in terms of versatility.

Keywords: aerodynamic angles, air data system, flight test, neural network, unmanned aerial vehicle, virtual sensor

Procedia PDF Downloads 224
4539 Computing Maximum Uniquely Restricted Matchings in Restricted Interval Graphs

Authors: Swapnil Gupta, C. Pandu Rangan

Abstract:

A uniquely restricted matching is defined to be a matching M whose matched vertices induces a sub-graph which has only one perfect matching. In this paper, we make progress on the open question of the status of this problem on interval graphs (graphs obtained as the intersection graph of intervals on a line). We give an algorithm to compute maximum cardinality uniquely restricted matchings on certain sub-classes of interval graphs. We consider two sub-classes of interval graphs, the former contained in the latter, and give O(|E|^2) time algorithms for both of them. It is to be noted that both sub-classes are incomparable to proper interval graphs (graphs obtained as the intersection graph of intervals in which no interval completely contains another interval), on which the problem can be solved in polynomial time.

Keywords: uniquely restricted matching, interval graph, matching, induced matching, witness counting

Procedia PDF Downloads 394
4538 Flexible Communication Platform for Crisis Management

Authors: Jiří Barta, Tomáš Ludík, Jiří Urbánek

Abstract:

The topics of disaster and emergency management are highly debated among experts. Fast communication will help to deal with emergencies. Problem is with the network connection and data exchange. The paper suggests a solution, which allows possibilities and perspectives of new flexible communication platform to the protection of communication systems for crisis management. This platform is used for everyday communication and communication in crisis situations too.

Keywords: crisis management, information systems, interoperability, crisis communication, security environment, communication platform

Procedia PDF Downloads 479
4537 Impact of Joule Heating on the Electrical Conduction Behavior of Carbon Composite Laminates under Simulated Lightning Strike

Authors: Hong Yu, Dirk Heider, Suresh Advani

Abstract:

Increasing demands for high strength and lightweight materials in aircraft industry prompted the wide use of carbon composites in recent decades. Carbon composite laminates used on aircraft structures are subject to lightning strikes. Unlike its metal/alloy counterparts, carbon fiber reinforced composites demonstrate smaller electrical conductivity, yielding more severe damages due to Joule heating. The anisotropic nature of composite laminates makes the electrical and thermal conduction within carbon composite laminates even more complicated. Good understanding of the electrical conduction behavior of carbon composites is the key to effective lightning protection design. The goal of this study is to numerically and experimentally investigate the impact of ultra-high temperature induced by simulated lightning strike on the electrical conduction of carbon composites. A lightning simulator is designed to apply standard lightning current waveform to composite laminates. Multiple carbon composite laminates made from IM7 and AS4 carbon fiber are tested and the transient resistance data is recorded. A microstructure based resistor network model is developed to describe the electrical and thermal conduction behavior, with consideration of temperature dependent material properties. Material degradations such as thermal and electrical breakdown are also modeled to include the effect of high current and high temperature induced by lightning strikes. Good match between the simulation results and experimental data indicates that the developed model captures the major conduction mechanisms. A parametric study is then conducted using the validated model to investigate the effect of system parameters such as fiber volume fraction, inter-ply interface quality, and lightning current waveforms.

Keywords: carbon composite, joule heating, lightning strike, resistor network

Procedia PDF Downloads 229
4536 Making a ‘Once-upon-a-Time’ Mythology in Kazuo Ishiguro’s The Buried Giant

Authors: Masami Usui

Abstract:

Kazuo Ishiguro’s challenging novel, The Buried Giant, embodies how contemporary writers and readers have to discover the voices buried in our history. By avoiding setting or connecting the modern and contemporary historical incidents such as World War II this time, Ishiguro ventures into retelling myth, transfiguring historical facts, and revealing what has been forgotten in a process of establishing history and creating mythology. As generally known, modernist writers in the twentieth century employed materials from authorized classical mythologies, especially Greek mythology. As an heir of this tradition, Ishiguro imposes his mission of criticizing the repeatedly occurring yet easily-forgotten history of dictatorship and a slaughter on mythology based on King Arthur and its related heroes and myths in Britain. On an open ground, Ishiguro can start his own mythical story and space.

Keywords: English literature, fantasy, globalism, history

Procedia PDF Downloads 340
4535 Differentiated Surgical Treatment of Patients With Nontraumatic Intracerebral Hematomas

Authors: Mansur Agzamov, Valery Bersnev, Natalia Ivanova, Istam Agzamov, Timur Khayrullaev, Yulduz Agzamova

Abstract:

Objectives. Treatment of hypertensive intracerebral hematoma (ICH) is controversial. Advantage of one surgical method on other has not been established. Recent reports suggest a favorable effect of minimally invasive surgery. We conducted a small comparative study of different surgical methods. Methods. We analyzed the result of surgical treatment of 176 patients with intracerebral hematomas at the age from 41 to 78 years. Men were been113 (64.2%), women - 63 (35.8%). Level of consciousness: conscious -18, lethargy -63, stupor –55, moderate coma - 40. All patients on admission and in the dynamics underwent computer tomography (CT) of the brain. ICH was located in the putamen in 87 cases, thalamus in 19, in the mix area in 50, in the lobar area in 20. Ninety seven patients of them had an intraventricular hemorrhage component. The baseline volume of the ICH was measured according to a bedside method of measuring CT intracerebral hematomas volume. Depending on the intervention of the patients were divided into three groups. Group 1 patients, 90 patients, operated open craniotomy. Level of consciousness: conscious-11, lethargy-33, stupor–18, moderate coma -18. The hemorrhage was located in the putamen in 51, thalamus in 3, in the mix area in 25, in the lobar area in 11. Group 2 patients, 22 patients, underwent smaller craniotomy with endoscopic-assisted evacuation. Level of consciousness: conscious-4, lethargy-9, stupor–5, moderate coma -4. The hemorrhage was located in the putamen in 5, thalamus in 15, in the mix area in 2. Group 3 patients, 64 patients, was conducted minimally invasive removal of intracerebral hematomas using the original device (patent of Russian Federation № 65382). The device - funnel cannula - which after the special markings introduced into the hematoma cavity. Level of consciousness: conscious-3, lethargy-21, stupor–22, moderate coma -18. The hemorrhage was located in the putamen in 31, in the mix area in 23, thalamus in 1, in the lobar area in 9. Results of treatment were evaluated by Glasgow outcome scale. Results. The study showed that the results of surgical treatment in three groups depending on the degree of consciousness, the volume and localization of hematoma. In group 1, good recovery observed in 8 cases (8.9%), moderate disability in 22 (24.4%), severe disability - 17 (18.9%), death-43 (47.8%). In group 2, good recovery observed in 7 cases (31.8%), moderate disability in 7 (31.8%), severe disability - 5 (29.7%), death-7 (31.8%). In group 3, good recovery was observed in 9 cases (14.1%), moderate disability-17 (26.5%), severe disability-19 (29.7%), death-19 (29.7%). Conclusions. The method of using cannulae allowed to abandon from open craniotomy of the majority of patients with putaminal hematomas. Minimally invasive technique reduced the postoperative mortality and improves treatment outcomes of these patients.

Keywords: nontraumatic intracerebral hematoma, minimal invasive surgical technique, funnel canula, differentiated surcical treatment

Procedia PDF Downloads 87
4534 Design, Prototyping, Integration, Flight Testing of a 20 cm Span Fully Autonomous Fixed Wing Micro Air Vehicle

Authors: Vivek Paul, Abel Nelly, Shoeb A Adeel, R. Tilak, S. Maheshwaran, S. Pulikeshi, Roshan Antony, C. S. Suraj

Abstract:

This paper presents the complete design and development cycle of a 20 cm span fixed wing micro air vehicle that was developed at CSIR-NAL, under the micro air vehicle development program. The design is a cropped delta flying wing MAV with a modified N22 airfoil of 12.3% thickness. The design was fabricated using the fused deposition method- RPT technique. COTS components were procured and integrated into this RPT prototype. A commercial autopilot that was proven in the earlier MAV designs was used for this MAV. The MAV was flown fully autonomous for 14mins at an open field. The flight data showed good performance as expected from the MAV design. The paper also describes about the process involved in the design of MAVs.

Keywords: autopilot, autonomous mode, flight testing, MAV, RPT

Procedia PDF Downloads 524
4533 Performance Assessment of Carrier Aggregation-Based Indoor Mobile Networks

Authors: Viktor R. Stoynov, Zlatka V. Valkova-Jarvis

Abstract:

The intelligent management and optimisation of radio resource technologies will lead to a considerable improvement in the overall performance in Next Generation Networks (NGNs). Carrier Aggregation (CA) technology, also known as Spectrum Aggregation, enables more efficient use of the available spectrum by combining multiple Component Carriers (CCs) in a virtual wideband channel. LTE-A (Long Term Evolution–Advanced) CA technology can combine multiple adjacent or separate CCs in the same band or in different bands. In this way, increased data rates and dynamic load balancing can be achieved, resulting in a more reliable and efficient operation of mobile networks and the enabling of high bandwidth mobile services. In this paper, several distinct CA deployment strategies for the utilisation of spectrum bands are compared in indoor-outdoor scenarios, simulated via the recently-developed Realistic Indoor Environment Generator (RIEG). We analyse the performance of the User Equipment (UE) by integrating the average throughput, the level of fairness of radio resource allocation, and other parameters, into one summative assessment termed a Comparative Factor (CF). In addition, comparison of non-CA and CA indoor mobile networks is carried out under different load conditions: varying numbers and positions of UEs. The experimental results demonstrate that the CA technology can improve network performance, especially in the case of indoor scenarios. Additionally, we show that an increase of carrier frequency does not necessarily lead to improved CF values, due to high wall-penetration losses. The performance of users under bad-channel conditions, often located in the periphery of the cells, can be improved by intelligent CA location. Furthermore, a combination of such a deployment and effective radio resource allocation management with respect to user-fairness plays a crucial role in improving the performance of LTE-A networks.

Keywords: comparative factor, carrier aggregation, indoor mobile network, resource allocation

Procedia PDF Downloads 181
4532 Investigation of Projected Organic Waste Impact on a Tropical Wetland in Singapore

Authors: Swee Yang Low, Dong Eon Kim, Canh Tien Trinh Nguyen, Yixiong Cai, Shie-Yui Liong

Abstract:

Nee Soon swamp forest is one of the last vestiges of tropical wetland in Singapore. Understanding the hydrological regime of the swamp forest and implications for water quality is critical to guide stakeholders in implementing effective measures to preserve the wetland against anthropogenic impacts. In particular, although current field measurement data do not indicate a concern with organic pollution, reviewing the ways in which the wetland responds to elevated organic waste influx (and the corresponding impact on dissolved oxygen, DO) can help identify potential hotspots, and the impact on the outflow from the catchment which drains into downstream controlled watercourses. An integrated water quality model is therefore developed in this study to investigate spatial and temporal concentrations of DO levels and organic pollution (as quantified by biochemical oxygen demand, BOD) within the catchment’s river network under hypothetical, projected scenarios of spiked upstream inflow. The model was developed using MIKE HYDRO for modelling the study domain, as well as the MIKE ECO Lab numerical laboratory for characterising water quality processes. Model parameters are calibrated against time series of observed discharges at three measurement stations along the river network. Over a simulation period of April 2014 to December 2015, the calibrated model predicted that a continuous spiked inflow of 400 mg/l BOD will elevate downstream concentrations at the catchment outlet to an average of 12 mg/l, from an assumed nominal baseline BOD of 1 mg/l. Levels of DO were decreased from an initial 5 mg/l to 0.4 mg/l. Though a scenario of spiked organic influx at the swamp forest’s undeveloped upstream sub-catchments is currently unlikely to occur, the outcomes nevertheless will be beneficial for future planning studies in understanding how the water quality of the catchment will be impacted should urban redevelopment works be considered around the swamp forest.

Keywords: hydrology, modeling, water quality, wetland

Procedia PDF Downloads 142
4531 Causal Modeling of the Glucose-Insulin System in Type-I Diabetic Patients

Authors: J. Fernandez, N. Aguilar, R. Fernandez de Canete, J. C. Ramos-Diaz

Abstract:

In this paper, a simulation model of the glucose-insulin system for a patient undergoing diabetes Type 1 is developed by using a causal modeling approach under system dynamics. The OpenModelica simulation environment has been employed to build the so called causal model, while the glucose-insulin model parameters were adjusted to fit recorded mean data of a diabetic patient database. Model results under different conditions of a three-meal glucose and exogenous insulin ingestion patterns have been obtained. This simulation model can be useful to evaluate glucose-insulin performance in several circumstances, including insulin infusion algorithms in open-loop and decision support systems in closed-loop.

Keywords: causal modeling, diabetes, glucose-insulin system, diabetes, causal modeling, OpenModelica software

Procedia PDF Downloads 334
4530 A Survey on Smart Security Mechanism Using Graphical Passwords

Authors: Aboli Dhanavade, Shweta Bhimnath, Rutuja Jumale, Ajay Nadargi

Abstract:

Security to any of our personal thing is our most basic need. It is not possible to directly apply that standard Human-computer—interaction approaches. Important usability goal for authentication system is to support users in selecting best passwords. Users often select text-passwords that are easy to remember, but they are more open for attackers to guess. The human brain is good in remembering pictures rather than textual characters. So the best alternative is being designed that is Graphical passwords. However, Graphical passwords are still immature. Conventional password schemes are also vulnerable to Shoulder-surfing attacks, many shoulder-surfing resistant graphical passwords schemes have been proposed. Next, we have analyzed the security and usability of the proposed scheme, and show the resistance of the proposed scheme to shoulder-surfing and different accidental logins.

Keywords: shoulder-surfing, security, authentication, text-passwords

Procedia PDF Downloads 366
4529 An Evaluation of English Collocation Usage Barriers Faced by College Students of Rawalpindi

Authors: Sobia Rana

Abstract:

The study intends to explain the problems of English collocational use faced by college students in Rawalpindi, Pakistan and recommends some authentic ways that will help in removing the learning barriers in light of the concerning methodological issues. It will not only help the students to improve their knowledge of the phenomena but will also enlighten the target teachers about the significance of authentic collocational use and how it naturalizes both written and spoken expressions. Data from both the students and teachers have been collected with the help of open/close-ended questionnaires to unearth the genuine cause/s and supplement them with the required solutions rooted in the actual problems. The students fail to use authentic collocations owing to multiple reasons: lack of awareness about English collocational use, improper teaching methodologies, and inexpert teachers.

Keywords: English collocational use, teaching methodologies, English learning barriers, vocabulary acquisition, college students of Rawalpindi

Procedia PDF Downloads 87
4528 Employment of Persons with Disabilities in Georgia: Challenges and Perspectives

Authors: Tamar Makharadze, Anastasia Kitiashvili, Irine Zhvania, Tamar Abashidze

Abstract:

After ratification of UN Convention on the Rights of Persons with Disabilities (UN CRPD) by the Parliament of Georgia in 2013, ensuring equal access to education and employment for people with disabilities has become one of the priorities of the government. The current research has analyzed the attitudes of people with disabilities, employers and society towards various challenges that employment of persons with disabilities faces in Georgia. The study has been carried out in the capital city and three towns in West and East Georgia. Both quantitative and qualitative research methods have been used. Employers’ attitudes have been studied by analyzing research data from six focus groups and 12 in-depth interviews. Views of persons with disabilities have been analyzed relied on data from eight focus groups and 14 in-depth interviews. The quantitative study covered 490 surveyed respondents from four cities in Georgia. The research was carried out with the employees of companies selected based on the Simple Random Sample; in each company, based on the size of the company 7–10 employees were surveyed. A survey was conducted using a specially developed structured questionnaire. Data analysis was carried out using SPSS (21.0). The research was carried out during June-August 2015. The research data shows that both qualitative and quantitative research participants view employment of persons with disabilities positively; however persons with severe intellectual disabilities and mental problems are viewed as less workable and desired at workplaces. The respondents support the idea of employment of persons with disabilities at an open labour market; at the same time idea of a development of sheltered workshops is also supported. The vast majority of research participants believe that employers should be rather encouraged to hire persons with disabilities than force them to do so. For employers it is important to have the state assistance in adjusting working place to the needs of employee with disabilities. Some tax benefits for employers having employees with disabilities also are seen as encouraging employment of persons with disabilities. Both employers and persons with disabilities believe that development of job coaching will help persons with disabilities to find and maintain a job at the open market. Majority of survey respondents think that the main reasons discouraging employment of persons with disabilities in Georgia are: poor socioeconomic background and high level of unemployment in the country, absence of related state programs and existed stigma towards persons with disabilities within the society. To conclude it can be said that both employers and persons with disabilities expect initiative from the government – development of the programs and services focusing on employment of persons with disabilities that will be rather encouraging and supporting than punishing and forcing. Relied on survey data it can be said that people have positive attitudes to see persons with disabilities at workplaces, educational institutions and public places. This creates a good background for extensive and consistent work towards social inclusion of persons with disabilities in Georgia.

Keywords: supported employment, job coaching, employment of persons with disabilities in Georgia, social inclusion

Procedia PDF Downloads 359
4527 Forecasting Thermal Energy Demand in District Heating and Cooling Systems Using Long Short-Term Memory Neural Networks

Authors: Kostas Kouvaris, Anastasia Eleftheriou, Georgios A. Sarantitis, Apostolos Chondronasios

Abstract:

To achieve the objective of almost zero carbon energy solutions by 2050, the EU needs to accelerate the development of integrated, highly efficient and environmentally friendly solutions. In this direction, district heating and cooling (DHC) emerges as a viable and more efficient alternative to conventional, decentralized heating and cooling systems, enabling a combination of more efficient renewable and competitive energy supplies. In this paper, we develop a forecasting tool for near real-time local weather and thermal energy demand predictions for an entire DHC network. In this fashion, we are able to extend the functionality and to improve the energy efficiency of the DHC network by predicting and adjusting the heat load that is distributed from the heat generation plant to the connected buildings by the heat pipe network. Two case-studies are considered; one for Vransko, Slovenia and one for Montpellier, France. The data consists of i) local weather data, such as humidity, temperature, and precipitation, ii) weather forecast data, such as the outdoor temperature and iii) DHC operational parameters, such as the mass flow rate, supply and return temperature. The external temperature is found to be the most important energy-related variable for space conditioning, and thus it is used as an external parameter for the energy demand models. For the development of the forecasting tool, we use state-of-the-art deep neural networks and more specifically, recurrent networks with long-short-term memory cells, which are able to capture complex non-linear relations among temporal variables. Firstly, we develop models to forecast outdoor temperatures for the next 24 hours using local weather data for each case-study. Subsequently, we develop models to forecast thermal demand for the same period, taking under consideration past energy demand values as well as the predicted temperature values from the weather forecasting models. The contributions to the scientific and industrial community are three-fold, and the empirical results are highly encouraging. First, we are able to predict future thermal demand levels for the two locations under consideration with minimal errors. Second, we examine the impact of the outdoor temperature on the predictive ability of the models and how the accuracy of the energy demand forecasts decreases with the forecast horizon. Third, we extend the relevant literature with a new dataset of thermal demand and examine the performance and applicability of machine learning techniques to solve real-world problems. Overall, the solution proposed in this paper is in accordance with EU targets, providing an automated smart energy management system, decreasing human errors and reducing excessive energy production.

Keywords: machine learning, LSTMs, district heating and cooling system, thermal demand

Procedia PDF Downloads 149
4526 Impact of Collieries on Groundwater in Damodar River Basin

Authors: Rajkumar Ghosh

Abstract:

The industrialization of coal mining and related activities has a significant impact on groundwater in the surrounding areas of the Damodar River. The Damodar River basin, located in eastern India, is known as the "Ruhr of India" due to its abundant coal reserves and extensive coal mining and industrial operations. One of the major consequences of collieries on groundwater is the contamination of water sources. Coal mining activities often involve the excavation and extraction of coal through underground or open-pit mining methods. These processes can release various pollutants and chemicals into the groundwater, including heavy metals, acid mine drainage, and other toxic substances. As a result, the quality of groundwater in the Damodar River region has deteriorated, making it unsuitable for drinking, irrigation, and other purposes. The high concentration of heavy metals, such as arsenic, lead, and mercury, in the groundwater has posed severe health risks to the local population. Prolonged exposure to contaminated water can lead to various health problems, including skin diseases, respiratory issues, and even long-term ailments like cancer. The contamination has also affected the aquatic ecosystem, harming fish populations and other organisms dependent on the river's water. Moreover, the excessive extraction of groundwater for industrial processes, including coal washing and cooling systems, has resulted in a decline in the water table and depletion of aquifers. This has led to water scarcity and reduced availability of water for agricultural activities, impacting the livelihoods of farmers in the region. Efforts have been made to mitigate these issues through the implementation of regulations and improved industrial practices. However, the historical legacy of coal industrialization continues to impact the groundwater in the Damodar River area. Remediation measures, such as the installation of water treatment plants and the promotion of sustainable mining practices, are essential to restore the quality of groundwater and ensure the well-being of the affected communities. In conclusion, the coal industrialization in the Damodar River surrounding has had a detrimental impact on groundwater. This research focuses on soil subsidence induced by the over-exploitation of ground water for dewatering open pit coal mines. Soil degradation happens in arid and semi-arid regions as a result of land subsidence in coal mining region, which reduces soil fertility. Depletion of aquifers, contamination, and water scarcity are some of the key challenges resulting from these activities. It is crucial to prioritize sustainable mining practices, environmental conservation, and the provision of clean drinking water to mitigate the long-lasting effects of collieries on the groundwater resources in the region.

Keywords: coal mining, groundwater, soil subsidence, water table, damodar river

Procedia PDF Downloads 85
4525 Pre-Service Teachers’ Opinions on Disabled People

Authors: Sinem Toraman, Aysun Öztuna Kaplan, Hatice Mertoğlu, Esra Macaroğlu Akgül

Abstract:

This study aims to examine pre-service teachers’ opinions on disabled people taking into consideration various variables. The participants of the study are composed of 170 pre-service teachers being 1st year students of different branches at Education Department of Yıldız Technical, Yeditepe, Marmara and Sakarya Universities. Data of the research was collected in 2013-2014 fall term. This study was designed as a phenomenological study appropriately qualitative research paradigm. Pre-service teachers’ opinions about disabled people were examined in this study, open ended question form which was prepared by researcher and focus group interview techniques were used as data collection tool. The study presents pre-service teachers’ opinions about disabled people which were mentioned, and suggestions about teacher education.

Keywords: pre-service teachers, disabled people, teacher education, teachers' opinions

Procedia PDF Downloads 464
4524 Seashore Debris Detection System Using Deep Learning and Histogram of Gradients-Extractor Based Instance Segmentation Model

Authors: Anshika Kankane, Dongshik Kang

Abstract:

Marine debris has a significant influence on coastal environments, damaging biodiversity, and causing loss and damage to marine and ocean sector. A functional cost-effective and automatic approach has been used to look up at this problem. Computer vision combined with a deep learning-based model is being proposed to identify and categorize marine debris of seven kinds on different beach locations of Japan. This research compares state-of-the-art deep learning models with a suggested model architecture that is utilized as a feature extractor for debris categorization. The model is being proposed to detect seven categories of litter using a manually constructed debris dataset, with the help of Mask R-CNN for instance segmentation and a shape matching network called HOGShape, which can then be cleaned on time by clean-up organizations using warning notifications of the system. The manually constructed dataset for this system is created by annotating the images taken by fixed KaKaXi camera using CVAT annotation tool with seven kinds of category labels. A pre-trained HOG feature extractor on LIBSVM is being used along with multiple templates matching on HOG maps of images and HOG maps of templates to improve the predicted masked images obtained via Mask R-CNN training. This system intends to timely alert the cleanup organizations with the warning notifications using live recorded beach debris data. The suggested network results in the improvement of misclassified debris masks of debris objects with different illuminations, shapes, viewpoints and litter with occlusions which have vague visibility.

Keywords: computer vision, debris, deep learning, fixed live camera images, histogram of gradients feature extractor, instance segmentation, manually annotated dataset, multiple template matching

Procedia PDF Downloads 110
4523 Efficient Backup Protection for Hybrid WDM/TDM GPON System

Authors: Elmahdi Mohammadine, Ahouzi Esmail, Najid Abdellah

Abstract:

This contribution aims to present a new protected hybrid WDM/TDM PON architecture using Wavelength Selective Switches and Optical Line Protection devices. The objective from using these technologies is to improve flexibility and enhance the protection of GPON networks.

Keywords: Wavlenght Division Multiplexed Passive Optical Network (WDM-PON), Time Division Multiplexed PON (TDM-PON), architecture, Protection, Wavelength Selective Switches (WSS), Optical Line Protection (OLP)

Procedia PDF Downloads 547
4522 Results of Twenty Years of Laparoscopic Hernia Repair Surgeries

Authors: Arun Prasad

Abstract:

Introduction: Laparoscopic surgery of hernia started in early 1990 and has had a mixed acceptance across the world, unlike laparoscopic cholecystectomy that has become a gold standard. Laparoscopic hernia repair claims to have less pain, less recurrence, and less wound infection compared to open hernia repair leading to early recovery and return to work. Materials and Methods: Laparoscopic hernia repair has been done in 2100 patients from 1995 till now with a follow-up data of 1350 patients. Data was analysed for results and satisfaction. Results: There is a recurrence rate of 0.1%. Early complications include bleeding, trocar injury and nerve pain. Late complications were rare. Conclusion: Laparoscopic inguinal hernia repair has a steep learning curve but after that the results and patient satisfaction are very good. It should be the procedure of choice in all bilateral and recurrent hernias.

Keywords: laparoscopy, hernia, mesh, surgery

Procedia PDF Downloads 257
4521 Artificial Neural Network Approach for Modeling and Optimization of Conidiospore Production of Trichoderma harzianum

Authors: Joselito Medina-Marin, Maria G. Serna-Diaz, Alejandro Tellez-Jurado, Juan C. Seck-Tuoh-Mora, Eva S. Hernandez-Gress, Norberto Hernandez-Romero, Iaina P. Medina-Serna

Abstract:

Trichoderma harzianum is a fungus that has been utilized as a low-cost fungicide for biological control of pests, and it is important to determine the optimal conditions to produce the highest amount of conidiospores of Trichoderma harzianum. In this work, the conidiospore production of Trichoderma harzianum is modeled and optimized by using Artificial Neural Networks (AANs). In order to gather data of this process, 30 experiments were carried out taking into account the number of hours of culture (10 distributed values from 48 to 136 hours) and the culture humidity (70, 75 and 80 percent), obtained as a response the number of conidiospores per gram of dry mass. The experimental results were used to develop an iterative algorithm to create 1,110 ANNs, with different configurations, starting from one to three hidden layers, and every hidden layer with a number of neurons from 1 to 10. Each ANN was trained with the Levenberg-Marquardt backpropagation algorithm, which is used to learn the relationship between input and output values. The ANN with the best performance was chosen in order to simulate the process and be able to maximize the conidiospores production. The obtained ANN with the highest performance has 2 inputs and 1 output, three hidden layers with 3, 10 and 10 neurons in each layer, respectively. The ANN performance shows an R2 value of 0.9900, and the Root Mean Squared Error is 1.2020. This ANN predicted that 644175467 conidiospores per gram of dry mass are the maximum amount obtained in 117 hours of culture and 77% of culture humidity. In summary, the ANN approach is suitable to represent the conidiospores production of Trichoderma harzianum because the R2 value denotes a good fitting of experimental results, and the obtained ANN model was used to find the parameters to produce the biggest amount of conidiospores per gram of dry mass.

Keywords: Trichoderma harzianum, modeling, optimization, artificial neural network

Procedia PDF Downloads 165
4520 Advancements in Predicting Diabetes Biomarkers: A Machine Learning Epigenetic Approach

Authors: James Ladzekpo

Abstract:

Background: The urgent need to identify new pharmacological targets for diabetes treatment and prevention has been amplified by the disease's extensive impact on individuals and healthcare systems. A deeper insight into the biological underpinnings of diabetes is crucial for the creation of therapeutic strategies aimed at these biological processes. Current predictive models based on genetic variations fall short of accurately forecasting diabetes. Objectives: Our study aims to pinpoint key epigenetic factors that predispose individuals to diabetes. These factors will inform the development of an advanced predictive model that estimates diabetes risk from genetic profiles, utilizing state-of-the-art statistical and data mining methods. Methodology: We have implemented a recursive feature elimination with cross-validation using the support vector machine (SVM) approach for refined feature selection. Building on this, we developed six machine learning models, including logistic regression, k-Nearest Neighbors (k-NN), Naive Bayes, Random Forest, Gradient Boosting, and Multilayer Perceptron Neural Network, to evaluate their performance. Findings: The Gradient Boosting Classifier excelled, achieving a median recall of 92.17% and outstanding metrics such as area under the receiver operating characteristics curve (AUC) with a median of 68%, alongside median accuracy and precision scores of 76%. Through our machine learning analysis, we identified 31 genes significantly associated with diabetes traits, highlighting their potential as biomarkers and targets for diabetes management strategies. Conclusion: Particularly noteworthy were the Gradient Boosting Classifier and Multilayer Perceptron Neural Network, which demonstrated potential in diabetes outcome prediction. We recommend future investigations to incorporate larger cohorts and a wider array of predictive variables to enhance the models' predictive capabilities.

Keywords: diabetes, machine learning, prediction, biomarkers

Procedia PDF Downloads 61
4519 A Comparative Study of the Proposed Models for the Components of the National Health Information System

Authors: M. Ahmadi, Sh. Damanabi, F. Sadoughi

Abstract:

National Health Information System plays an important role in ensuring timely and reliable access to Health information which is essential for strategic and operational decisions that improve health, quality and effectiveness of health care. In other words, by using the National Health information system you can improve the quality of health data, information and knowledge used to support decision making at all levels and areas of the health sector. Since full identification of the components of this system for better planning and management influential factors of performance seems necessary, therefore, in this study, different attitudes towards components of this system are explored comparatively. Methods: This is a descriptive and comparative kind of study. The society includes printed and electronic documents containing components of the national health information system in three parts: input, process, and output. In this context, search for information using library resources and internet search were conducted and data analysis was expressed using comparative tables and qualitative data. Results: The findings showed that there are three different perspectives presenting the components of national health information system, Lippeveld, Sauerborn, and Bodart Model in 2000, Health Metrics Network (HMN) model from World Health Organization in 2008 and Gattini’s 2009 model. All three models outlined above in the input (resources and structure) require components of management and leadership, planning and design programs, supply of staff, software and hardware facilities, and equipment. In addition, in the ‘process’ section from three models, we pointed up the actions ensuring the quality of health information system and in output section, except Lippeveld Model, two other models consider information products, usage and distribution of information as components of the national health information system. Conclusion: The results showed that all the three models have had a brief discussion about the components of health information in input section. However, Lippeveld model has overlooked the components of national health information in process and output sections. Therefore, it seems that the health measurement model of network has a comprehensive presentation for the components of health system in all three sections-input, process, and output.

Keywords: National Health Information System, components of the NHIS, Lippeveld Model

Procedia PDF Downloads 427
4518 Characterization of Group Dynamics for Fostering Mathematical Modeling Competencies

Authors: Ayse Ozturk

Abstract:

The study extends the prior research on modeling competencies by positioning students’ cognitive and language resources as the fundamentals for pursuing their own inquiry and expression lines through mathematical modeling. This strategy aims to answer the question that guides this study, “How do students’ group approaches to modeling tasks affect their modeling competencies over a unit of instruction?” Six bilingual tenth-grade students worked on open-ended modeling problems along with the content focused on quantities over six weeks. Each group was found to have a unique cognitive approach for solving these problems. Three different problem-solving strategies affected how the groups’ modeling competencies changed. The results provide evidence that the discussion around groups’ solutions, coupled with their reflections, advances group interpreting and validating competencies in the mathematical modeling process

Keywords: cognition, collective learning, mathematical modeling competencies, problem-solving

Procedia PDF Downloads 164
4517 Multimodal Biometric Cryptography Based Authentication in Cloud Environment to Enhance Information Security

Authors: D. Pugazhenthi, B. Sree Vidya

Abstract:

Cloud computing is one of the emerging technologies that enables end users to use the services of cloud on ‘pay per usage’ strategy. This technology grows in a fast pace and so is its security threat. One among the various services provided by cloud is storage. In this service, security plays a vital factor for both authenticating legitimate users and protection of information. This paper brings in efficient ways of authenticating users as well as securing information on the cloud. Initial phase proposed in this paper deals with an authentication technique using multi-factor and multi-dimensional authentication system with multi-level security. Unique identification and slow intrusive formulates an advanced reliability on user-behaviour based biometrics than conventional means of password authentication. By biometric systems, the accounts are accessed only by a legitimate user and not by a nonentity. The biometric templates employed here do not include single trait but multiple, viz., iris and finger prints. The coordinating stage of the authentication system functions on Ensemble Support Vector Machine (SVM) and optimization by assembling weights of base SVMs for SVM ensemble after individual SVM of ensemble is trained by the Artificial Fish Swarm Algorithm (AFSA). Thus it helps in generating a user-specific secure cryptographic key of the multimodal biometric template by fusion process. Data security problem is averted and enhanced security architecture is proposed using encryption and decryption system with double key cryptography based on Fuzzy Neural Network (FNN) for data storing and retrieval in cloud computing . The proposing scheme aims to protect the records from hackers by arresting the breaking of cipher text to original text. This improves the authentication performance that the proposed double cryptographic key scheme is capable of providing better user authentication and better security which distinguish between the genuine and fake users. Thus, there are three important modules in this proposed work such as 1) Feature extraction, 2) Multimodal biometric template generation and 3) Cryptographic key generation. The extraction of the feature and texture properties from the respective fingerprint and iris images has been done initially. Finally, with the help of fuzzy neural network and symmetric cryptography algorithm, the technique of double key encryption technique has been developed. As the proposed approach is based on neural networks, it has the advantage of not being decrypted by the hacker even though the data were hacked already. The results prove that authentication process is optimal and stored information is secured.

Keywords: artificial fish swarm algorithm (AFSA), biometric authentication, decryption, encryption, fingerprint, fusion, fuzzy neural network (FNN), iris, multi-modal, support vector machine classification

Procedia PDF Downloads 266
4516 Fitness Action Recognition Based on MediaPipe

Authors: Zixuan Xu, Yichun Lou, Yang Song, Zihuai Lin

Abstract:

MediaPipe is an open-source machine learning computer vision framework that can be ported into a multi-platform environment, which makes it easier to use it to recognize the human activity. Based on this framework, many human recognition systems have been created, but the fundamental issue is the recognition of human behavior and posture. In this paper, two methods are proposed to recognize human gestures based on MediaPipe, the first one uses the Adaptive Boosting algorithm to recognize a series of fitness gestures, and the second one uses the Fast Dynamic Time Warping algorithm to recognize 413 continuous fitness actions. These two methods are also applicable to any human posture movement recognition.

Keywords: computer vision, MediaPipe, adaptive boosting, fast dynamic time warping

Procedia PDF Downloads 126