Search results for: non-linear finite element method
18572 A Periodogram-Based Spectral Method Approach: The Relationship between Tourism and Economic Growth in Turkey
Authors: Mesut BALIBEY, Serpil TÜRKYILMAZ
Abstract:
A popular topic in the econometrics and time series area is the cointegrating relationships among the components of a nonstationary time series. Engle and Granger’s least squares method and Johansen’s conditional maximum likelihood method are the most widely-used methods to determine the relationships among variables. Furthermore, a method proposed to test a unit root based on the periodogram ordinates has certain advantages over conventional tests. Periodograms can be calculated without any model specification and the exact distribution under the assumption of a unit root is obtained. For higher order processes the distribution remains the same asymptotically. In this study, in order to indicate advantages over conventional test of periodograms, we are going to examine a possible relationship between tourism and economic growth during the period 1999:01-2010:12 for Turkey by using periodogram method, Johansen’s conditional maximum likelihood method, Engle and Granger’s ordinary least square method.Keywords: cointegration, economic growth, periodogram ordinate, tourism
Procedia PDF Downloads 27018571 Multiband Fractal Patch Antenna for Small Spacecraft of Earth Remote Sensing
Authors: Beibit Karibayev, Akmaral Imanbayeva, Timur Namazbayev
Abstract:
Currently, the small spacecraft (SSC) industry is experiencing a big boom in popularity. This is primarily due to ease of use, low cost and mobility. In addition, these programs can be implemented not only at the state level but also at the level of companies, universities and other organizations. For remote sensing of the Earth (ERS), small spacecraft with an orientation system is used. It is important to take into account here that a remote sensing device, for example, a camera for photographing the Earth's surface, must be directed at the Earth's surface. But this, at first glance, the limitation can be turned into an advantage using a patch antenna. This work proposed to use a patch antenna based on a unidirectional fractal in the SSC. The CST Microwave Studio software package was used for simulation and research. Copper (ε = 1.0) was chosen as the emitting element and reflector. The height of the substrate was 1.6 mm, the type of substrate material was FR-4 (ε = 4.3). The simulation was performed in the frequency range of 0 – 6 GHz. As a result of the research, a patch antenna based on fractal geometry was developed for ERS nanosatellites. The capabilities of these antennas are modeled and investigated. A method for calculating and modeling fractal geometry for patch antennas has been developed.Keywords: antenna, earth remote sensing, fractal, small spacecraft
Procedia PDF Downloads 26018570 Parametric and Analysis Study of the Melting in Slabs Heated by a Laminar Heat Transfer Fluid in Downward and Upward Flows
Authors: Radouane Elbahjaoui, Hamid El Qarnia
Abstract:
The present work aims to investigate numerically the thermal and flow characteristics of a rectangular latent heat storage unit (LHSU) during the melting process of a phase change material (PCM). The LHSU consists of a number of vertical and identical plates of PCM separated by rectangular channels. The melting process is initiated when the LHSU is heated by a heat transfer fluid (HTF: water) flowing in channels in a downward or upward direction. The proposed study is motivated by the need to optimize the thermal performance of the LHSU by accelerating the charging process. A mathematical model is developed and a fixed-grid enthalpy formulation is adopted for modeling the melting process coupling with convection-conduction heat transfer. The finite volume method was used for discretization. The obtained numerical results are compared with experimental, analytical and numerical ones found in the literature and reasonable agreement is obtained. Thereafter, the numerical investigations were carried out to highlight the effects of the HTF flow direction and the aspect ratio of the PCM slabs on the heat transfer characteristics and thermal performance enhancement of the LHSU.Keywords: PCM, TES, LHSU, melting
Procedia PDF Downloads 26118569 Braille Code Matrix
Authors: Mohammed E. A. Brixi Nigassa, Nassima Labdelli, Ahmed Slami, Arnaud Pothier, Sofiane Soulimane
Abstract:
According to the world health organization (WHO), there are almost 285 million people with visual disability, 39 million of these people are blind. Nevertheless, there is a code for these people that make their life easier and allow them to access information more easily; this code is the Braille code. There are several commercial devices allowing braille reading, unfortunately, most of these devices are not ergonomic and too expensive. Moreover, we know that 90 % of blind people in the world live in low-incomes countries. Our contribution aim is to concept an original microactuator for Braille reading, as well as being ergonomic, inexpensive and lowest possible energy consumption. Nowadays, the piezoelectric device gives the better actuation for low actuation voltage. In this study, we focus on piezoelectric (PZT) material which can bring together all these conditions. Here, we propose to use one matrix composed by six actuators to form the 63 basic combinations of the Braille code that contain letters, numbers, and special characters in compliance with the standards of the braille code. In this work, we use a finite element model with Comsol Multiphysics software for designing and modeling this type of miniature actuator in order to integrate it into a test device. To define the geometry and the design of our actuator, we used physiological limits of perception of human being. Our results demonstrate in our study that piezoelectric actuator could bring a large deflection out-of-plain. Also, we show that microactuators can exhibit non uniform compression. This deformation depends on thin film thickness and the design of membrane arm. The actuator composed of four arms gives the higher deflexion and it always gives a domed deformation at the center of the deviceas in case of the Braille system. The maximal deflection can be estimated around ten micron per Volt (~ 10µm/V). We noticed that the deflection according to the voltage is a linear function, and this deflection not depends only on the voltage the voltage, but also depends on the thickness of the film used and the design of the anchoring arm. Then, we were able to simulate the behavior of the entire matrix and thus display different characters in Braille code. We used these simulations results to achieve our demonstrator. This demonstrator is composed of a layer of PDMS on which we put our piezoelectric material, and then added another layer of PDMS to isolate our actuator. In this contribution, we compare our results to optimize the final demonstrator.Keywords: Braille code, comsol software, microactuators, piezoelectric
Procedia PDF Downloads 35518568 The Inverse Problem in the Process of Heat and Moisture Transfer in Multilayer Walling
Authors: Bolatbek Rysbaiuly, Nazerke Rysbayeva, Aigerim Rysbayeva
Abstract:
Relevance: Energy saving elevated to public policy in almost all developed countries. One of the areas for energy efficiency is improving and tightening design standards. In the tie with the state standards, make high demands for thermal protection of buildings. Constructive arrangement of layers should ensure normal operation in which the humidity of materials of construction should not exceed a certain level. Elevated levels of moisture in the walls can be attributed to a defective condition, as moisture significantly reduces the physical, mechanical and thermal properties of materials. Absence at the design stage of modeling the processes occurring in the construction and predict the behavior of structures during their work in the real world leads to an increase in heat loss and premature aging structures. Method: To solve this problem, widely used method of mathematical modeling of heat and mass transfer in materials. The mathematical modeling of heat and mass transfer are taken into the equation interconnected layer [1]. In winter, the thermal and hydraulic conductivity characteristics of the materials are nonlinear and depends on the temperature and moisture in the material. In this case, the experimental method of determining the coefficient of the freezing or thawing of the material becomes much more difficult. Therefore, in this paper we propose an approximate method for calculating the thermal conductivity and moisture permeability characteristics of freezing or thawing material. Questions. Following the development of methods for solving the inverse problem of mathematical modeling allows us to answer questions that are closely related to the rational design of fences: Where the zone of condensation in the body of the multi-layer fencing; How and where to apply insulation rationally his place; Any constructive activities necessary to provide for the removal of moisture from the structure; What should be the temperature and humidity conditions for the normal operation of the premises enclosing structure; What is the longevity of the structure in terms of its components frost materials. Tasks: The proposed mathematical model to solve the following problems: To assess the condition of the thermo-physical designed structures at different operating conditions and select appropriate material layers; Calculate the temperature field in a structurally complex multilayer structures; When measuring temperature and moisture in the characteristic points to determine the thermal characteristics of the materials constituting the surveyed construction; Laboratory testing to significantly reduce test time, and eliminates the climatic chamber and expensive instrumentation experiments and research; Allows you to simulate real-life situations that arise in multilayer enclosing structures associated with freezing, thawing, drying and cooling of any layer of the building material.Keywords: energy saving, inverse problem, heat transfer, multilayer walling
Procedia PDF Downloads 39718567 Proposal of Design Method in the Semi-Acausal System Model
Authors: Shigeyuki Haruyama, Ken Kaminishi, Junji Kaneko, Tadayuki Kyoutani, Siti Ruhana Omar, Oke Oktavianty
Abstract:
This study is used as a definition method to the value and function in manufacturing sector. In concurrence of discussion about present condition of modeling method, until now definition of 1D-CAE is ambiguity and not conceptual. Across all the physics fields, those methods are defined with the formulation of differential algebraic equation which only applied time derivation and simulation. At the same time, we propose semi-acausal modeling concept and differential algebraic equation method as a newly modeling method which the efficiency has been verified through the comparison of numerical analysis result between the semi-acausal modeling calculation and FEM theory calculation.Keywords: system model, physical models, empirical models, conservation law, differential algebraic equation, object-oriented
Procedia PDF Downloads 48518566 A Unified Ghost Solid Method for the Elastic Solid-Solid Interface
Authors: Abouzar Kaboudian, Boo Cheong Khoo
Abstract:
The Ghost Solid Method (GSM) based algorithms have been extensively used for numerical calculation of wave propagation in the limit of abrupt changes in materials. In this work, we present a unified version of the GSMs that can be successfully applied to both abrupt as well as smooth changes of the material properties in a medium. The application of this method enables us to use the previously-matured numerical algorithms which were developed to be applied to homogeneous mediums, with only minor modifications. This method is developed for one-dimensional settings and its extension to multi-dimensions is briefly discussed. Various numerical experiments are presented to show the applicability of this unified GSM to wave propagation problems in sharply as well as smoothly varying mediums.Keywords: elastic solid, functionally graded material, ghost solid method, solid-solid interaction
Procedia PDF Downloads 41418565 Observation of Inverse Blech Length Effect during Electromigration of Cu Thin Film
Authors: Nalla Somaiah, Praveen Kumar
Abstract:
Scaling of transistors and, hence, interconnects is very important for the enhanced performance of microelectronic devices. Scaling of devices creates significant complexity, especially in the multilevel interconnect architectures, wherein current crowding occurs at the corners of interconnects. Such a current crowding creates hot-spots at the respective corners, resulting in non-uniform temperature distribution in the interconnect as well. This non-uniform temperature distribution, which is exuberated with continued scaling of devices, creates a temperature gradient in the interconnect. In particular, the increased current density at corners and the associated temperature rise due to Joule heating accelerate the electromigration induced failures in interconnects, especially at corners. This has been the classic reliability issue associated with metallic interconnects. Herein, it is generally understood that electromigration induced damages can be avoided if the length of interconnect is smaller than a critical length, often termed as Blech length. Interestingly, the effect of non-negligible temperature gradients generated at these corners in terms of thermomigration and electromigration-thermomigration coupling has not attracted enough attention. Accordingly, in this work, the interplay between the electromigration and temperature gradient induced mass transport was studied using standard Blech structure. In this particular sample structure, the majority of the current is forcefully directed into the low resistivity metallic film from a high resistivity underlayer film, resulting in current crowding at the edges of the metallic film. In this study, 150 nm thick Cu metallic film was deposited on 30 nm thick W underlayer film in the configuration of Blech structure. Series of Cu thin strips, with lengths of 10, 20, 50, 100, 150 and 200 μm, were fabricated. Current density of ≈ 4 × 1010 A/m² was passed through Cu and W films at a temperature of 250ºC. Herein, along with expected forward migration of Cu atoms from the cathode to the anode at the cathode end of the Cu film, backward migration from the anode towards the center of Cu film was also observed. Interestingly, smaller length samples consistently showed enhanced migration at the cathode end, thus indicating the existence of inverse Blech length effect in presence of temperature gradient. A finite element based model showing the interplay between electromigration and thermomigration driving forces has been developed to explain this observation.Keywords: Blech structure, electromigration, temperature gradient, thin films
Procedia PDF Downloads 25718564 Differential Transform Method: Some Important Examples
Authors: M. Jamil Amir, Rabia Iqbal, M. Yaseen
Abstract:
In this paper, we solve some differential equations analytically by using differential transform method. For this purpose, we consider four models of Laplace equation with two Dirichlet and two Neumann boundary conditions and K(2,2) equation and obtain the corresponding exact solutions. The obtained results show the simplicity of the method and massive reduction in calculations when one compares it with other iterative methods, available in literature. It is worth mentioning that here only a few number of iterations are required to reach the closed form solutions as series expansions of some known functions.Keywords: differential transform method, laplace equation, Dirichlet boundary conditions, Neumann boundary conditions
Procedia PDF Downloads 53718563 Using Interval Type-2 Fuzzy Controller for Diabetes Mellitus
Authors: Nafiseh Mollaei, Reihaneh Kardehi Moghaddam
Abstract:
In case of Diabetes Mellitus the controlling of insulin is very difficult. This illness is an incurable disease affecting millions of people worldwide. Glucose is a sugar which provides energy to the cells. Insulin is a hormone which supports the absorption of glucose. Fuzzy control strategy is attractive for glucose control because it mimics the first and second phase responses that the pancreas beta cells use to control glucose. We propose two control algorithms a type-1 fuzzy controller and an interval type-2 fuzzy method for the insulin infusion. The closed loop system has been simulated for different patients with different parameters, in present of the food intake disturbance and it has been shown that the blood glucose concentrations at a normoglycemic level of 110 mg/dl in the reasonable amount of time. This paper deals with type 1 diabetes as a nonlinear model, which has been simulated in MATLAB-SIMULINK environment. The novel model, termed the Augmented Minimal Model is used in the simulations. There are some uncertainties in this model due to factors such as blood glucose, daily meals or sudden stress. In addition to eliminate the effects of uncertainty, different control methods may be utilized. In this article, fuzzy controller performance were assessed in terms of its ability to track a normoglycemic set point (110 mg/dl) in response to a [0-10] g meal disturbance. Finally, the development reported in this paper is supposed to simplify the insulin delivery, so increasing the quality of life of the patient.Keywords: interval type-2, fuzzy controller, minimal augmented model, uncertainty
Procedia PDF Downloads 42818562 Assessment Power and Oscillation Damping Using the POD Controller and Proposed FOD Controller
Authors: Tohid Rahimi, Yahya Naderi, Babak Yousefi, Seyed Hossein Hoseini
Abstract:
Today’s modern interconnected power system is highly complex in nature. In this, one of the most important requirements during the operation of the electric power system is the reliability and security. Power and frequency oscillation damping mechanism improve the reliability. Because of power system stabilizer (PSS) low speed response against of major fault such as three phase short circuit, FACTs devise that can control the network condition in very fast time, are becoming popular. However, FACTs capability can be seen in a major fault present when nonlinear models of FACTs devise and power system equipment are applied. To realize this aim, the model of multi-machine power system with FACTs controller is developed in MATLAB/SIMULINK using Sim Power System (SPS) blockiest. Among the FACTs device, Static synchronous series compensator (SSSC) due to high speed changes its reactance characteristic inductive to capacitive, is effective power flow controller. Tuning process of controller parameter can be performed using different method. However, Genetic Algorithm (GA) ability tends to use it in controller parameter tuning process. In this paper, firstly POD controller is used to power oscillation damping. But in this station, frequency oscillation dos not has proper damping situation. Therefore, FOD controller that is tuned using GA is using that cause to damp out frequency oscillation properly and power oscillation damping has suitable situation.Keywords: power oscillation damping (POD), frequency oscillation damping (FOD), Static synchronous series compensator (SSSC), Genetic Algorithm (GA)
Procedia PDF Downloads 47618561 Artificial Neural Networks in Environmental Psychology: Application in Architectural Projects
Authors: Diego De Almeida Pereira, Diana Borchenko
Abstract:
Artificial neural networks are used for many applications as they are able to learn complex nonlinear relationships between input and output data. As the number of neurons and layers in a neural network increases, it is possible to represent more complex behaviors. The present study proposes that artificial neural networks are a valuable tool for architecture and engineering professionals concerned with understanding how buildings influence human and social well-being based on theories of environmental psychology.Keywords: environmental psychology, architecture, neural networks, human and social well-being
Procedia PDF Downloads 49618560 Forecasting Exchange Rate between Thai Baht and the US Dollar Using Time Series Analysis
Authors: Kunya Bowornchockchai
Abstract:
The objective of this research is to forecast the monthly exchange rate between Thai baht and the US dollar and to compare two forecasting methods. The methods are Box-Jenkins’ method and Holt’s method. Results show that the Box-Jenkins’ method is the most suitable method for the monthly Exchange Rate between Thai Baht and the US Dollar. The suitable forecasting model is ARIMA (1,1,0) without constant and the forecasting equation is Yt = Yt-1 + 0.3691 (Yt-1 - Yt-2) When Yt is the time series data at time t, respectively.Keywords: Box–Jenkins method, Holt’s method, mean absolute percentage error (MAPE), exchange rate
Procedia PDF Downloads 25418559 Evaluation of a Surrogate Based Method for Global Optimization
Authors: David Lindström
Abstract:
We evaluate the performance of a numerical method for global optimization of expensive functions. The method is using a response surface to guide the search for the global optimum. This metamodel could be based on radial basis functions, kriging, or a combination of different models. We discuss how to set the cycling parameters of the optimization method to get a balance between local and global search. We also discuss the eventual problem with Runge oscillations in the response surface.Keywords: expensive function, infill sampling criterion, kriging, global optimization, response surface, Runge phenomenon
Procedia PDF Downloads 57818558 Optimization Techniques for Microwave Structures
Authors: Malika Ourabia
Abstract:
A new and efficient method is presented for the analysis of arbitrarily shaped discontinuities. The discontinuities is characterized using a hybrid spectral/numerical technique. This structure presents an arbitrary number of ports, each one with different orientation and dimensions. This article presents a hybrid method based on multimode contour integral and mode matching techniques. The process is based on segmentation and dividing the structure into key building blocks. We use the multimode contour integral method to analyze the blocks including irregular shape discontinuities. Finally, the multimode scattering matrix of the whole structure can be found by cascading the blocks. Therefore, the new method is suitable for analysis of a wide range of waveguide problems. Therefore, the present approach can be applied easily to the analysis of any multiport junctions and cascade blocks. The accuracy of the method is validated comparing with results for several complex problems found in the literature. CPU times are also included to show the efficiency of the new method proposed.Keywords: segmentation, s parameters, simulation, optimization
Procedia PDF Downloads 52818557 Optimization of Surface Roughness by Taguchi’s Method for Turning Process
Authors: Ashish Ankus Yerunkar, Ravi Terkar
Abstract:
Study aimed at evaluating the best process environment which could simultaneously satisfy requirements of both quality as well as productivity with special emphasis on reduction of cutting tool flank wear, because reduction in flank wear ensures increase in tool life. The predicted optimal setting ensured minimization of surface roughness. Purpose of this paper is focused on the analysis of optimum cutting conditions to get lowest surface roughness in turning SCM 440 alloy steel by Taguchi method. Design for the experiment was done using Taguchi method and 18 experiments were designed by this process and experiments conducted. The results are analyzed using ANOVA method. Taguchi method has depicted that the depth of cut has significant role to play in producing lower surface roughness followed by feed. The Cutting speed has lesser role on surface roughness from the tests. The vibrations of the machine tool, tool chattering are the other factors which may contribute poor surface roughness to the results and such factors ignored for analyses. The inferences by this method will be useful to other researches for similar type of study and may be vital for further research on tool vibrations, cutting forces etc.Keywords: surface roughness (ra), machining, dry turning, taguchi method, turning process, anova method, mahr perthometer
Procedia PDF Downloads 36718556 Influence of Geometry on Performance of Type-4 Filament Wound Composite Cylinder for Compressed Gas Storage
Authors: Pranjali Sharma, Swati Neogi
Abstract:
Composite pressure vessels are low weight structures mainly used in a variety of applications such as automobiles, aeronautics and chemical engineering. Fiber reinforced polymer (FRP) composite materials offer the simplicity of design and use, high fuel storage capacity, rapid refueling capability, excellent shelf life, minimal infrastructure impact, high safety due to the inherent strength of the pressure vessel, and little to no development risk. Apart from these preliminary merits, the subsidized weight of composite vessels over metallic cylinders act as the biggest asset to the automotive industry, increasing the fuel efficiency. The result is a lightweight, flexible, non-explosive, and non-fragmenting pressure vessel that can be tailor-made to attune with specific applications. The winding pattern of the composite over-wrap is a primary focus while designing a pressure vessel. The critical stresses in the system depend on the thickness, angle and sequence of the composite layers. The composite over-wrap is wound over a plastic liner, whose geometry can be varied for the ease of winding. In the present study, we aim to optimize the FRP vessel geometry that provides an ease in winding and also aids in weight reduction for enhancing the vessel performance. Finite element analysis is used to study the effect of dome geometry, yielding a design with maximum value of burst pressure and least value of vessel weight. The stress and strain analysis of different dome ends along with the cylindrical portion is carried out in ANSYS 19.2. The failure is predicted using different failure theories like Tsai-Wu theory, Tsai-Hill theory and Maximum stress theory. Corresponding to a given winding sequence, the optimum dome geometry is determined for a fixed internal pressure to identify the theoretical value of burst pressure. Finally, this geometry is used to decrease the number of layers to reach the set value of safety in accordance with the available safety standards. This results in decrease in the weight of the composite over-wrap and manufacturing cost of the pressure vessel. An improvement in the overall weight performance of the pressure vessel gives higher fuel efficiency for its use in automobile applications.Keywords: Compressed Gas Storage, Dome geometry, Theoretical Analysis, Type-4 Composite Pressure Vessel, Improvement in Vessel Weight Performance
Procedia PDF Downloads 14718555 Behaviour of RC Columns at Elevated Temperatures by NDT Techniques
Authors: D. Jagath Kumari, K. Srinivasa Rao
Abstract:
Reinforced concrete column is an important structural element in a building. Concrete usually performs well in building fires. However, when it is subjected to prolonged fire exposure or unusually high temperatures, and then it will suffer significant distress. Because concrete pre-fire compressive strength generally exceeds design requirements, therefore an average strength reduction can be tolerated. However high temperature reduces the compressive strength of concrete so much that the concrete retains no useful structural strength. Therefore the residual strength and its performance of structure can be assed by NDT testing. In this paper, rebound hammer test and the ultrasonic pulse velocity (UPV) are used to evaluate the residual compressive strength and material integrity of post-fire-curing concrete subjected to elevated temperatures. Also considering the large availability of fly ash in most of the countries, an attempt was made to study the effect of high volume fly ash concrete exposed to elevated temperatures. 32 RC column specimens were made with a M20 grade concrete mix. Out of 32 column specimens 16 column specimens were made with OPC concrete and other 16 column specimens were made with HVFA concrete. All specimens having similar cross-section details. Columns were exposed to fire for temperatures from 100oC to 800o C with increments of 100o C for duration of 3 hours. Then the specimens allowed cooling to room temperature by two methods natural air cooling method and immediate water quenching method. All the specimens were tested identically, for the compressive strengths and material integrity by rebound hammer and ultrasonic pulse velocity meter respectively for study. These two tests were carried out on preheating and post heating of the column specimens. The percentage variation of compressive strengths of RCC columns with the increase in temperature has been studied and compared the results for both OPC and HVFA concretes. Physical observations of the heated columns were observed.Keywords: HVFA concrete, NDT testing, residual strength
Procedia PDF Downloads 38618554 Electroencephalography (EEG) Analysis of Alcoholic and Control Subjects Using Multiscale Permutation Entropy
Authors: Lal Hussain, Wajid Aziz, Sajjad Ahmed Nadeem, Saeed Arif Shah, Abdul Majid
Abstract:
Brain electrical activity as reflected in Electroencephalography (EEG) have been analyzed and diagnosed using various techniques. Among them, complexity measure, nonlinearity, disorder, and unpredictability play vital role due to the nonlinear interconnection between functional and anatomical subsystem emerged in brain in healthy state and during various diseases. There are many social and economical issues of alcoholic abuse as memory weakness, decision making, impairments, and concentrations etc. Alcoholism not only defect the brains but also associated with emotional, behavior, and cognitive impairments damaging the white and gray brain matters. A recently developed signal analysis method i.e. Multiscale Permutation Entropy (MPE) is proposed to estimate the complexity of long-range temporal correlation time series EEG of Alcoholic and Control subjects acquired from University of California Machine Learning repository and results are compared with MSE. Using MPE, coarsed grained series is first generated and the PE is computed for each coarsed grained time series against the electrodes O1, O2, C3, C4, F2, F3, F4, F7, F8, Fp1, Fp2, P3, P4, T7, and T8. The results computed against each electrode using MPE gives higher significant values as compared to MSE as well as mean rank differences accordingly. Likewise, ROC and Area under the ROC also gives higher separation against each electrode using MPE in comparison to MSE.Keywords: electroencephalogram (EEG), multiscale permutation entropy (MPE), multiscale sample entropy (MSE), permutation entropy (PE), mann whitney test (MMT), receiver operator curve (ROC), complexity measure
Procedia PDF Downloads 49518553 Influence of Pile Radius on Inertial Response of Pile Group in Fundamental Frequency of Homogeneous Soil Medium
Authors: Faghihnia Torshizi Mostafa, Saitoh Masato
Abstract:
An efficient method is developed for the response of a group of vertical, cylindrical fixed-head, finite length piles embedded in a homogeneous elastic stratum, subjected to harmonic force atop the pile group cap. Pile to pile interaction is represented through simplified beam-on-dynamic-Winkler-foundation (BDWF) with realistic frequency-dependent springs and dashpots. Pile group effect is considered through interaction factors. New closed-form expressions for interaction factors and curvature ratios atop the pile are extended by considering different boundary conditions at the tip of the piles (fixed, hinged). In order to investigate the fundamental characteristics of inertial bending strains in pile groups, inertial bending strains at the head of each pile are expressed in terms of slenderness ratio. The results of parametric study give valuable insight in understanding the behavior of fixed head pile groups in fundamental natural frequency of soil stratum.Keywords: Winkler-foundation, fundamental frequency of soil stratum, normalized inertial bending strain, harmonic excitation
Procedia PDF Downloads 41518552 Permanent Magnet Machine Can Be a Vibration Sensor for Itself
Authors: M. Barański
Abstract:
The article presents a new vibration diagnostic method designed to (PM) machines with permanent magnets. Those devices are commonly used in small wind and water systems or vehicles drives. The author’s method is very innovative and unique. Specific structural properties of PM machines are used in this method - electromotive force (EMF) generated due to vibrations. There was analysed number of publications which describe vibration diagnostic methods and tests of electrical PM machines and there was no method found to determine the technical condition of such machine basing on their own signals. In this article, the method genesis, the similarity of machines with permanent magnet to vibration sensor and simulation and laboratory tests results will be discussed. The method of determination the technical condition of electrical machine with permanent magnets basing on its own signals is the subject of patent application No P.405669, and it is the main thesis of author’s doctoral dissertation.Keywords: vibrations, generator, permanent magnet, traction drive, electrical vehicle
Procedia PDF Downloads 36618551 Application of a Modified Crank-Nicolson Method in Metallurgy
Authors: Kobamelo Mashaba
Abstract:
The molten slag has a high substantial temperatures range between 1723-1923, carrying a huge amount of useful energy for reducing energy consumption and CO₂ emissions under the heat recovery process. Therefore in this study, we investigated the performance of the modified crank Nicolson method for a delayed partial differential equation on the heat recovery of molten slag in the metallurgical mining environment. It was proved that the proposed method converges quickly compared to the classic method with the existence of a unique solution. It was inferred from numerical result that the proposed methodology is more viable and profitable for the mining industry.Keywords: delayed partial differential equation, modified Crank-Nicolson Method, molten slag, heat recovery, parabolic equation
Procedia PDF Downloads 10118550 Machine Learning Techniques for Estimating Ground Motion Parameters
Authors: Farid Khosravikia, Patricia Clayton
Abstract:
The main objective of this study is to evaluate the advantages and disadvantages of various machine learning techniques in forecasting ground-motion intensity measures given source characteristics, source-to-site distance, and local site condition. Intensity measures such as peak ground acceleration and velocity (PGA and PGV, respectively) as well as 5% damped elastic pseudospectral accelerations at different periods (PSA), are indicators of the strength of shaking at the ground surface. Estimating these variables for future earthquake events is a key step in seismic hazard assessment and potentially subsequent risk assessment of different types of structures. Typically, linear regression-based models, with pre-defined equations and coefficients, are used in ground motion prediction. However, due to the restrictions of the linear regression methods, such models may not capture more complex nonlinear behaviors that exist in the data. Thus, this study comparatively investigates potential benefits from employing other machine learning techniques as a statistical method in ground motion prediction such as Artificial Neural Network, Random Forest, and Support Vector Machine. The algorithms are adjusted to quantify event-to-event and site-to-site variability of the ground motions by implementing them as random effects in the proposed models to reduce the aleatory uncertainty. All the algorithms are trained using a selected database of 4,528 ground-motions, including 376 seismic events with magnitude 3 to 5.8, recorded over the hypocentral distance range of 4 to 500 km in Oklahoma, Kansas, and Texas since 2005. The main reason of the considered database stems from the recent increase in the seismicity rate of these states attributed to petroleum production and wastewater disposal activities, which necessities further investigation in the ground motion models developed for these states. Accuracy of the models in predicting intensity measures, generalization capability of the models for future data, as well as usability of the models are discussed in the evaluation process. The results indicate the algorithms satisfy some physically sound characteristics such as magnitude scaling distance dependency without requiring pre-defined equations or coefficients. Moreover, it is shown that, when sufficient data is available, all the alternative algorithms tend to provide more accurate estimates compared to the conventional linear regression-based method, and particularly, Random Forest outperforms the other algorithms. However, the conventional method is a better tool when limited data is available.Keywords: artificial neural network, ground-motion models, machine learning, random forest, support vector machine
Procedia PDF Downloads 12218549 Triggering Supersonic Boundary-Layer Instability by Small-Scale Vortex Shedding
Authors: Guohua Tu, Zhi Fu, Zhiwei Hu, Neil D Sandham, Jianqiang Chen
Abstract:
Tripping of boundary-layers from laminar to turbulent flow, which may be necessary in specific practical applications, requires high amplitude disturbances to be introduced into the boundary layers without large drag penalties. As a possible improvement on fixed trip devices, a technique based on vortex shedding for enhancing supersonic flow transition is demonstrated in the present paper for a Mach 1.5 boundary layer. The compressible Navier-Stokes equations are solved directly using a high-order (fifth-order in space and third-order in time) finite difference method for small-scale cylinders suspended transversely near the wall. For cylinders with proper diameter and mount location, asymmetry vortices shed within the boundary layer are capable of tripping laminar-turbulent transition. Full three-dimensional simulations showed that transition was enhanced. A parametric study of the size and mounting location of the cylinder is carried out to identify the most effective setup. It is also found that the vortex shedding can be suppressed by some factors such as wall effect.Keywords: boundary layer instability, boundary layer transition, vortex shedding, supersonic flows, flow control
Procedia PDF Downloads 36518548 Thermal Behaviors of the Strong Form Factors of Charmonium and Charmed Beauty Mesons from Three Point Sum Rules
Authors: E. Yazıcı, H. Sundu, E. Veli Veliev
Abstract:
In order to understand the nature of strong interactions and QCD vacuum, investigation of the meson coupling constants have an important role. The knowledge on the temperature dependence of the form factors is very important for the interpretation of heavy-ion collision experiments. Also, more accurate determination of these coupling constants plays a crucial role in understanding of the hadronic decays. With the increasing of CM energies of the experiments, researches on meson interactions have become one of the more interesting problems of hadronic physics. In this study, we analyze the temperature dependence of the strong form factor of the BcBcJ/ψ vertex using the three point QCD sum rules method. Here, we assume that with replacing the vacuum condensates and also the continuum threshold by their thermal version, the sum rules for the observables remain valid. In calculations, we take into account the additional operators, which appear in the Wilson expansion at finite temperature. We also investigated the momentum dependence of the form factor at T = 0, fit it into an analytic function, and extrapolate into the deep time-like region in order to obtain a strong coupling constant of the vertex. Our results are consistent with the results existing in the literature.Keywords: QCD sum rules, thermal QCD, heavy mesons, strong coupling constants
Procedia PDF Downloads 18918547 Implicit Off-Grid Block Method for Solving Fourth and Fifth Order Ordinary Differential Equations Directly
Authors: Olusola Ezekiel Abolarin, Gift E. Noah
Abstract:
This research work considered an innovative procedure to numerically approximate higher-order Initial value problems (IVP) of ordinary differential equations (ODE) using the Legendre polynomial as the basis function. The proposed method is a half-step, self-starting Block integrator employed to approximate fourth and fifth order IVPs without reduction to lower order. The method was developed through a collocation and interpolation approach. The basic properties of the method, such as convergence, consistency and stability, were well investigated. Several test problems were considered, and the results compared favorably with both exact solutions and other existing methods.Keywords: initial value problem, ordinary differential equation, implicit off-grid block method, collocation, interpolation
Procedia PDF Downloads 8418546 Inverse Scattering of Two-Dimensional Objects Using an Enhancement Method
Authors: A.R. Eskandari, M.R. Eskandari
Abstract:
A 2D complete identification algorithm for dielectric and multiple objects immersed in air is presented. The employed technique consists of initially retrieving the shape and position of the scattering object using a linear sampling method and then determining the electric permittivity and conductivity of the scatterer using adjoint sensitivity analysis. This inversion algorithm results in high computational speed and efficiency, and it can be generalized for any scatterer structure. Also, this method is robust with respect to noise. The numerical results clearly show that this hybrid approach provides accurate reconstructions of various objects.Keywords: inverse scattering, microwave imaging, two-dimensional objects, Linear Sampling Method (LSM)
Procedia PDF Downloads 38718545 Total and Leachable Concentration of Trace Elements in Soil towards Human Health Risk, Related with Coal Mine in Jorong, South Kalimantan, Indonesia
Authors: Arie Pujiwati, Kengo Nakamura, Noriaki Watanabe, Takeshi Komai
Abstract:
Coal mining is well known to cause considerable environmental impacts, including trace element contamination of soil. This study aimed to assess the trace element (As, Cd, Co, Cu, Ni, Pb, Sb, and Zn) contamination of soil in the vicinity of coal mining activities, using the case study of Asam-asam River basin, South Kalimantan, Indonesia, and to assess the human health risk, incorporating total and bioavailable (water-leachable and acid-leachable) concentrations. The results show the enrichment of As and Co in soil, surpassing the background soil value. Contamination was evaluated based on the index of geo-accumulation, Igeo and the pollution index, PI. Igeo values showed that the soil was generally uncontaminated (Igeo ≤ 0), except for elevated As and Co. Mean PI for Ni and Cu indicated slight contamination. Regarding the assessment of health risks, the Hazard Index, HI showed adverse risks (HI > 1) for Ni, Co, and As. Further, Ni and As were found to pose unacceptable carcinogenic risk (risk > 1.10-5). Farming, settlement, and plantation were found to present greater risk than coal mines. These results show that coal mining activity in the study area contaminates the soils by particular elements and may pose potential human health risk in its surrounding area. This study is important for setting appropriate countermeasure actions and improving basic coal mining management in Indonesia.Keywords: coal mine, risk, trace elements, soil
Procedia PDF Downloads 26118544 A New Reliability Allocation Method Based on Fuzzy Numbers
Authors: Peng Li, Chuanri Li, Tao Li
Abstract:
Reliability allocation is quite important during early design and development stages for a system to apportion its specified reliability goal to subsystems. This paper improves the reliability fuzzy allocation method and gives concrete processes on determining the factor set, the factor weight set, judgment set, and multi-grade fuzzy comprehensive evaluation. To determine the weight of factor set, the modified trapezoidal numbers are proposed to reduce errors caused by subjective factors. To decrease the fuzziness in the fuzzy division, an approximation method based on linear programming is employed. To compute the explicit values of fuzzy numbers, centroid method of defuzzification is considered. An example is provided to illustrate the application of the proposed reliability allocation method based on fuzzy arithmetic.Keywords: reliability allocation, fuzzy arithmetic, allocation weight, linear programming
Procedia PDF Downloads 34218543 Interfacial Instability and Mixing Behavior between Two Liquid Layers Bounded in Finite Volumes
Authors: Lei Li, Ming M. Chai, Xiao X. Lu, Jia W. Wang
Abstract:
The mixing process of two liquid layers in a cylindrical container includes the upper liquid with higher density rushing into the lower liquid with lighter density, the lower liquid rising into the upper liquid, meanwhile the two liquid layers having interactions with each other, forming vortices, spreading or dispersing in others, entraining or mixing with others. It is a complex process constituted of flow instability, turbulent mixing and other multiscale physical phenomena and having a fast evolution velocity. In order to explore the mechanism of the process and make further investigations, some experiments about the interfacial instability and mixing behavior between two liquid layers bounded in different volumes are carried out, applying the planar laser induced fluorescence (PLIF) and the high speed camera (HSC) techniques. According to the results, the evolution of interfacial instability between immiscible liquid develops faster than theoretical rate given by the Rayleigh-Taylor Instability (RTI) theory. It is reasonable to conjecture that some mechanisms except the RTI play key roles in the mixture process of two liquid layers. From the results, it is shown that the invading velocity of the upper liquid into the lower liquid does not depend on the upper liquid's volume (height). Comparing to the cases that the upper and lower containers are of identical diameter, in the case that the lower liquid volume increases to larger geometric space, the upper liquid spreads and expands into the lower liquid more quickly during the evolution of interfacial instability, indicating that the container wall has important influence on the mixing process. In the experiments of miscible liquid layers’ mixing, the diffusion time and pattern of the liquid interfacial mixing also does not depend on the upper liquid's volumes, and when the lower liquid volume increases to larger geometric space, the action of the bounded wall on the liquid falling and rising flow will decrease, and the liquid interfacial mixing effects will also attenuate. Therefore, it is also concluded that the volume weight of upper heavier liquid is not the reason of the fast interfacial instability evolution between the two liquid layers and the bounded wall action is limited to the unstable and mixing flow. The numerical simulations of the immiscible liquid layers’ interfacial instability flow using the VOF method show the typical flow pattern agree with the experiments. However the calculated instability development is much slower than the experimental measurement. The numerical simulation of the miscible liquids’ mixing, which applying Fick’s diffusion law to the components’ transport equation, shows a much faster mixing rate than the experiments on the liquids’ interface at the initial stage. It can be presumed that the interfacial tension plays an important role in the interfacial instability between the two liquid layers bounded in finite volume.Keywords: interfacial instability and mixing, two liquid layers, Planar Laser Induced Fluorescence (PLIF), High Speed Camera (HSC), interfacial energy and tension, Cahn-Hilliard Navier-Stokes (CHNS) equations
Procedia PDF Downloads 248